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Abstract: In response to the 2024 Snook Prize Problem, this paper compares the mixing rates of six simple numerical
algorithms that produce an ergodic Gaussian distribution of position and momentum for a one-dimensional harmonic os-
cillator. A hundred thousand initial conditions spread uniformly over the constant energy surface are used for each of the
six systems. The time-dependent kurtosis serves as a measure of the mixing rate. By this criterion, the most rapid mixing
occurs for the signum thermostat system with an optimally chosen parameter value.
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1. Introduction

By now a number of three- and four-dimensional dynam-
ical systems are known whose chaotic orbit eventually visits
every point in their phase space and does so with a Gaussian
probability distribution. Such systems are called ‘ergodic’
and model a one-dimensional harmonic oscillator in ther-
mal equilibrium with a heat bath of constant temperature.
In the 2024 Snook Prize Problem, Hoover and Hoover [1]
ask “which of these approaches is best” in the sense of con-
verging most rapidly to the Gibbs’ canonical distribution [2],
which is a Gaussian function for position ¢ and momentum
p. All of the systems employ feedback control of the time-
averaged momentum squared (p?), which can be considered
as a normalized temperature 7 = (p?). Such a feedback
mechanism is called a ‘thermostat’.

There are many ways to quantify the rate of conver-
gence to a Gaussian distribution f(p) = e ?°/27 /\/27T,
and similarly for f(gq). One of the simplest is the kurtosis
K = (p*)/(p?)?, which is a dimensionless number equal to
3 for a Gaussian distribution. It is straightforward to calcu-
late K (t) from a running average of p? and p* for an orbit
starting at an arbitrary initial condition (gg, pg) and follow its
convergence to K = 3. Indeed, this is one of several ways to
confirm ergodicity.

Since K (t) will in general depend on the initial condi-
tions, it is necessary to average over a large number of orbits,
here taken as 10° and uniformly distributed over the constant
energy surface g2+ p? = 2T. One can think of these orbits as
a collection of noninteracting particles with a delta function
distribution of total (potential plus kinetic) energy chosen to
be the same as the average energy of the final thermal dis-
tribution. The results are not sensitive to the details of the
initial conditions due to Lyapunov instability. Without loss
of generality and to facilitate comparison, we hereafter take
T=1.

II. Method
To illustrate the method, consider the arguably simplest

example of an ergodic system, the harmonic oscillator with
a signum thermostat [3] given by

q=np,
p=—q — asgn({)p, ()
C = p2 - 13

where sgn(¢) = ¢/|(| is the signum function equal to +1
depending on the sign of (.



6 J.C. Sprott

This system is ergodic for a > 1.7 and is typically
taken as @ = 2, which corresponds to critical damping
(p = —q — 2p) for ¢ > 0 or anti-damping (p = —q + 2p) for
¢ < 0. The signum thermostat is an example of a ‘bang-bang
controller’ since it switches abruptly and fully between two
different states, much as does a typical physical thermostat
that controls a furnace or air conditioner. In addition, the os-
cillator dynamics is completely linear except at p = 0. Thus
the behavior is independent of the temperature.

Initial conditions are given by gy = /2 cos ¢ and py =
= \/2sin ¢, where ¢ is a phase angle taken uniformly over
the range 0 < ¢ < 2. For these initial conditions, the av-
erage kurtosis for the delta function of energy ¢2 + p2 = 2
att = 0 is given by K(0) = (sin* ¢)/(sin® ¢)? = 1.5. Thus
the asymptotic value of K = 3 is approached from below.
The initial value of the thermostat variable is taken as (y = 0.

Time is measured in units of the inverse angular fre-
quency so that t = 27 corresponds to one period of the un-
damped harmonic oscillator. The equations are integrated us-
ing the fourth-order Runge-Kutta algorithm with an adaptive
step size [4], and the (g, p) values are sampled at intervals of
At = 0.001.

III. Results

III. 1. Signum Thermostatted System

The result of the calculation for Eq. (1) with a = 2 is
shown in Fig. 1. Perhaps not surprisingly, the kurtosis of ¢ as
indicated by K, converges more slowly than does K, since
the latter is more directly controlled by the thermostat. This
is a general feature of all the cases that follow, although K,
sometimes overshoots and approaches 3 from above or oscil-
lates about the asymptotic value. As a measure of the conver-
gence time t., we arbitrarily take the earliest time at which
both K, and K, simultaneously fall within 1% of 3.0, which
means a value in the range 2.97 < K < 3.03. The calculated
value for the signum thermostatted oscillator is ¢, = 522.
All the times are rounded to an integer and have an uncer-
tainty on the order of 1%.

III. 2. 0532 System

An older system with a single thermostat variable but
that controls both the second and fourth moments of p is the
0532 system [5] given by

q=rp,
p=—q— (0.05p+0.32p°), @
{=0.05(p% — 1) +0.32(p* — 3p?).

