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Mixing Rates of Ergodic Algorithms
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Abstract: In response to the 2024 Snook Prize Problem, this paper compares the mixing rates of six simple numerical
algorithms that produce an ergodic Gaussian distribution of position and momentum for a one-dimensional harmonic os-
cillator. A hundred thousand initial conditions spread uniformly over the constant energy surface are used for each of the
six systems. The time-dependent kurtosis serves as a measure of the mixing rate. By this criterion, the most rapid mixing
occurs for the signum thermostat system with an optimally chosen parameter value.
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I. Introduction

By now a number of three- and four-dimensional dynam-
ical systems are known whose chaotic orbit eventually visits
every point in their phase space and does so with a Gaussian
probability distribution. Such systems are called ‘ergodic’
and model a one-dimensional harmonic oscillator in ther-
mal equilibrium with a heat bath of constant temperature.
In the 2024 Snook Prize Problem, Hoover and Hoover [1]
ask “which of these approaches is best” in the sense of con-
verging most rapidly to the Gibbs’ canonical distribution [2],
which is a Gaussian function for position q and momentum
p. All of the systems employ feedback control of the time-
averaged momentum squared ⟨p2⟩, which can be considered
as a normalized temperature T = ⟨p2⟩. Such a feedback
mechanism is called a ‘thermostat’.

There are many ways to quantify the rate of conver-
gence to a Gaussian distribution f(p) = e−p2/2T /

√
2πT ,

and similarly for f(q). One of the simplest is the kurtosis
K = ⟨p4⟩/⟨p2⟩2, which is a dimensionless number equal to
3 for a Gaussian distribution. It is straightforward to calcu-
late K(t) from a running average of p2 and p4 for an orbit
starting at an arbitrary initial condition (q0, p0) and follow its
convergence to K = 3. Indeed, this is one of several ways to
confirm ergodicity.

Since K(t) will in general depend on the initial condi-
tions, it is necessary to average over a large number of orbits,
here taken as 105 and uniformly distributed over the constant
energy surface q2+p2 = 2T . One can think of these orbits as
a collection of noninteracting particles with a delta function
distribution of total (potential plus kinetic) energy chosen to
be the same as the average energy of the final thermal dis-
tribution. The results are not sensitive to the details of the
initial conditions due to Lyapunov instability. Without loss
of generality and to facilitate comparison, we hereafter take
T = 1.

II. Method

To illustrate the method, consider the arguably simplest
example of an ergodic system, the harmonic oscillator with
a signum thermostat [3] given by

q̇ = p,
ṗ = −q − asgn(ζ)p,
ζ̇ = p2 − 1,

(1)

where sgn(ζ) = ζ/|ζ| is the signum function equal to ±1
depending on the sign of ζ.
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This system is ergodic for a > 1.7 and is typically
taken as a = 2, which corresponds to critical damping
(ṗ = −q− 2p) for ζ > 0 or anti-damping (ṗ = −q+2p) for
ζ < 0. The signum thermostat is an example of a ‘bang-bang
controller’ since it switches abruptly and fully between two
different states, much as does a typical physical thermostat
that controls a furnace or air conditioner. In addition, the os-
cillator dynamics is completely linear except at p = 0. Thus
the behavior is independent of the temperature.

Initial conditions are given by q0 =
√
2 cosϕ and p0 =

=
√
2 sinϕ, where ϕ is a phase angle taken uniformly over

the range 0 < ϕ < 2π. For these initial conditions, the av-
erage kurtosis for the delta function of energy q20 + p20 = 2
at t = 0 is given by K(0) = ⟨sin4 ϕ⟩/⟨sin2 ϕ⟩2 = 1.5. Thus
the asymptotic value of K = 3 is approached from below.
The initial value of the thermostat variable is taken as ζ0 = 0.

Time is measured in units of the inverse angular fre-
quency so that t = 2π corresponds to one period of the un-
damped harmonic oscillator. The equations are integrated us-
ing the fourth-order Runge-Kutta algorithm with an adaptive
step size [4], and the (q, p) values are sampled at intervals of
∆t = 0.001.

III. Results

III. 1. Signum Thermostatted System
The result of the calculation for Eq. (1) with a = 2 is

shown in Fig. 1. Perhaps not surprisingly, the kurtosis of q as
indicated by Kq converges more slowly than does Kp since
the latter is more directly controlled by the thermostat. This
is a general feature of all the cases that follow, although Kp

sometimes overshoots and approaches 3 from above or oscil-
lates about the asymptotic value. As a measure of the conver-
gence time tc, we arbitrarily take the earliest time at which
both Kq and Kp simultaneously fall within 1% of 3.0, which
means a value in the range 2.97 < K < 3.03. The calculated
value for the signum thermostatted oscillator is tc = 522.
All the times are rounded to an integer and have an uncer-
tainty on the order of 1%.

