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This study investigates the generalized Nosé–Hoover system. The original version of the system
is a chaotic system designed to represent the interaction between a harmonic oscillator and a
heat bath maintained at a constant temperature. Despite its simplicity in just three dimensions,
it exhibits complex and unusual dynamics. This investigation focuses on studying local bifurca-
tions, including Saddle-Node and Hopf bifurcations, of the generalized Nosé–Hoover system. In
terms of cyclicity, the Lyapunov quantities technique is used to demonstrate that three periodic
orbits can bifurcate from the Hopf point. This mathematical research contributes to understand-
ing the equilibrium points, their stability and the dynamics of the nonlinear model when some
of the parameters are varied.

Keywords: Nosé–Hoover system; Hopf bifurcation; Saddle-Node bifurcation; limit cycle; Lya-
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1. Introduction

Bifurcation theory has deep roots in classical math-

ematics, including the notable work by L. Euler dat-

ing back to 1744. However, its origins can be traced

back to Poincaré and his significant contributions

to the qualitative analysis of differential equations.

This theory focuses on investigation of qualitative

alterations within the phase portrait, such as the

presence or absence of equilibrium points, periodic

solutions and even more intricate phenomena like
strange attractors [Euler, 1744].

In this paper, the following system, known as
the generalized Nosé–Hoover system, is considered.
It was introduced by Sprott.

ẋ1 = x2, ẋ2 = −x1 + x2x3, ẋ3 = f(x1, x2, x3),

(1)

where f(x1, x2, x3) = α0 + α1x1 + α2x2 + α3x3 +
α4x

2
1 + α5x1x2 + α6x1x3 + α7x

2
2 ++α8x2x3 + α9x

2
3

∗Author for correspondence
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and αi ∈ R (i = 0, . . . , 9). Several types of
systems, each characterized by at most a single
equilibrium point, were partially investigated and
studied by him through parameter variations. The
results demonstrated the existence of 11 examples
of chaotic systems for each of the eight types, along-
side one system that lacks any equilibrium points
and two nonhyperbolic systems. Moreover, among
the 11 cases examined, six showcased hidden chaotic
attractors and six exhibited multistability under
the specified parameters [Sprott, 2015]. However,
it is worth noting that the bifurcation of system
(1) has received relatively less attention based on
the available knowledge. Here, a further contribu-
tion is made to the understanding of the complexity,
specifically the topological structure of the dynam-
ics of system (1), by studying the effects of param-
eter variations. The novelty of this research lies in
the focused exploration of local bifurcations, partic-
ularly Saddle-Node and Hopf bifurcations, within
the generalized Nosé–Hoover system. Through the
analysis of these bifurcations, the changes in sys-
tem behavior are uncovered as key parameters vary,
shedding light on the underlying dynamics and
transitions between different states.

This paper is organized as follows: Sec. 2 deals
with the introduction of the Nosé–Hoover system
and its modifications. Section 3 focuses on identify-
ing the existence of equilibrium points in the gener-
alized Nosé–Hoover system and studying their sta-
bility. Section 4 is dedicated to the study of the local
bifurcation of system (1). It examines the presence
of Saddle-Node bifurcation in system (1), along with
the conditions for the occurrence of Hopf bifurca-
tions. Furthermore, the Lyapunov quantities tech-
nique is applied to investigate the cyclicity of the
system and identify bifurcated limit cycles stem-
ming from the Hopf points. Lastly, the conclusions
that have been reached are presented.

2. The Nosé–Hoover System with
Its Modifications

The Nosé–Hoover system, widely recognized as a
conservative system, has received significant atten-
tion in research. In a groundbreaking publication
from 1984, Nosé [1984a, 1984b] introduced a set of
equations that revolutionized the field of thermody-
namics, establishing a new paradigm. Posch et al.
made the Nosé equations simpler in 1986 by elim-
inating an unnecessary variable and substituting

the remaining “momentum” with a “friction” coef-
ficient. As a result, they derived the equations of
motion for the Nosé–Hoover system as follows:

ẋ1 = x2, ẋ2 = −x1 − x2x3,

ẋ3 = α(x22 − 1),
(2)

x1 represents the coordinate of the oscillator, x2
symbolizes momentum, x3 denotes the friction coef-
ficient and α assumes the role of a positive cou-
pling parameter. They investigated the dynamics
of system (2), employing Lyapunov exponents and
Poincaré phase space sections. They found various
periodic orbits and KAM tori for certain α val-
ues. Higher α values led to a mix of regular and
chaotic solutions, with stable islands which are sur-
rounded by a chaotic sea. The fractal dimension and
Lyapunov instability of the chaotic regimes were
also examined in their analysis [Posch et al., 1986].
This system has subsequently been investigated by
researchers from various fields, resulting in diverse
findings. Presented below are some notable con-
tributions. The system was examined by [Hoover,
1985] for different fixed values of the parameter
α, revealing its rich dynamics characterized by a
combination of regular and chaotic trajectories in
phase space. The investigation of periodic orbits in
the system was later undertaken by Swinnerton-
Dyer and Wagenknecht. In their paper, two notable
approaches to the theory of Nosé–Hoover equa-
tions were mentioned: one involves the study of
trajectories for small α, while the other centers
around the examination of trajectories approach-
ing infinity. The existence of several types of peri-
odic orbits of system (2) for 0 < α ≤ 1 was
demonstrated by the authors using the second pos-
sible approach, as shown in [Swinnerton-Dyer &
Wagenknecht, 2008]. These orbits bifurcate from
heteroclinic orbits to equilibrium points at infin-
ity [Swinnerton-Dyer & Wagenknecht, 2008]. Next,
Mahdi and Valls examined the integrability of sys-
tem (2). They showed that the system has no poly-
nomial first integrals, Darboux first integrals and
Darboux polynomial with nonzero cofactors. They
also proved that the system has two exponential

factors ex2 and ex
2
3+α(x2

1+x2
2) with cofactors x1 and

−2αx3, respectively. Moreover, they proved that the
system is integrable when α = 0 [Mahdi & Valls,
2011]. Subsequently, Wang and Yang [2015] revis-
ited the system with a fixed parameter α = 10 and
presented numerous novel and remarkable dynami-
cal phenomena through numerical analysis. Lastly,
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an investigation into the time-reversible dynamics
of the system was conducted by Deng et al. in order
to reveal its intricate pathway for generating non-
trivial chaos. The spectrum of Lyapunov exponents,
predictability and fractal dimension of both forward
and backward chaotic attractors were examined by
them. However, despite their efforts, no recognized
form of chaos that could account for the findings
was identified [Deng et al., 2023a]. In [Li et al.,
2022], researchers investigated the integrability and
nonintegrability of system (2).