The result of the calculation for Eq. (2) is shown in Fig. 2.
The calculated convergence time is t. = 632 with a small
overshoot of K, that converges slowly from above.
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Fig. 2. Kurtosis versus time for the 0532 system in Eq. (2)

II1. 3. TBS System

The final system with a single thermostat variable is the
one proposed by Tapias, Bravetti, and Sanders (TBS) [6] in
response to the 2016 Snook Prize Problem [7]. It can be
viewed as a variant of Eq. (1) with a more gradual variation
of the damping as given by

q=np,
p=—q— (1/Q) tanh(¢/2Q)p, ()
C = p2 - 17
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Fig. 1. Kurtosis versus time for the signum thermostatted system in
Eq. (1) witha = 2
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Fig. 3. Kurtosis versus time for the TBS system in Eq. (3) with
Q=01
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with @ small and positive. For example, TBS assumed @) =
= 0.1 which gives the result in Fig. 3. The calculated con-
vergence is relatively slow with ¢, = 4714.

I11. 4. HH System

Ergodic systems are more easily obtained using two ther-
mostat variables to simultaneously control the second and
fourth moments. One such example is the Hoover-Holian
(HH) system [8] given by

qg=p, ,
p=—q—Cp—Ep°,

C=p?—1 “4)
§=p*—3p2

The result of the calculation for Eq. (4) is shown in Fig. 4.
Perhaps not surprisingly, the kurtosis K, converges rapidly
since it is directly controlled by the ¢ thermostat variable,
although with large oscillations. The calculated convergence
time is t. = 1309.

III. 5. BBK System

A minor variant of the HH system was proposed by
Bauer, Bulgac, and Kusnezov (BBK) [9, 10] in which the
(p term is replaced by ¢3p, which generally improves ergod-
icity, giving the system

a=p,

p=—q—Cp—&pP )
g:p2_17

¢=p'—3p*.

The result of the calculation for Eq. (5) is shown in Fig. 5.
The kurtosis K, also converges rapidly but with large oscil-
lations. The calculated convergence time is ¢, = 406.

III. 6. MKT System

An alternate approach is the ‘chain thermostat’ in which
one thermostat controls the temperature of a second one.
A simple such case was proposed by Martyna, Klein, and
Tuckerman (MKT) [11] as given by

q=p, :
bp=—-q—=G(p,
(=P —1-&, ©
£=¢-1.

The result of the calculation for Eq. (6) is shown in Fig. 6.
The convergence is rapid but with oscillations in both K,
and K. The calculated convergence time is ¢, = 162.

IV. Optimization

The signum thermostatted system and the TBS system
have adjustable parameters that were arbitrarily taken as
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Fig. 4. Kurtosis versus time for the HH system in Eq. (4)
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Fig. 5. Kurtosis versus time for the BBK system in Eq. (5)
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Fig. 6. Kurtosis versus time for the MKT system in Eq. (6)

a = 2and Q) = 0.1, respectively. It is natural to ask whether
t. can be further reduced by choosing more optimal values of
the parameters. Fig. 7 shows that the signum case has a min-
imum of . = 159 at a ~ 4, and that it is robustly ergodic
over a wide range of the parameter in the vicinity of the op-
timum.
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Fig. 7. Convergence time for the signum thermostatted system in
Eq. (1) showing a robust minimum of {. = 159 ata ~ 4

Fig. 8 shows that the TBS case has a minimum of . =
= 1608 at @ =~ 0.2, an order of magnitude worse than the
optimized signum case. Ergodicity is lost for slightly larger
values of () where t. is undefined. This result is confirmed
by Poincaré plots at z = 0 that show quasiperiodic islands
amidst the chaotic sea that become quite large for Q) > 0.22.
Thus the ergodicity is somewhat fragile near the optimum
value of t..
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Fig. 8. Convergence time for the TBS system in Eq. (3) showing
a fragile minimum of . = 1608 at Q) ~ 0.2

V. Summary and Conclusions

The results of the previous calculations are summarized
in Tab. 1. Based on the fastest convergence of the kurtosis,
the best model (the smallest £.) is the signum thermostatted
system for a = 4 with t. = 159. The MKT system is a close
second with ¢, = 162. It seems reasonable that a bang-bang
controller would be most effective in rapidly achieving ther-
mal equilibrium since the feedback changes sign abruptly
and fully. It might be possible to reduce ¢, for some of the
other cases by introducing an additional parameter and opti-
mizing its value.

Tab. 1. Summary of results

System Eq. te LE
sighum (@ = 2) (1) 522 0.3032
signum (e =4) (1) 159  0.5050

0532 (2) 632 0.1440
TBS(Q =0.1) (3) 4714 0.2804
TBS(Q =0.2) (3) 1608 0.1446

HH 4) 1309 0.0680

BBK (5) 406 0.0796

MKT (6) 162  0.0665

The table also shows the largest Lyapunov exponent (LE)
for each case [12], which does not correlate with ¢, in any ap-
parent way. Furthermore, the entropy, defined as the sum of
the positive Lyapunov exponents, is identical to the LE since
these systems have only one positive Lyapunov exponent.
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