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A B S T R A C T

It is far well-known that energy function of a two-dimensional autonomous dynamical system can be simply
obtained by multiplying its corresponding second-order ordinary differential equation, i.e., its equation of
motion by the first time derivative of its state variable. In the nineties, one of us (J.C.S.) stated that a three-
dimensional autonomous dynamical system can be also transformed into a third-order ordinary differential
equation of motion todays known as jerk equation. Although a method has been developed during these last
decades to provide the energy function of such three-dimensional autonomous dynamical systems, the question
arose to determine by which type of term, i.e., by the first or second time derivative of their state variable, the
corresponding jerk equation of these systems should be multiplied to deduce their energy function. We prove
in this work that the jerk equation of such systems must be multiplied by the second time derivative of the
state variable and not by the first like in dimension two. We then provide an interpretation of the new term
appearing in the energy function and called jerk energy. We thus established that it is possible to obtain the
energy function of a three-dimensional dynamical system directly from its corresponding jerk equation. Two and
three-dimensional Van der Pol models are then used to exemplify these main results. Applications to Lorenz
and Chua’s models confirms their validity.
1. Introduction

Dynamical systems are generally used for modeling the dynamics of
a given physical, mechanical, electrical, biological, economical system
from the point of view of a deterministic process which is expressed
in terms of state variables. As an example, let us consider the classical
damped pendulum also called damped harmonic oscillator using the small
amplitude approximation, i.e. when the state variable 𝜃(𝑡) represents
here the angle from the vertical to the pendulum as a function of time
is such that 𝜃 ≪ 1 and so sin 𝜃 ≃ 𝜃. Then, starting from Newton’s second
law, the linear second-order ordinary differential equation of its motion
reads:
𝑑2𝜃
𝑑 𝑡2 + 𝛾 𝑑 𝜃

𝑑 𝑡 + 𝜔2𝜃 = 0 ⇔ 𝜃̈ + 𝛾𝜃̇ + 𝜔2𝜃 = 0 (1)

where 𝛾 is the damping coefficient and 𝜔 the angular frequency. This
equation of motion can be also written like this:
𝑑 𝑥
𝑑 𝑡 = 𝑦,

𝑑 𝑦
𝑑 𝑡 = −𝛾 𝑦 − 𝜔2𝑥,

(2)

where 𝑥(𝑡) = 𝜃(𝑡) and 𝑦(𝑡) = 𝜃̇(𝑡). In the middle of the seventeenth
century, French mathematician Jean le Rond de d’Alembert [1] stated
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that any 𝑛th-order ordinary differential equation can be transformed
into a set of 𝑛 simultaneous first-order ordinary differential equation,
i.e., into a velocity vector field, like in the above example. Then, a
classical method for obtaining the energy function consists in multiplying
the equation of motion (1), that we will call in what follows, acceleration
equation, by the time derivative of the state variable, i.e., by 𝜃̇(𝑡). Thus,
we have:

𝜃̇𝜃̈ + 𝛾𝜃̇2 + 𝜔2𝜃𝜃̇ = 0. (3)

By considering that 𝜃̇𝜃̈ = 𝑑
𝑑 𝑡

(

𝜃̇2

2

)

and 𝜃𝜃̇ = 𝑑
𝑑 𝑡

(

𝜃2

2

)

, we find that:

𝑑
𝑑 𝑡

[

𝜃̇2

2
+ 𝜔2 𝜃2

2

]

= −𝛾𝜃̇2, (4)

where 𝜃̇2

2
and 𝜔2 𝜃2

2
represents respectively the kinetic and potential

energy of the damped pendulum. Thus, its energy function 𝐻 reads:

𝐻 = 𝜃̇2

2
+ 𝜔2 𝜃2

2
(5)

So, we have:
𝑑 𝐻
𝑑 𝑡 = −𝛾𝜃̇2, (6)
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where −𝛾𝜃̇2 represents the energy dissipation or rate of change of this
energy due to the damping.