Based on system (2), Hoover [2007] created the
following system:

ẋ1 = x2, ẋ2 = −x1 − x2x3,

ẋ3 = x22 − 1− ϵ tanh(x1).
(3)

Many interesting and surprising dynamic behaviors
were demonstrated by Sprott and his co-author as
follows. For certain values of ϵ, it was found that
conservative regions can coexist with dissipative
regions in phase space by constructing an appro-
priate cross-section. In particular, it was shown
that the generalized oscillator possesses interlinked
invariant tori [Sprott et al., 2014]. Rech has mod-
ified system (3) by multiplying a parameter α
to the ẋ3 equation. Through the application of
Lyapunov exponents, the researchers analyzed the
model’s behavior across various parameter values.
Their findings revealed the existence of dissipa-
tive quasiperiodic structures within a chaotic region
[Rech, 2016].

The following two simple three-dimensional
autonomous chaotic systems were described by
Munmuangsaen et al. to make system (2) dissipa-
tive:

ẋ1 = x2 + bx1, ẋ2 = x2x3 − x1,

ẋ3 = a− x22,
(4)

ẋ1 = x2, ẋ2 = x2x3 − x1,

ẋ3 = a− x22 − bx3.
(5)

In general, the analysis of one of the systems
includes the examination of various aspects, such as
the eigenvalues of the Jacobian matrix, coexisting
attractors, the Kaplan–Yorke dimension and bifur-
cations of the largest Lyapunov exponent [Mun-
muangsaen et al., 2015].

Wang and Yang modified system (2) by adding
an extra term in the third equation, which is defined

as follows:

ẋ1 = x2, ẋ2 = −x1 − x2x3,

ẋ3 = α(x21 + x22 − 1),
(6)

where α is a positive parameter. Based on numer-
ical simulations, it was demonstrated that a “fat
fractal” structure can be exhibited by this modified
system, along with the coexistence of invariant tori
and a topological horseshoe [Wang & Yang, 2017].
In [Wang & Yang, 2018], the system was analyti-
cally investigated, revealing that a two-dimensional
bounded unit disk is traversed infinitely many times
by almost all trajectories. Furthermore, it was
shown that almost all trajectories have at least one
ω-limiting point [Wang & Yang, 2018]. The integra-
bility and nonintegrability of system (6) have been
discussed in [Li et al., 2022].

The investigation of system (2) in the following
form was carried out by Messias and Retinol:

ẋ1 = x2, ẋ2 = −x1 − x2x3, ẋ3 = x22 − a, (7)

where a ∈ R. It is dynamically identical to
system (2) under the transformation (x1, x2) →
(Ax1, Ax2), where A2 = a. They have proven that
the new system, when a ̸= 0, does not possess
invariant algebraic surfaces or polynomial first inte-
grals. Furthermore, the existence of a linearly sta-
ble periodic orbit is shown, which bifurcates from
a nonisolated zero-Hopf equilibrium point located
at the origin when a > 0 [Messias & Reinol, 2018].
Cândido and Llibre [2018] have proven that when
a = 0, system (7) exhibits a zero-Hopf bifurcation.
Furthermore, it was demonstrated by Mehrabbeik
and her co-authors that by adding an anti-damping
term bx3 to the third equation of system (7), the
new system exhibits an attracting torus across a
wide range of parameter values. Various dynamic
solutions, such as limit cycles, strange attractors,
attracting tori, invariant tori and a chaotic sea,
are encompassed by this system [Mehrabbeik et al.,
2022].

The following two simple kinds of system (2)
were described by Sprott:

ẋ1 = x2, ẋ2 = −x1 − ax2x3,

ẋ3 = x22 − 1,
(8)

ẋ1 = x2, ẋ2 = −x1 − ax2 sgn(x3),

ẋ3 = x22 − 1.
(9)
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System (8) is dynamically identical to system (2)
under the transformation x3 → x3

a and it precisely
satisfies the original goal. Meanwhile, the second
one is a bang-bang controller that is conservative
and ergodic with a chaotic sea that fills all of phase
space with a Gaussian measure for a > 1.7 [Sprott,
2018].

System (2) was modified by Libra et al. as
follows:

ẋ1 = x2 − ax1x3, ẋ2 = x1,

ẋ3 = b (x21 − 1),
(10)

where a and b are real parameters. The dynamics of
the system were globally studied and a comprehen-
sive description of the solutions in the phase space,
including the dynamics at infinity via the Poincaré
compactification, was provided [Llibre et al., 2021].

Cang et al. [2022] extended system (2) as
follows:

ẋ1 = −ax1 + x2x3,

ẋ2 = −bx2 + x3(x2 − x1),

ẋ3 = k − x22,

(11)

where a ≥ 0 and b, k ∈ R. They demonstrated
that the system exhibits various dynamic behaviors,
including Saddle-Node bifurcation, fold-Hopf bifur-
cation, transient and conservative chaos.

Deng et al. defined the following three-
dimensional system:

ẋ1 = x2, ẋ2 = −x1 − x2x3,

ẋ3 = α(x22 − 1− ϵx3).
(12)

This system is derived from system (5) through
the transformation (x1, x2, x3) → (

√
ax1,

√
ax2, x3),

where ϵ = b
a . The chaotic dynamics of the model

were numerically characterized by utilizing the
maximum Lyapunov exponent. It was shown that,
with higher values of the new dissipative parame-
ter ϵ, the prevalence of chaotic behavior is observed
only in the backwards dynamics [Deng et al.,
2023b]. The generalized Nosé–Hoover system (1),
which is introduced by [Sprott, 2015], is a version
of the system.

3. Existence and Stability of
Equilibrium Points

The foundational building blocks for various aspects
within dynamical systems are provided by equilib-
rium points. To determine the equilibrium points

of system (1), the right-hand sides of the equations
are set to zero:

x2 = 0,

−x1 + x2x3 = 0,

α0 + α1x1 + α2x2 + α3x3 + α4x
2
1

+α5x1x2 + α6x1x3 + α7x
2
2 + α8x2x3

+α9x
2
3 = 0.

(13)

When the values of x2 = 0 and x1 = 0 are substi-
tuted into Eq. (13), it transforms into

α9x
2
3 + α3x3 + α0 = 0, (14)

its roots are x3 =
−α3+

√
∆

2α9
, where ∆ = α2

3 − 4α9α0.

It is assumed that the real root x3 = x∗3 of Eq. (14)
represents the equilibrium point (0, 0, x∗3) of system
(1), which is situated on the x3-axis.

• When ∆ < 0, Eq. (14) does not have any real
solutions. As a consequence, system (13) lacks
real roots, indicating the absence of an equilib-
rium point in the system.

• When ∆ > 0,

(i) If α9 ̸= 0, then E±
1 = (0, 0, −α3±

√
∆

2α9
) repre-

sents two equilibrium points of the system.
(ii) If α9 = 0 and α3 ̸= 0, then E2 = (0, 0,−α0

α3
)

represents a line of singularity of the system.

• When ∆ = 0,

(i) If α9 ̸= 0, then E3 = (0, 0,− α3
2α9

) represents
a single equilibrium point of the system.

(ii) If α9 = α3 = 0 and α0 ̸= 0, then the system
does not possess any equilibrium point.

(iii) If α9 = α3 = α0 = 0, then (0, 0, x3) repre-
sents a line of equilibrium of the system.

Proposition 1. For system (1) with ∆ = α2
3 −

4α9α0.

(I) The equilibrium point E+
1 is always unstable,

while E−
1 is asymptotically stable if and only

if 2α9

√
∆+

√
∆+α3

2α9
> 0 and (2α9

√
∆ +

√
∆ +

α3)(α9

√
∆+∆+ 2α9) > 4α2

9

√
∆.

(II) If α3 > 0, the equilibrium point E2 is unstable,
whereas it is asymptotically stable if and only
if α3 < 0, α0 < α2

3 and (α0 − α2
3)(1 − α0) <

−α2
3.

(III) When α3
2α9

< 0 or α3
2α9

> 0, the point E3 is an
unstable nonhyperbolic equilibrium point.
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Proof. The following expression represents the Jaco-
bian matrix of system (1) evaluated at the point
(0, 0, x∗3):

J(x∗3) =

 0 1 0

−1 x∗3 0

α6x
∗
3 + α1 α8x

∗
3 + α2 2α9x

∗
3 + α3

,

and the characteristic equation is given by

λ3 − (2α9x
∗
3 + x∗3 + α3)λ

2

− (2α9x
∗2
3 + α3x

∗
3 + 1)λ

− (2α9x
∗
3 + α3) = 0. (15)

(I) When x∗3 =
−α3±

√
∆

2α9
, Eq. (15) becomes

λ3 − 2α9(±
√
∆) + (±

√
∆)− α3

2α9
λ2

− α3(±
√
∆)−∆− 2α9

2α9
λ− (±

√
∆) = 0.

(16)

At the equilibrium E+
1 , when the determinant of

the Jacobian matrix is
√
∆ > 0, it implies that at

least one of the eigenvalues is positive. Then, the
equilibrium point E+

1 is unstable [see Fig. 1(a)]. At

the equilibrium point E−
1 , by comparing Eq. (15)

with Eq. (22), we find that T = −2α9

√
∆+

√
∆+α3

2α9
,

K = −α3

√
∆+∆+2α9
2α9

and D = −
√
∆. By Hurwitz’s

Theorem, the equilibrium point E−
1 is asymptoti-

cally stable if and only if 2α9

√
∆+

√
∆+α3

2α9
> 0 and

(2α9

√
∆+

√
∆+ α3)(α9

√
∆+∆+ 2α9) > 4α2

9

√
∆

[see Fig. 1(b)].

(II) When α9 = 0 and x∗3 = −α0
α3
, the characteristic

equation (15) is

λ3 +
α0 − α2

3

α3
λ2 + (1− α0)λ− α3 = 0. (17)

From Eq. (17), we can deduce that the determi-
nant of the Jacobian matrix is represented by α3.
When α3 > 0, this indicates that at least one of the
eigenvalues is positive. Thus, the equilibrium point
E2 is unstable [see Fig. 2(a)]. However, by Hur-
witz’s Theorem, E2 is asymptotically stable equi-
librium point if and only if α3 < 0, α0 < α2

3 and
(α0 − α2

3)(1− α0) < −α2
3 [see Fig. 2(b)].

(III) When α0 =
α2
3

4α9
and x∗3 = − α3

2α9
, the charac-

teristic equation (15) can be written of the form

λ

(
λ2 +

α3

2α9
λ+ 1

)
= 0. (18)

(a) (b)

Fig. 1. The phase portrait of system (1) is shown when αi = 1(i = 1, . . . , 9) and α0 = 0. In (a), E+
1 is unstable and in (b),

E−
1 is asymptotically stable. The green balls represent the initial points, while the red balls represent the equilibrium points.
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(a) (b)

Fig. 2. The phase portrait of system (1) is shown when α1 = α2 = α4 = α5 = α6 = α7 = α8 = α9 = 1. (a) When
α0 = α3 = 1, E2 is unstable. (b) When α0 = α3 = −1, E2 is asymptotically stable. The green and red balls indicate the initial
and equilibrium points, respectively.