In dimension three, the problem of determining the equation of
motion or jerk equation of any autonomous dynamical system starting
rom its set of three first-order ordinary differential equations or velocity
ector field is not trivial nor guaranteed. That is the reason why many

methods have been proposed these three last decades by Gottlieb [2],
Sprott [3], Linz [4], Eichhorn et al. [5], Sprott [6–11], Buscarino
et al. [12] and more recently by Xu et al. [13] to provide the third-order
rdinary differential equation, i.e., jerk equation of three-dimensional
utonomous dynamical systems. Another problem then arose, that of
etermining by which type of term, i.e., by the first or second time
erivative of their state variable, the corresponding jerk equation of
hese systems should be multiplied to deduce their energy function. To
vercome this difficulty, Sarasola et al. [14], Wang et al. [15], Ma

et al. [16] and Yu et al. [17] to name but a few have developed a
ethod based on the Helmholtz’s theorem which enables to deduce the

energy function of any 𝑛-dimensional autonomous dynamical systems
and more precisely that of chaotic dynamical systems such as Lorenz,
Rossler and Chua’s models [18–20]. Of course, Helmholtz’s theorem
can be applied to two-dimensional autonomous dynamical systems.
Nevertheless, in this case, it led us to an expression of an energy function
which seems different from the one obtained with the classical method
presented above. In fact, we prove in this work that they are actually
identical. By using Helmholtz’s theorem, Sarasola et al. [14] and Wang
et al. [15] have provided the energy function of three-dimensional
autonomous dynamical systems such as Lorenz and Chua’s models.
Then, starting from the jerk equation of these models given by Ginoux
et al. [21], Buscarino et al. [12] and Xu et al. [13], we multiplied their
respective jerk equations by the second time derivative of their state
variable and thus deduced their energy functions. Finally, by comparing
these energy functions with those obtained by Sarasola et al. [14] and

ang et al. [15], we proved that the jerk equation of three-dimensional
utonomous dynamical systems must be multiplied by the second time
erivative of the state variable, i.e., by the acceleration and not by its
irst one, i.e., by the velocity like in dimension two.

The paper is organized as follows. In the next Section 2, we briefly
recall definitions and expressions of two and three-dimensional au-
onomous dynamical systems. Helmholtz’s theorem providing the en-
rgy function is summarized in Section 3. Then, in Section 4, we first

prove that energy function of two-dimensional autonomous dynamical
systems given either by the classical method or while using Helmholtz’s
theorem are identical. Then, we prove that the jerk equation of the
corresponding version in dimension three of the famous dissipative Van
er Pol system [22] must be multiplied by the second time derivative

of the state variable and not by its first one. In Section 5, these new
esults will be applied to Lorenz and Chua’s models, confirming thus
heir validity. Interpretations of these results and this new term in the
nergy function called jerk energy as well as perspectives to be given to
his work are presented in the discussion.

2. Dynamical systems

2.1. Dimension two

Two-dimensional autonomous dynamical systems are generally rep-
resented by a set of two first-order ordinary differential equations
(ODE) expressing the time evolution of its state variables (𝑥, 𝑦) as
follows:
𝑑 𝑥
𝑑 𝑡 = 𝑓 (𝑥, 𝑦) ,
𝑑 𝑦
𝑑 𝑡 = 𝑔 (𝑥, 𝑦) ,

(7)

where 𝑓 and 𝑔 are supposed to be continuous and infinitely differ-
entiable with respect to 𝑥, 𝑦 and 𝑡, i.e. are 𝐶∞ functions in 𝐸 ⊂ R2
2 
and with values included in R, satisfy the assumptions of the Cauchy–
Lipschitz theorem. For more details, see for example Coddington &
evinson [23]. However, such a dynamical system (7) can be also

represented by a single second-order ODE that we called for consistency
acceleration equation and which reads:

𝑥̈ = 𝐹 (𝑥, 𝑥̇) (8)

Let us notice that in dimension two, the transformation from the
utonomous dynamical system (7) to its corresponding acceleration

equation (8) is generally easy although not always possible.

2.2. Dimension three

Three-dimensional autonomous dynamical systems are generally
represented by a set of three first-order ordinary differential equations
(ODE) expressing the time evolution of its state variables (𝑥, 𝑦, 𝑧) as
follows:
𝑑 𝑥
𝑑 𝑡 = 𝑓 (𝑥, 𝑦, 𝑧) ,
𝑑 𝑦
𝑑 𝑡 = 𝑔 (𝑥, 𝑦, 𝑧) ,
𝑑 𝑧
𝑑 𝑡 = ℎ (𝑥, 𝑦, 𝑧) ,

(9)

where 𝑓 , 𝑔 and ℎ are supposed to be continuous and infinitely differ-
entiable with respect to 𝑥, 𝑦, 𝑧 and 𝑡, i.e. are 𝐶∞ functions in 𝐸 ⊂ R3

and with values included in R, satisfy the assumptions of the Cauchy–
Lipschitz theorem. For more details, see for example Coddington &
Levinson [23]. However, such a dynamical system (9) can be also
represented by a single third-order ODE called jerk equation and which
eads:

⃛ = 𝐹 (𝑥, 𝑥̇, 𝑥̈) (10)

In dimension three, the transformation from the autonomous dy-
namical system (9) into its corresponding jerk equation (10) is gen-
erally not trivial and not always possible. That is the reason why
many methods have been proposed these three last decades by Got-
tlieb [2], Sprott [3], Linz [4], Eichhorn et al. [5], Sprott [6–11],
Buscarino et al. [12] and more recently by Xu et al. [13] in an attempt
to provide the single third-order ODE or jerk equation (10) of any
hree-dimensional autonomous dynamical system (9).

3. Energy function of dynamical systems

3.1. Dimension two

In dimension two, a classical method used to deduce the energy
function of any two-dimensional autonomous dynamical system (7) con-
ists in multiplying its second-order differential equation or acceleration
quation (8) by the time derivative of its state variable namely by 𝑥̇. This

process enables to disclose on the left hand side of this equation a term
analogous to the time derivative of a kinetic energy :
𝑑
𝑑 𝑡

[

𝑥̇2

2

]

= 𝑥̇𝐹 (𝑥, 𝑥̇) (11)

and, on the right hand side a term analogous to the time derivative of
a potential energy. The famous dissipative Van der Pol system [22] will
exemplify this classical method in the next Section 4.

3.2. Dimension three

In dimension three, Sarasola et al. [14], Wang et al. [15], Ma
et al. [16] and Yu et al. [17] to name but a few have developed a
method based on the Helmholtz’s theorem which enables to deduce the
energy function of any 𝑛-dimensional autonomous dynamical systems
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(9). This method is briefly recalled below. A 𝑛-dimensional autonomous
dynamical system can be written as follows:

𝑑𝑋⃗
𝑑 𝑡 = ⃖⃖⃗ℑ(𝑋⃗), (12)

where 𝑋⃗ = {𝑥1, 𝑥2,… , 𝑥𝑛} and ⃖⃖⃗ℑ(𝑋⃗) = {𝑓1(𝑋⃗), 𝑓2(𝑋⃗),… , 𝑓𝑛(𝑋⃗)}.
According to Helmholtz’s theorem, such dynamical system (12) can
e decomposed into gradient and rotational fields, i.e., as the sum of
onservative and dissipative vector fields ⃖⃖⃗ℑ(𝑋⃗) = ⃖⃖⃗ℑ𝑐 (𝑋⃗) + ⃖⃖⃗ℑ𝑑 (𝑋⃗). Thus,
t can be expressed in a generalized Hamiltonian form:

𝑑𝑋⃗
𝑑 𝑡 =

[

𝐽 (𝑋⃗) + 𝑅(𝑋⃗)
]

∇𝐻(𝑋⃗), (13)

where ∇𝐻 is the gradient vector of smooth energy function 𝐻(𝑋⃗),
(𝑋⃗) is a skew-symmetric matrix and 𝑅(𝑋⃗) is a symmetric matrix. The
amiltonian energy function can thus be calculated by:

𝑑 𝐻
𝑑 𝑡 = ∇𝐻𝑇𝑅(𝑋⃗)∇𝐻 ,

∇𝐻𝑇 𝐽 (𝑋⃗)∇𝐻 = 0,
(14)

Since the vector field (12) can be decomposed into gradient and
otational fields, it follows that the energy function can be deduced by:
𝑑 𝐻
𝑑 𝑡 = ∇𝐻𝑇𝑅(𝑋⃗)∇𝐻 = ∇𝐻𝑇 ⃖⃖⃗ℑ𝑑 (𝑋⃗),

∇𝐻𝑇 𝐽 (𝑋⃗)∇𝐻 = 0 = ∇𝐻𝑇 ⃖⃖⃗ℑ𝑐 (𝑋⃗),
(15)

In the next Section 4, this Helmholtz’s theorem will be applied to
wo-dimensional Van der Pol system [22] and its corresponding version
n dimension three.