(a) (b)

Fig. 3. The phase portrait of system (1) is shown when α1 = α2 = α4 = α5 = α6 = α7 = α8 = α9 = 1 and α0 = 1
4 . (a) When

α3 = 1 and (b) α3 = −1 the equilibrium point E3 is unstable. The green and red balls indicate the initial and equilibrium
points, respectively.
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From Eq. (18),

• When α3
2α9

< 0, it guarantees the existence of a root that is either positive or has a positive real component.

Thus, the equilibrium point E3 is unstable [see Fig. 3(a)].
• When α3

2α9
> 0, the two nonzero roots exhibit negativity or negative real components. As a result, the

overall stability of the equilibrium point depends on how the dynamics behave on the center manifold.
By scaling x3 → x3 − α3

2α9
and the following transformation:

x1 = v +
2α9√
∆1

w, x2 =
∆1 − α3

√
∆1

4α9

√
∆1

v +
α3α9 + 2

√
∆1

2α9

√
∆1

w, x3 = u+ ζ1v + ζ2w,

where

∆1 = α2
3 − 16α2

9,

ζ1 =
1

8α2
9

√
∆1

((α2
3α6 − 2α3α9α1 − 4α3α9α8 + 8α2α

2
9)
√
∆1 − (2α9α1 − α6α3)∆1),

ζ2 =
1

4α2
9

√
∆1

((2α2
9α1 − α6α3α9)

√
∆1 + 8α2α

3
9 + 2α2

3α6α9 − 2α2
9α3α1 − 4α2

9α3α8),

system (1) is transformed to the following canonical form:

u̇ = α9u
2 + φ1v

2 + φ2w
2 + φ3uv + φ4uw + φ5vw +O(3),

v̇ =
−α3 +

√
∆1

4α9
v + φ6v

2 + φ7w
2 + φ8uv + φ9uw + φ10vw +O(3),

ẇ =
−α3 −

√
∆1

4α9
w +

√
∆1

2α9
(φ6v

2 + φ7w
2 + φ8uv + φ9uw + φ10vw) +O(3),

(19)

where

φ1 =
1

32α3
9

(4α2
1α

2
3α

2
9 + 32α1α8α

3
9 + α2

6α
4
3 − 32α2

1α
4
9 + 32α2

2α
4
9 + 32α2

1α
3
9 + 32α4α

3
9 − 32α7α

3
9

+8
√
∆1α2α8α

2
9 − 4

√
∆1α3α

2
8α9 − 4

√
∆1α3α7α9 + 4

√
∆1α3α

2
6α9 − 8α1α2α3α

2
9 + 4α1α

2
3α8α9

− 40α1α3α6α
2
9 + 4α2α

2
3α6α9 − 8α2α3α8α

2
9 − 32α3α6α8α

2
9 − 16α1α2α3α

3
9 − 4α1α

3
3α6α9

+8α1α
2
3α8α

2
9 + 32α1α3α6α

3
9 + 8α2α

2
3α6α

2
9 − 32α2α3α8α

3
9 − 4α3

3α6α8α9 + 4
√

∆1α
2
1α3α

2
9

− 16
√

∆1α1α2α
3
9 + 8

√
∆1α1α2α

2
9 − 8

√
∆1α1α6α

2
9 + 2

√
∆1α

2
3α6α8 + 8α2

3α
2
8α

2
9 − 2α3

3α6α8

+4α2
3α7α9 − 8α2

3α
2
6α

2
9 + 32α2α6α

3
9 + 12α2

3α
2
6α9 + 4α2

3α
2
8α9 + 8

√
∆1α5α

2
9 +

√
∆1α

3
3α

2
6 − 8α3α5α

2
9

− 4
√

∆1α1α
2
3α6α9 − 4

√
∆1α2α3α6α9 + 8

√
∆1α1α3α8α

2
9 − 4

√
∆1α1α3α8α9 − 4

√
∆1α

2
3α6α8α9

+8
√

∆1α2α3α6α
2
9),

φ2 =
−1

8α9∆1
(−4

√
∆1α

2
3α6α8α9 − 4

√
∆1α1α3α8α9 − 4

√
∆1α2α3α6α9 + 16α1α2α3α

3
9 + 4α1α

3
3α6α9

− 8α1α
2
3α8α

2
9 − 32α1α3α6α

3
9 − 8α2α

2
3α6α

2
9 + 32α2α3α8α

3
9 + 4α3

3α6α8α9 + 8α1α2α3α
2
9

− 4α1α
2
3α8α9 + 40α1α3α6α

2
9 − 4a2α

2
3α6α9 + 8α2α3α8α

2
9 + 32α3α6α8α

2
9 + 4

√
∆1α

2
1α3α

2
9

− 16
√

∆1α1α2α
3
9 + 8

√
∆1α1α2α

2
9 − 8

√
∆1α1α6α

2
9 + 8

√
∆1α2α8α

2
9 + 2

√
∆1α

2
3α6α8

2450179-7

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

4.
34

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
11

/2
7/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 23, 2024 15:20 WSPC/S0218-1274 IJBC 2450179