4. Application to two and three-dimensional Van der Pol systems

4.1. Two-dimensional Van der Pol system

Van der Pol system [22] can be written as follows:
𝑑 𝑥
𝑑 𝑡 = 𝛼 (𝑦 − 𝑓 (𝑥)) ,

𝑑 𝑦
𝑑 𝑡 = −𝑥,

(16)

where 𝑓 (𝑥) = 𝑥3∕3 − 𝑥 is a cubic function and 𝛼 a real positive param-
eter. By using Helmholtz’s theorem recalled in the previous Section 3,
Van der Pol system (16) can be rewritten as:
(

𝑥̇
𝑦̇

)

=
(

0 𝛼
−1 0

) (
𝑥
𝑦

)

+
(

−𝛼 𝑓 (𝑥)
0

)

(17)

Then, according to Eq. (15), the energy function 𝐻 associated with
he Van der Pol system (16) must satisfy the partial differential equa-

tion:

(

𝜕 𝐻
𝜕 𝑥 , 𝜕 𝐻

𝜕 𝑦
) (

𝛼 𝑦
−𝑥

)

= 0 ⇔

⎧

⎪

⎨

⎪

⎩

𝜕 𝐻
𝜕 𝑥 = 𝑥,

𝜕 𝐻
𝜕 𝑦 = 𝛼 𝑦,

(18)

This leads to the energy function:

𝐻 = 𝑥2

2
+ 𝛼

𝑦2

2
(19)

Thus, according to Eq. (15), the rate of change of this energy reads:
𝑑 𝐻
𝑑 𝑡 = −𝛼 𝑥𝑓 (𝑥). (20)

Let us notice that this result can be also obtained by taking the time
derivative of the above Eq. (19) and by replacing the time derivative
f each state variable by their values given by Van der Pol system (16).

Now, let us use the classical method to deduce the energy function. First
of all, it is easy to transform the Van der Pol system (16) into a single
3 
second-order nonlinear ordinary differential equation or acceleration
equation which reads:

𝑥̈ + 𝛼 𝑥 = −𝛼 ̇𝑓 (𝑥). (21)

Then, by using the classical method, i.e., by multiplying this acceler-
ation equation (21) by the time derivative of its state variable namely by
̇ we obtain:

̇  ̈𝑥 + 𝛼 𝑥 ̇𝑥 = −𝛼 ̇𝑥 ̇𝑓 (𝑥). (22)

It can be rewritten as follows:
𝑑
𝑑 𝑡

[

𝑥̇2

2
+ 𝛼 𝑥

2

2

]

= −𝛼 ̇𝑥 ̇𝑓 (𝑥). (23)

And so, the energy function and its rate of change read:

𝐻 = 𝑥̇2

2
+ 𝛼 𝑥

2

2
⇔

𝑑 𝐻
𝑑 𝑡 = −𝛼 ̇𝑥 ̇𝑓 (𝑥). (24)

With such a formulation (24), we find again the expressions of the
inetic energy (𝑥̇2∕2) and potential energy (𝛼 𝑥2∕2). Nevertheless, at first
ight, these Eqs. (24) seem to be completely different from Eqs. (19)–
20). Let us notice that Eqs. (24) can be directly obtained from the time

derivative of the original Van der Pol system (16) which reads:
𝑥̈ = 𝛼

(

𝑦̇ − ̇𝑓 (𝑥)
)

,

𝑦̈ = −𝑥̇, (25)

Moreover, by replacing in the first Eq. (24) 𝑥̇ by 𝛼(𝑦 − 𝑓 (𝑥)), i.e by
he right hand side of the first equation of (16), it is easy to prove that
qs. (24) are in fact identical to Eqs. (19)–(20).

4.2. Three-dimensional Van der Pol system

In 1989, Grasman and Roerdink [24] proposed a three-dimensional
version of Van der Pol original system [22]. Starting from their sem-
inal works, we designed the following simple three-dimensional au-
tonomous Van der Pol model by adding a third state variable:
𝑑 𝑥
𝑑 𝑡 = 𝛼 (𝑦 − 𝑓 (𝑥)) ,

𝑑 𝑦
𝑑 𝑡 = −𝑥 + 𝑧,

𝑑 𝑧
𝑑 𝑡 = −𝛽 𝑦,

(26)

where 𝑓 (𝑥), 𝛼 are defined as above. Let us notice that when 𝛽 and
tend to zero, we find again Van der Pol original system (16). This

simple three-dimensional autonomous Van der Pol model (26) will be
used below to prove that its jerk equation must be multiplied by the
second time derivative of the state variable 𝑥(𝑡) and not by the first to
deduce the energy function of this model. Then, by using Helmholtz’s
theorem recalled in the previous Section 3, Van der Pol model (26) can
be rewritten as:

⎛

⎜

⎜

⎝

𝑥̇
𝑦̇
𝑧̇

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0 𝛼 0
−1 0 1
0 −𝛽 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑥
𝑦
𝑧

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

−𝛼 𝑓 (𝑥)
0
0

⎞

⎟

⎟

⎠

(27)

Thus, according to Eq. (15), the energy function 𝐻 associated with
the Van der Pol model (26) must satisfy the partial differential equa-
tion:

(

𝜕 𝐻
𝜕 𝑥 , 𝜕 𝐻

𝜕 𝑦 , 𝜕 𝐻
𝜕 𝑧

)

⎛

⎜

⎜

⎝

𝛼 𝑦
−𝑥 + 𝑧
−𝛽 𝑦

⎞

⎟

⎟

⎠

= 0 ⇔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕 𝐻
𝜕 𝑥 = 𝑥,

𝜕 𝐻
𝜕 𝑦 = 𝛼 𝑦,
𝜕 𝐻
𝜕 𝑧 = 𝛼

𝛽
𝑧,

(28)

This leads to the energy function:

𝐻 = 𝑥2

2
+ 𝛼

𝑦2

2
+ 𝛼

𝛽
𝑧2

2
. (29)
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So, according to Eq. (15), the rate of change of this energy reads:
𝑑 𝐻
𝑑 𝑡 = −𝛼 𝑥𝑓 (𝑥). (30)

As previously, let us notice that this result can be also obtained by
taking the time derivative of the above Eq. (29) and by replacing the
ime derivative of each state variable by their values given by Van der
ol model (26). Now, let us express the time derivative of this Van der

Pol model (26):
𝑥̈ = 𝛼

(

𝑦̇ − ̇𝑓 (𝑥)
)

,

𝑦̈ = −𝑥̇ + 𝑧̇,

𝑧̈ = −𝛽 𝑦̇,
(31)

the energy function and its rate of change associated with this Van der
Pol system (31) read:

𝐻 = 𝑥̇2

2
+ 𝛼

𝑦̇2

2
+ 𝛼

𝛽
𝑧̇2

2
⇔

𝑑 𝐻
𝑑 𝑡 = −𝛼 ̇𝑥 ̇𝑓 (𝑥). (32)

Then, by replacing the time derivative of each state variable by
heir values given by Van der Pol system (26), it is easy to prove that
qs. (32) are in fact identical to Eqs. (29)–(30). Now, by using one of
he methods recalled in the first section or by using linear combinations
f its state variables, let us transform the Van der Pol system (26)
nto a single third-order nonlinear ordinary differential equation or jerk
quation, we obtain:

⃛ + 𝛼𝑓 (𝑥) + (𝛼 + 𝛽)𝑥̇ + 𝛼 𝛽 𝑓 (𝑥) = 0. (33)

Let us notice that when 𝛽 tends to zero, we find again the accelera-
ion equation of Van der Pol original system (21). Then, let us multiply
his jerk equation (33) by the second time derivative of its state variable

namely by ẍ. This leads to:
𝑑
𝑑 𝑡

[

𝑥̈2

2
+ (𝛼 + 𝛽) 𝑥̇

2

2

]

= −𝛼 ̈𝑥𝑓 (𝑥) − 𝛼 𝛽 ̈𝑥𝑓 (𝑥) (34)

While the meaning of the second term of the left hand side of this
expression (34), i.e., (𝛼 + 𝛽)𝑥̇2∕2 is well-known since it corresponds to
the kinetic energy, it does not seem to be the case of the first one the
interpretation of which will be provided in the discussion. Then, by
replacing in Eq. (34) 𝑥̇ by 𝛼(𝑦−𝑓 (𝑥)), i.e., by the right hand side of the
first equation of (26) and by its time derivative, it is easy to prove that
Eq. (34) is in fact identical to Eqs. (32) and also to Eqs. (29)–(30). This
roves that the jerk equation (33) must be multiplied by 𝑥̈(𝑡) and not by
̇ (𝑡). To confirm such a result, let us multiply the jerk equation (33) by
the first derivative of the state variable, i.e., by 𝑥̇. We obtain:

̇  ⃛𝑥 + 𝛼 ̇𝑥𝑓 (𝑥) + (𝛼 + 𝛽)𝑥̇2 + 𝛼 𝛽 𝑥̇𝑓 (𝑥) = 0. (35)

The first and third terms of the left hand side of Eq. (35) can be
ewritten as:

̇  ⃛𝑥 = 𝑑
𝑑 𝑡 [𝑥̇ ̈𝑥] − 𝑥̈2,

𝑥̇2 = 𝑑
𝑑 𝑡 [𝑥 ̇𝑥] − 𝑥 ̈𝑥,

(36)

These expressions (36) are not consistent with a kinetic and potential
energy by analogy with Classical Mechanics. Moreover, by making
everal linear combinations of the time derivatives of the state variable,
t has not been possible to find again the energy function (32) or (29).

5. Application to Lorenz and Chua’s models

5.1. Chua’s model

Chua’s continuous model [20] can be written in its original form as
follows:
𝑑 𝑥
𝑑 𝑡 = 𝛼 (𝑦 − 𝑓 (𝑥)) ,

𝑑 𝑦
𝑑 𝑡 = 𝑥 − 𝑦 + 𝑧,

𝑑 𝑧 = −𝛽 𝑦,

(37)
𝑑 𝑡
4 
where 𝑓 (𝑥) = 𝑥3 + 𝑐 𝑥 is a cubic function and 𝛼 and 𝛽 are real positive
arameters. Then, following the works of Sarasola et al. [14] and by
sing Helmholtz’s theorem recalled in the previous Section 3, Chua’s

model (37) can be rewritten as:
⎛

⎜

⎜

⎝

𝑥̇
𝑦̇
𝑧̇

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0 𝛼 0
1 0 1
0 −𝛽 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑥
𝑦
𝑧

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

−𝛼 𝑓 (𝑥)
−𝑦
0

⎞

⎟

⎟

⎠

(38)

Thus, according to Eq. (15), the energy function 𝐻 associated with
the Chua’s model (37) must satisfy the partial differential equation:

(

𝜕 𝐻
𝜕 𝑥 , 𝜕 𝐻

𝜕 𝑦 , 𝜕 𝐻
𝜕 𝑧

)

⎛

⎜

⎜

⎝

𝛼 𝑦
𝑥 + 𝑧
−𝛽 𝑦

⎞

⎟

⎟

⎠

= 0 ⇔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕 𝐻
𝜕 𝑥 = −𝑥

𝛼
,

𝜕 𝐻
𝜕 𝑦 = 𝑦,

𝜕 𝐻
𝜕 𝑧 = 𝑧

𝛽
,

(39)

This leads to the energy function:

𝐻 = − 𝑥2

2𝛼
+

𝑦2

2
+ 𝑧2

2𝛽
. (40)

So, according to Eq. (15), the rate of change of this energy reads:
𝑑 𝐻
𝑑 𝑡 = 𝑥𝑓 (𝑥) − 𝑦2. (41)

Now, let us express the time derivative of this Chua’s model (37):
𝑥̈ = 𝛼

(

𝑦̇ − ̇𝑓 (𝑥)
)

,

𝑦̈ = 𝑥̇ − 𝑦̇ + 𝑧̇,

𝑧̈ = −𝛽 𝑦̇,
(42)

the energy function and its rate of change associated with this Chua’s
odel (41) read:

𝐻 = − 𝑥̇2

2𝛼
+

𝑦̇2

2
+ 𝑧̇2

2𝛽
⇔

𝑑 𝐻
𝑑 𝑡 = 𝑥̇ ̇𝑓 (𝑥) − 𝑦̇2. (43)

Then, by replacing the time derivative of each state variable by their
alues given by Chua’s model (37), it is easy to prove that Eqs. (43)

are in fact identical to Eqs. (40)–(41). Now, by using the works of
Buscarino et al. [12], let us transform the Chua’s model (37) into
a single third-order nonlinear ordinary differential equation or jerk
equation, we obtain:

⃛ + (𝛽 − 𝛼)𝑥̇ = −𝑥̈ − 𝛼 𝛽 𝑓 (𝑥) − 𝛼 ̇𝑓 (𝑥) − 𝛼𝑓 (𝑥). (44)

Then, let us multiply this jerk equation (44) by the second time
derivative of its state variable namely by ẍ. This leads to:
𝑑
𝑑 𝑡