R. H. Salih et al.

+4
√

∆1α3α
2
6α9 − 4

√
∆1α3α

2
8α9 − 4

√
∆1α3α7α9 − α2

6α
4
3 − 4

√
∆1a1α

2
3α6α9 + 8

√
∆1α1α3α8α

2
9

+8
√

∆1α2α3α6α
2
9 − 4α2

1α
2
3α

2
9 + 8α2

3α
2
6α

2
9 − 8α2

3α
2
8α

2
9 − 32α1α8α

3
9 − 32α2α6α

3
9 + 2α3

3α6α8

− 12α2
3α

2
6α9 − 4α2

3α
2
8α9 − 4α2

3α7α9 + 8α3α5α
2
9 +

√
∆1α

3
3α

2
6 + 8

√
∆1α5α

2
9 + 32 α2

1α
4
9 − 32α2

2α
4
9

− 32α2
1α

3
9 − 32α4α

3
9 + 32α7α

3
9),

φ3 =
1

8α2
9

(4
√

∆1α1α
2
9 − 2

√
∆1α3α6α9 + 4α1α3α

2
9 − 16α2α

3
9 − 2α2

3α6α9 + 8α3α8α
2
9 − 2

√
∆1α1α9

+
√

∆1α3α6 − 2
√
∆1α8α9 + 2α1α3α9 − α2

3α6 + 2α3α8α9 − 8α6α
2
9),

φ4 =
−1

4α9∆1
(4
√

∆1α1α3α
2
9 − 16

√
∆1α2α

3
9 − 2

√
∆1α

2
3α6α9 + 8

√
∆1α3α8α

2
9 − 4α1α

2
3α

2
9 + 64α1α

4
9

+2α3
3α6α9 − 32α3α6α

3
9 + 2

√
∆1α1α3α9 −

√
∆1α

2
3α6 + 2

√
∆1α3α8α9 − 8

√
∆1α6a

2
9 + 2α2

3α1α9

− 32α1α
3
9 − α3

3α6 + 2α2
3α8α9 + 16α6α3α

2
9 − 32 α8α

3
9),

φ5 =
1

8α3
9

√
∆1

(32α5
9α

2
1 − 16α1α2α3α

4
9 + 8α1α

2
3α8α

3
9 − 32α1α3α6α

4
9 + 32α5

9α
2
2 + 8α2α

2
3α6α

3
9

− 32α2α3α8α
4
9 − 4α3

3α6α8α
2
9 + 8α2

3α
2
6α

3
9 + 8α2

3α
2
8α

3
9 + 4α2

1α
2
3α

2
9 − 32α2

1α
4
9 − 8α1α2α3α

3
9

− 4α1α
3
3α6α9 + 8α1α

2
3α8α

2
9 + 24α1α3α6α

3
9 − 32α1α8α

4
9 + 4α2α

2
3α6α

2
9 − 8α2α3α8α

3
9

+32α2α6α
4
9 + α2

6α
4
3 − 4α3

3α6α8α9 − 4α2
3α

2
6α

2
9 + 4α2

3α
2
8α

2
9 − 8α3α5α

3
9 + 32α4α

4
9 + 32α7α

4
9),

φ6 =
1

4α9

√
∆1

((2α2α9 − α3α8)
√
∆1 + 8α1α

2
9 − 2α2α3α9 + α2

3α8 − 4α3α6α9),

φ7 =
α9

∆1

√
∆1

((α3α8 − 2α2α9)
√

∆1 + 8α1α
2
9 − 2α2α3α9 + α2

3α8 − 4α3α6α9),

φ8 =
1

2
√
∆1

(−α3 +
√
∆1), φ9 =

α9

∆1
(−α3 −

√
∆1),

φ10 =
1

α9∆1
(2α1α

2
3α9 − 16α1α

3
9 − 4α2α3α

2
9 − α3

3α6 + 2α2
3α8α9 + 8α2α3α

2
9).

Table 1. Existence and local stability of all equilibriums.

Equilibrium Points Existence Stability Conditions

E+
1 = (0, 0, −α3+

√
∆

2α9
) ∆ > 0 and α9 ̸= 0 Unstable Always

2α9

√
∆+

√
∆+α3

2α9
> 0

E−
1 = (0, 0, −α3−

√
∆

2α9
) ∆ > 0 and α9 ̸= 0 Asymptotically stable and

(2α9

√
∆+

√
∆+ α3)(α9

√
∆+∆+ 2α9) > 4α2

9

√
∆

Unstable α3 > 0
E2 = (0, 0,−α0

α3
) ∆ > 0 and α9 = 0

Asymptotically stable α3 < 0, α0 < α2
3 and (α0 − α2

3)(1− α0) < −α2
3

E3 = (0, 0,− α3
2α9

) ∆ = 0 and α9 ̸= 0 Unstable α3
α9

̸= 0
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Bifurcation Analysis for the Generalized Nosé–Hoover System

The set below represents the one-dimensional local
center manifold of system (19) in the vicinity of the
origin:

W c = {(u, v, w) ∈ R3 : v = h1(u), w = h2(u),

|u| < 1, with h1(0) = Dh1(0)

= h2(0) = Dh2(0) = 0}.

From the Taylor expansion near the origin,

h1(u) = ξ1u
2 +O(3) and h2(u) = ξ2u

2 +O(3),

ξ1 = 0 and ξ2 = 0 are obtained. The vector field
is restricted to the center manifold, which can be
expressed by the following equation:

u̇ = α9u
2 +O(3). (20)

When α9 ̸= 0, then u = 0 is unstable for Eq. (20).
Therefore, the equilibrium point E3 is unstable [see
Fig. 3(b)]. ■

The results obtained in this section can be sum-
marized in Table 1.

4. Bifurcation Analysis

Parameters play a crucial role in the formulation
of differential equations. The qualitative behavior
of a system’s solutions can exhibit significant vari-
ations based on the specific values assigned to its
parameters. In general terms, a differential system
can be described as undergoing a bifurcation when
its trajectory structure changes as a parameter,
denoted by µ, crosses a specific value, µ0. This can
be expressed in the context of a system represented
by the equation:

Ẋ = f(X,µ) = AX + F (X,µ). (21)

Here,X is a variable in R3, AX represents the linear
component of the system, F is a nonlinear analytic
function and µ ∈ Rk is a parameter. Simply put,
at the bifurcation value, the system experiences a
change in the quantity and/or stability of its equi-
libria. Bifurcations refer to transformative changes
that occur in the solution curves of a dynamical
system when specific parameter values, known as
bifurcation values, vary [Muñoz-Alicea, 2011]. The
scientific term “bifurcation” is commonly used to
describe substantial and qualitative alterations in
the stability of solution curves within nonlinear
dynamical systems [Moiola & Chen, 1996]. This
section focuses on the analysis of both Hopf and

Saddle-Node bifurcations of system (1), with con-
sideration given to their conditions for occurrence.

4.1. Saddle-Node bifurcation

A Saddle-Node bifurcation denotes a significant
juncture or a change in the behavior of a dynami-
cal system when a parameter undergoes variation.
During a Saddle-Node bifurcation, as the parame-
ter gradually changes, two equilibrium points of the
system converge and annul each other, resulting in
the disappearance of these equilibria. This critical
parameter value brings about a qualitative shift in
the system’s behavior, often resulting in a transi-
tion from a stable equilibrium to an unstable state
or vice versa [Perko, 2013; Kuznetsov, 2006].

Theorem 1 [Sotomayor Perko, 2013]. Consider
system (21) and let there is a point E0 ∈ Rn such
that f(E0, µ) = 0 ∀µ, i.e. E0 is an equilibrium point
of the system. Moreover, if µ = µ0 assume the fol-
lowing condition satisfies:

(I) The Jacobian matrix J = Df(E0, µ0) has a
zero eigenvalue with an eigenvector υ and JT

has an eigenvector ω corresponding to zero
eigenvalue. Furthermore, J has k eigenvalues
with negative real parts and has n−k−1 eigen-
values with positive real parts, where 0 ≤ k ≤
n− 1;

(II) ωT fµ(E0, µ0) ̸= 0;

(III) ωT (D2
xfµ(E0, µ0)(υ, υ)) ̸= 0.

Then, system (21) exhibits a Saddle-Node bifur-
cation at the equilibrium E0 as µ passes through
µ = µ0.

Proposition 2. For system (1), a Saddle-Node
bifurcation occurs at E3 = (0, 0,− α3

2α9
) as the

parameter α0 passes through α0 =
α2
3

4α9
.

Proof. By linearizing around E3 with α0 =
α2
3

4α9
, the

Jacobian matrix of system (1) is given by

J =


0 1 0

−1 − α3

2α9
0

α1 −
α3α2

2α9
α2 −

α3α8

2α9
0

,

and the characteristic equation is given by

λ

(
λ2 +

α3

2α9
λ+ 1

)
= 0.
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It has a simple zero with two solutions having
nonzero real parts. The following vectors:

υ =

0

0

1

 and

ω =



2α1α3α9 − 4α2α
2
9 − α2

3α6 + 2α3α8α9

4α2
9

2α1α9 − α3α6

2α9

1

,

are eigenvectors of the Jacobian matrices J and JT

corresponding to λ1 = 0, respectively. According to
Theorem 1, we have

ωT fα0

(
E3,

α2
3

4α9

)
= 1 ̸= 0,

ωT

(
D2

xf

(
E3,

α2
3

4α9

))
= 2α9 ̸= 0.

Therefore, when the parameter α0 crosses the value

α0 =
α2
3

4α9
, system (1) undergoes a Saddle-Node

bifurcation at the equilibrium E3 = (0, 0,− α3
2α9

).
■

4.2. Hopf bifurcation

In recent years, there has been significant research
on the Hopf bifurcation of well-known chaotic sys-
tems, making it one of the most actively explored
subjects in the field [Wouapi et al., 2019; Wang
et al., 2023; Kyaw et al., 2023; Guo et al., 2023;
Dias & Mello, 2013; Zhang et al., 2013; Wu &
Fang, 2015; Van Gorder & Choudhury, 2011; Lli-
bre & Pessoa, 2015; Yu & Zhang, 2003; Wang, 2009;
Sun et al., 2006]. Additionally, the Hopf bifurca-
tion is a common phenomenon linked to the emer-
gence or vanishing of limit cycles around an equilib-
rium point. What sets this bifurcation apart from
other common types, such as Saddle-Node, trans-
critical or pitchfork, is its uniqueness in two aspects.
The first aspect is that the Hopf bifurcation can-
not occur in one dimension; it requires a mini-
mum dimensionality of two. The second aspect is
related to the appearance or disappearance of peri-
odic solutions [Sarmah et al., 2015]. The Hopf bifur-
cation represents the most straightforward mecha-
nism through which limit cycles can emerge from
an equilibrium point. Several techniques can be

employed to investigate it, including bifurcation for-
mulas [Wouapi et al., 2019; Sarmah et al., 2015;
Akhter, 2024; Sotomayor et al., 2007], Lyapunov
quantities [Salih, 2015; Salih & Mohammed, 2022]
and focus quantities [Sang, 2021; Sang & Huang,
2017].

Now, let’s mention the main condition for the
occurrence of the Hopf bifurcation. Suppose that
system (21) has an equilibrium (E0, µ0) at which
the following properties are satisfied:

(I) The Jacobian matrix J = Df(E0, µ0) has a
simple pair of pure imaginary eigenvalues λ(µ)
and λ(µ), while the other eigenvalue has a
nonzero real part.

(II) dRe(λ(µ))
dµ |µ=µ0 ̸= 0.

Then, system (21) has a Hopf bifurcation at
the equilibrium (E0, µ0) [Guckenheimer & Holmes,
2013].

An explanation is provided for the sufficient
condition that leads to the occurrence of the first
condition of Hopf bifurcation in system (21). Let
us assume that the characteristic polynomial at the
origin is given by

P (λ) = λ3 − Tλ2 −Kλ−D, (22)

where T, K and D represent the trace, sum of diag-
onal minors and determinant of the Jacobian matrix
of system (21) at the origin, respectively. Then, the
Hopf bifurcation occurs at the origin if and only if

TK +D = 0, K < 0 and T ̸= 0. (23)

The bifurcation of multiple limit cycles from a
focus is closely tied to the stability of the focus
itself. Andronov [1971] introduced a set of numbers
called focal values, denoted as η2i (i = 1, 2, 3, . . .),
to describe this phenomenon. Here, the Lyapunov
quantity technique is utilized to assess the cyclic-
ity in the three-dimensional system. The technique
involves introducing a function of the form

F (x, y, z) = x2 + y2 +
∞∑
k=3

Fk(x, y, z;µ), (24)

where Fk represents a polynomial in x, y and z of
degree k and the coefficients of Fk satisfy

χ(F ) = η2r
2 + η4r

4 + η6r
6 + · · ·+ η2ir

2i + · · · ,
(25)

where r2 = x2 + y2 or x2 or y2 or (x2 + y2)2

or other suitable forms. The vector field χ corre-
sponds to the canonical form of the system. The
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η2i values (where i = 1, 2, 3, . . .) represent polyno-
mials in the system’s parameter µ and are referred
to as the ith Lyapunov quantity or focal values. If
η2 = η2 = η2 = · · · = η2k = 0, but η2k+1 ̸= 0, we
classify the origin as a fine focus of order k. In such
cases, the perturbation of the system can result in
the bifurcation of a maximum of k limit cycles from
the origin. The exact number of limit cycles can be
determined by considering the independence of the
Lyapunov quantities. To delve into this technique
further, consider [Andronov, 1971; Blows & Lloyd,
1984; Dumortier et al., 2006; Lu & Luo, 2002; Wang,
1991] for more detailed information.