[

𝑥̈2

2
+ (𝛽 − 𝛼) 𝑥̇

2

2

]

= −𝑥̈2 − 𝛼 𝛽 ̈𝑥𝑓 (𝑥) − 𝛼 ̈𝑥 ̇𝑓 (𝑥) − 𝛼 ̈𝑥𝑓 (𝑥). (45)

Then, by replacing in Eq. (45) 𝑥̇ by 𝛼(𝑦−𝑓 (𝑥)), i.e., by the right hand
ide of the first equation of (37) and by its time derivative, it is easy to

prove that Eq. (45) is in fact identical to Eqs. (43) and also to Eqs. (40)–
41). This proves that the jerk equation (44) must be multiplied by 𝑥̈(𝑡)

and not by 𝑥̇(𝑡).

5.2. Lorenz model

Lorenz model [18] can be written in its original form as follows:
𝑑 𝑥
𝑑 𝑡 = 𝜎 (𝑦 − 𝑥) ,

𝑑 𝑦
𝑑 𝑡 = 𝜌𝑥 − 𝑦 − 𝑥𝑧,

𝑑 𝑧
𝑑 𝑡 = 𝑥𝑦 − 𝛽 𝑧,

(46)

where 𝜎, 𝜌 and 𝛽 are real positive parameters. Then, following the
works of Sarasola et al. [14] and by using Helmholtz’s theorem recalled
in the previous Section 3, energy function of Lorenz model (46) reads:
⎛

⎜

⎜

𝑥̇
𝑦̇
⎞

⎟

⎟

=
⎛

⎜

⎜

0 𝜎 0
𝜌 0 −𝑥

⎞

⎟

⎟

⎛

⎜

⎜

𝑥
𝑦
⎞

⎟

⎟

+
⎛

⎜

⎜

−𝜎 𝑥
−𝑦

⎞

⎟

⎟

(47)

⎝𝑧̇⎠ ⎝0 𝑥 0 ⎠ ⎝𝑧⎠ ⎝−𝛽 𝑧⎠
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Thus, according to Eq. (15), the energy function 𝐻 associated with
the Lorenz model (46) must satisfy the partial differential equation:

(

𝜕 𝐻
𝜕 𝑥 , 𝜕 𝐻

𝜕 𝑦 , 𝜕 𝐻
𝜕 𝑧

)

⎛

⎜

⎜

⎝

𝜎 𝑦
𝜌𝑥 − 𝑥𝑧

𝑥𝑦

⎞

⎟

⎟

⎠

= 0 ⇔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕 𝐻
𝜕 𝑥 = − 𝜌

𝜎
𝑥,

𝜕 𝐻
𝜕 𝑦 = 𝑦,

𝜕 𝐻
𝜕 𝑧 = 𝑧,

(48)

This leads to the energy function:

𝐻 = − 𝜌
𝜎
𝑥2

2
+

𝑦2

2
+ 𝑧2

2
. (49)

So, according to Eq. (15), the rate of change of this energy reads:
𝑑 𝐻
𝑑 𝑡 = 𝜌𝑥2 − 𝑦2 − 𝛽 𝑧2. (50)

Now, let us express the time derivative of this Lorenz model (46):
𝑥̈ = 𝜎 (𝑦̇ − 𝑥̇) ,

𝑦̈ = 𝜌 ̇𝑥 − 𝑦̇ − 𝑥̇𝑧 − 𝑥 ̇𝑧,
𝑧̈ = 𝑥̇𝑦 + 𝑥 ̇𝑦 − 𝛽 𝑦̇,

(51)

the energy function and its rate of change associated with this Lorenz
odel (51) read:

𝐻 = − 𝜌
𝜎
𝑥̇2

2
+

𝑦̇2

2
+ 𝑧̇2

2
⇔

𝑑 𝐻
𝑑 𝑡 = 𝜌 ̇𝑥2 − 𝑦̇2 − 𝛽 𝑧̇2 + 𝑥̇ (𝑦 ̇𝑧 − 𝑧 ̇𝑦) . (52)

Then, by replacing the time derivative of each state variable by their
alues given by Lorenz model (47), it is easy to prove that Eqs. (52)
re in fact identical to Eqs. (49)–(50). Now, by using the works of
inoux et al. [21], let us transform the Lorenz model (46) into a single

third-order nonlinear ordinary differential equation or jerk equation, we
obtain:

⃛+𝛽 (𝜎 + 1) 𝑥̇ = − (𝜎 + 1 + 𝛽) 𝑥̈+[𝑥̈ + (𝜎 + 1) 𝑥̇] 𝑥̇
𝑥
+𝛽 𝜎 (𝜌 − 1) 𝑥−𝑥2 (𝑥̇ + 𝜎 𝑥)

(53)

Then, let us multiply this jerk equation (53) by the second time
derivative of its state variable namely by ẍ. This leads to:
𝑑
𝑑 𝑡

[

𝑥̈2

2
+ 𝛽 (𝜎 + 1) 𝑥̇

2

2

]

= − (𝜎 + 1 + 𝛽) 𝑥̈2 + [𝑥̈ + (𝜎 + 1) 𝑥̇] 𝑥̇ ̈𝑥
𝑥

+ 𝛽 𝜎 (𝜌 − 1) 𝑥 ̈𝑥 − 𝑥2 (𝑥̇ + 𝜎 𝑥) 𝑥̈. (54)

Then, by replacing in Eq. (54) 𝑥̇ by 𝜎(𝑦 − 𝑥), i.e., by the right hand
ide of the first equation of (46) and by its time derivative, it is easy to

prove that Eq. (54) is in fact identical to Eqs. (52) and also to Eqs. (49)–
(50). This proves that the jerk equation (53) must be multiplied by 𝑥̈(𝑡)
nd not by 𝑥̇(𝑡).

6. Discussion

In this work, we first recalled the classical method to obtain the
energy function of a two-dimensional autonomous dynamical system
which consists in multiplying its corresponding second-order ordinary
differential equation, i.e., its equation of motion that we called for
consistency acceleration equation, by the first time derivative of its state
variable. We then briefly presented the method based on Helmholtz’s
theorem to determine the energy function of three-dimensional au-
tonomous dynamical systems. Application of this latter method to
two-dimensional autonomous dynamical systems led us to an expres-
sion of the energy function which seemed to be different from the one
obtained with the classical method. In fact, we proved in this work
that they are identical. In the nineties, one of us (J.C.S.) established
that a three-dimensional autonomous dynamical system can be also
transformed into a third-order ordinary differential equation of mo-
tion todays known as jerk equation. Although the method based on
Helmholtz’s theorem enables to provide the energy function of such
three-dimensional autonomous dynamical systems, the question arose
5 
to determine by which type of term, i.e., by the first or second time
derivative of their state variable, the corresponding jerk equation of these
systems should be multiplied to deduce their energy function. We proved
in this work that the jerk equation of such systems must be multiplied
by the second time derivative of the state variable and not by the first
like in dimension two. By doing that we highlighted in the energy
function a term proportional to 𝑥̇2∕2 which corresponds to the kinetic
energy and a second one equal to 𝑥̈2∕2. According to Desloge [25], this
latter term has been introduced by Willard Gibbs in 1879 and twenty
years later by Paul Appell. It has been called since the Gibbs–Appell
function or jerk energy and represents the acceleration energy. In his
notes at the Comptes Rendus, Appell [26] has also stated that it can be
xpressed as the square of Newton’s second law of motion as recalled
y Yong-fen [27]. Thus, we established in this work that it is possible

to obtain the energy function of a three-dimensional dynamical system
directly from its corresponding jerk equation. Application to these main
results to the so-called Lorenz and Chua’s models have confirmed their
validity. In a previous paper [28], we have established a link between
the energy function and the curvature of the trajectory curves integral of
two-dimensional generalized Liénard systems. A perspective to be given
to this work should be to extend such a result to three-dimensional
autonomous dynamical systems.

As recalled previously, Sarasola et al. [14], Wang et al. [15], Ma
et al. [16] and Yu et al. [17] have developed a method based on
the Helmholtz’s theorem allowing to deduce the energy function of the
vector field of any three-dimensional autonomous dynamical system,
i.e. starting from its set of three simultaneous first-order ordinary differ-
ential equations. This work has enables to state that it is now possible
from its jerk equation. Moreover, the method used by these authors,
although very useful, provided an energy function that precluded any
interpretation in terms of kinetic and potential energy. The approach
presented in this work restores in a certain manner their meanings. It
also highlights the fact that the rate of change of the energy can now be
interpreted according to Sarasola et al. [14] as ‘‘change in phase space
volume in the sense that both go together. Any energy variation cannot
occur without a variation in the phase space volume and vice versa’’.
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