4.2.1. Hopf bifurcation conditions

The main focus of this section is to determine the
conditions for the occurrence of Hopf bifurcation.

Proposition 3. If α0 crosses the critical value
of α0 = 0, subject to the conditions that

α3 ̸= − 2α9

√
∆ −

√
∆ and α9

√
∆−

√
∆−2α9

2α9
< 0

then system (1) undergoes a Hopf bifurcation

at the equilibrium point E+
1 (0, 0,

−α3+
√
∆

2α9
) (for

E−
1 (0, 0,

−α3−
√
∆

2α9
) is similar by changing the sign of

∆) where ∆ = α2
3 − 4α9α0 > 0 and α9 ̸= 0.

Proof. By using the linear transformation x3 →
x3 +

−α3+
√
∆

2α9
, the equilibrium point E±

1 is shifted

to the origin and system (1) becomes

ẋ1 = x2,

ẋ2 = −x1 + φ1x2,

ẋ3 = α0 + α1x1 + α2x2 + α3φ1 + α4x
2
1

+ α5x1x2 + α6φ1x1 + α7x
2
2 + α8φ1x2

+ α9φ
2
1,

(26)

where φ1 = x3 +
−α3+

√
∆

2α9
. For the given system, at

the origin, the Jacobian matrix and its characteris-
tic equation are defined as follows, respectively:

J =


0 1 0

0 0 1

√
∆ α2 +

α5(−α1 +
√
∆)

2α4
α3 +

α6(−α1 +
√
∆)

2α4

,

f(λ, α0) = λ3 − 2α9

√
∆+

√
∆− α3

2α9
λ2 − α3

√
∆−

√
∆− 2α9

2α9
λ−

√
∆ = 0. (27)

Upon comparing the aforementioned characteristic
equation with Eq. (22), the subsequent values for

T, K and D are determined: T = 2α9

√
∆+

√
∆−α3

2α9
,

K = α3

√
∆−

√
∆−2α9

2α9
and D =

√
∆. The character-

istic polynomial (27) exhibits a Hopf point, char-
acterized by two nonzero purely imaginary solu-
tions, only when its coefficients fulfill conditions
(23). Then, when

• T ̸= 0, it implies that α3 ̸= −2α9

√
∆−

√
∆;

• K < 0, it implies that α9

√
∆−

√
∆−2α9

2α9
< 0;

• TK + D = 0, it implies that (4α0α
2
9 − α2

3α9 +

2α0α9−α9−α2
3)
√
∆−4α0α3α

2
9−α3

3α9−4α0α9+
α3α9 − α3

3 = 0.

The conditions mentioned above lead to α0 = 0
and α3 > 0. Consequently, the characteristic equa-
tion (27) possesses a nonzero eigenvalue α0 along
with a pair of purely imaginary eigenvalues ±i.

To confirm the transversality condition, the
derivative of the complex eigenvalue λ(α0) with
respect to α0 can be determined for the equilib-
rium point using the implicit function theorem, as
follows:

dλ

dα0
= −

∂f

∂α0

∂f

∂λ

=
2α9((2α9 + 1)λ2 + (α3 − 2

√
∆)λ+ 2α9)√

∆(6α9λ2 + (2α3 − (4α9 + 2)
√
∆)λ− α3

√
∆+∆+ 2α9)

. (28)
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Substituting α0 = 0 and λ = i into Eq. (28), we
obtain

dRe(λ1,2)

dα0

∣∣∣∣
{α0=0,λ=i}

=
1

3α3
̸= 0. (29)

This indicates that the transversality condition has
been fulfilled. Thus, Hopf bifurcation takes place at
α0 = 0. ■

Proposition 4. For system (1), Hopf bifurca-
tion occurs at the equilibrium point E2 =
(0, 0,−α0

α3
); α3 ̸= 0 when α0 = 0.

Proof. By applying a linear transformation x3 =
x3 − α0

α3
, we shift the equilibrium point E2 to the

origin E20 = (0, 0, 0), thereby transforming system
(1) into the following:

ẋ1 = x2,

ẋ2 = −x1 + φ2x2,

ẋ3 = α0 + α1x1 + α2x2 + α3φ2

+ α4x
2
1 + α5x1x2 + α6φ2x1 + α7x

2
2

+ α8φ1x2 + α9φ
2
2,

(30)

where φ2 = x3− α0
α3
. From (30), the Jacobian matrix

at the origin is

J =


0 1 0

−1 −α0

α3
0

α1 −
α0α6

α3
α2 −

α0α8

α3
α3

,

and its characteristic equation is

λ3 − α0 − α2
3

α3
λ2 − (1− α0)λ− α3 = 0. (31)

Since α0 = 0 , Eq. (31) changes into

(λ2 + 1)(λ− α3) = 0. (32)

Hence, Eq. (32) exhibits a pair of conjugate roots
that are purely imaginary, namely λ1,2 = ±i and
a real root λ3 = α3. Thus, we can choose α0 as
the bifurcation parameter and the critical value is
α0 = 0. According to Eq. (31), we have

λ′(α0) =
λ2 − α3λ

3α3λ2 + (2α0 − 2α2
3)λ+ α3(1− α0)

.

Hence, Re(λ′(α0))|λ=i = − 1
2α3

and Im(λ′(α0))|λ=i =

0. Since λ1 and λ2 are a conjugate pair (λ1(α0) =
λ2(α0)), Re(λ

′
1(α0))|λ=i ̸= 0, Im(λ1(α0)) ̸= 0 and

Re(λ3(α0)) = α3 ̸= 0. Then, a Hopf bifurcation
occurs at E2 = (0, 0,−α0

α3
). ■

4.2.2. Multiple Hopf bifurcations

To analyze the cyclicity of the three-dimensional
system (1), we utilize the Lyapunov quantities
technique referenced in [Salih, 2015; Salih &
Mohammed, 2022]. However, due to the computa-
tional complexity involved in calculating Lyapunov
quantities, certain parameters are held constant.

First, we investigate the number of limit
cycles that can bifurcate from a Hopf point

E+
1 (0, 0,

−α3+
√
∆

2α9
). We carried out this investigation

by fixing certain parameters, such as α1 = α2 =
α3 = α6 = α7 = α8 = α9 = 1. Thus, system (26)
becomes

ẋ1 = x2,

ẋ2 = −x1 + φ3x2,

ẋ3 = α0 + x1 + x2 + φ3 + α4x
2
1 + α5x1x2

+ φ3x1 + x22 + φ3x2 + φ2
3,

(33)

where φ3 = −1+
√
1−4α0

2 . The equation that
describes the characteristics of the linearized sys-
tem (33) at the origin is expressed as follows:

λ3 − 1− 3
√
1− 4α0

2
λ2 − 3− 4α0 −

√
1− 4α0

2
λ

−
√
1− 4α0 = 0. (34)

When α0 = 0, Eq. (34) possesses a pair of conjugate
roots that are purely imaginary, namely λ1,2 = ±i,
along with a nonzero root λ3 = 1. Using Eq. (34)
and applying the implicit function theorem, we
compute

dRe(λ1)

dα0


{α0=0,λ=i}

= −1

2
̸= 0.

Therefore, the transversality condition for the Hopf
bifurcation at α0 = 0 is confirmed. Thus, a Hopf
bifurcation occurs at the origin equilibrium when
the parameter α0 = 0.

In order to study the cyclicity, the Lyapunov
quantities technique is used. By the following linear
transformation,

x1 = u, x2 = −v, x3 = v + w,
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system (33) transformed into the following canoni-
cal form:

u̇ = −v,

v̇ = u+ vw + v2, (35)

ẇ = w + (1− α5)uv + uw + α4 u2 + w2.

To examine the number of bifurcated limit cycles
from the equilibrium point, we define the following
Lyapunov function:

F (u, v, w) = u2 + v2 +

n∑
k=3

k∑
j=0

j∑
i=0

Ci,j−i,k−j

×uivj−iwk−j ,

such that

χ(F ) = η2(u
2 + v2)2 + η4(u

2 + v2)4 + η6(u
2 + v2)6

+ · · ·+ η2i(u
2 + v2)2i + · · · , (36)

where χ denotes the vector field of system (33).
Equation (36) is solved and a subsequent set
of mutually independent Lyapunov quantities is
derived using the technique described in [Salih,
2015] and the computer algebra package MAPLE.

η1 = 0,

η2 =
1

20
(2− 9α4 − 2α5),

η3 =
1

800
(485α4 + 340α5 − 458α2

4

− 183α4α5 − 42α2
5),

η4 =
1

97920000
(−105930441α3

4 − 51928074α2
4α5

− 106705482α2
4 − 15466437α4α

2
5

+61471688α4α5 − 210386861α4 − 1534302α3
5

+4866802α2
5 − 128656278α5 + 125323778).

The origin in system (33) is classified as a weak
focus of order three if and only if the following con-
ditions are met:

α4 =
2

9
(1− α5) and α5 =

862

97
.

Now, the Jacobian determinant of the functions
[η2, η3] with respect to α4 and α5 at α4 =

4
5(1−α5)

and α5 =
462
97 is given by∣∣∣∣∣∣∣∣∣
∂η2
∂α4

∂η2
∂α5

∂η3
∂α4

∂η3
∂α5

∣∣∣∣∣∣∣∣∣ =
−74893

698400
̸= 0.

We observe that at (α4, α5) = (29(1 − α5),
862
97 ),

the fourth Lyapunov quantity is nonzero, with a
value of η4 = −198846157

14602768 and η2 = η3 = 0. By
appropriately perturbing the coefficients of the Lya-
punov quantities, it is possible for three limit cycles
to bifurcate from the origin of system (33) in its
vicinity. Thus, based on the aforementioned calcula-
tions and Proposition 3, we can derive the following
theorem.

Theorem 2. For system (1), under conditions on
Proposition 3, three limit cycles can be bifurcated

from the equilibrium point E+
1 (0, 0,

−α3+
√
∆

2α9
) when

the parameter α0 passes through zero.

Second, we investigate the number of limit
cycles that can bifurcate from a Hopf point E2 =
(0, 0,−α0

α3
); α3 ̸= 0. This investigation is carried out

by fixing certain parameters, such as α1 = α2 =
α3 = α6 = α7 = α8 = 1. In a similar manner to the
proof of Theorem 2, it is straightforward to estab-
lish the following theorem.

Theorem 3. For system (1), three limit cycles can
be bifurcated from the equilibrium point E2 =
(0, 0,−α0

α3
); α3 ̸= 0 when α0 passes through zero.

5. Conclusions

This paper focuses on the analysis of the three-
dimensional generalized Nosé–Hoover system. The
stability of the system’s equilibrium points has
been assessed using characteristic equations. Fur-
thermore, the occurrence of Hopf and Saddle-Node
bifurcations has been investigated, considering spe-
cific parameter conditions. It is shown that Saddle-
Node bifurcations occur at the equilibrium point
E3 = (0, 0,− α3

2α9
) as the parameter α0 passes

through α0 = − α2
3

4α9
. Under specific conditions on

the parameters, it is proved that the Hopf bifur-
cation occurs at the points E±

1 , where the param-
eter α0 passes through zero. To explore the sys-
tem’s cyclicity perturbed from the Hopf points, the
Lyapunov quantities have been utilized. To manage
the computational complexity associated with com-
puting the Lyapunov quantities, certain parameters
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have been held constant. As a result, it has been
determined that the system can give rise to three
limit cycles through Hopf points.
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