Fig. 1. Kurtosis versus time for the signum thermostatted system in
Eq. (1) with a = 2

III. 2. 0532 System
An older system with a single thermostat variable but

that controls both the second and fourth moments of p is the
0532 system [5] given by

q̇ = p,
ṗ = −q − ζ(0.05p+ 0.32p3),

ζ̇ = 0.05(p2 − 1) + 0.32(p4 − 3p2).
(2)

The result of the calculation for Eq. (2) is shown in Fig. 2.
The calculated convergence time is tc = 632 with a small
overshoot of Kp that converges slowly from above.

Fig. 2. Kurtosis versus time for the 0532 system in Eq. (2)

III. 3. TBS System
The final system with a single thermostat variable is the

one proposed by Tapias, Bravetti, and Sanders (TBS) [6] in
response to the 2016 Snook Prize Problem [7]. It can be
viewed as a variant of Eq. (1) with a more gradual variation
of the damping as given by

q̇ = p,
ṗ = −q − (1/Q) tanh(ζ/2Q)p,

ζ̇ = p2 − 1,
(3)

Fig. 3. Kurtosis versus time for the TBS system in Eq. (3) with
Q = 0.1
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with Q small and positive. For example, TBS assumed Q =
= 0.1 which gives the result in Fig. 3. The calculated con-
vergence is relatively slow with tc = 4714.

III. 4. HH System
Ergodic systems are more easily obtained using two ther-

mostat variables to simultaneously control the second and
fourth moments. One such example is the Hoover-Holian
(HH) system [8] given by

q̇ = p,
ṗ = −q − ζp− ξp3,

ζ̇ = p2 − 1,

ξ̇ = p4 − 3p2.

(4)

The result of the calculation for Eq. (4) is shown in Fig. 4.
Perhaps not surprisingly, the kurtosis Kp converges rapidly
since it is directly controlled by the ξ thermostat variable,
although with large oscillations. The calculated convergence
time is tc = 1309.

III. 5. BBK System
A minor variant of the HH system was proposed by

Bauer, Bulgac, and Kusnezov (BBK) [9, 10] in which the
ζp term is replaced by ζ3p, which generally improves ergod-
icity, giving the system

q̇ = p,
ṗ = −q − ζ3p− ξp3,

ζ̇ = p2 − 1,

ξ̇ = p4 − 3p2.

(5)

The result of the calculation for Eq. (5) is shown in Fig. 5.
The kurtosis Kp also converges rapidly but with large oscil-
lations. The calculated convergence time is tc = 406.

III. 6. MKT System
An alternate approach is the ‘chain thermostat’ in which

one thermostat controls the temperature of a second one.
A simple such case was proposed by Martyna, Klein, and
Tuckerman (MKT) [11] as given by

q̇ = p,
ṗ = −q − ζp,

ζ̇ = p2 − 1− ξζ,

ξ̇ = ζ2 − 1.

(6)

The result of the calculation for Eq. (6) is shown in Fig. 6.
The convergence is rapid but with oscillations in both Kp

and Kq . The calculated convergence time is tc = 162.

IV. Optimization

The signum thermostatted system and the TBS system
have adjustable parameters that were arbitrarily taken as

Fig. 4. Kurtosis versus time for the HH system in Eq. (4)

Fig. 5. Kurtosis versus time for the BBK system in Eq. (5)

Fig. 6. Kurtosis versus time for the MKT system in Eq. (6)

a = 2 and Q = 0.1, respectively. It is natural to ask whether
tc can be further reduced by choosing more optimal values of
the parameters. Fig. 7 shows that the signum case has a min-
imum of tc = 159 at a ≈ 4, and that it is robustly ergodic
over a wide range of the parameter in the vicinity of the op-
timum.
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Fig. 7. Convergence time for the signum thermostatted system in
Eq. (1) showing a robust minimum of tc = 159 at a ≈ 4

Fig. 8 shows that the TBS case has a minimum of tc =
= 1608 at Q ≈ 0.2, an order of magnitude worse than the
optimized signum case. Ergodicity is lost for slightly larger
values of Q where tc is undefined. This result is confirmed
by Poincaré plots at z = 0 that show quasiperiodic islands
amidst the chaotic sea that become quite large for Q > 0.22.
Thus the ergodicity is somewhat fragile near the optimum
value of tc.

Fig. 8. Convergence time for the TBS system in Eq. (3) showing
a fragile minimum of tc = 1608 at Q ≈ 0.2

V. Summary and Conclusions

The results of the previous calculations are summarized
in Tab. 1. Based on the fastest convergence of the kurtosis,
the best model (the smallest tc) is the signum thermostatted
system for a = 4 with tc = 159. The MKT system is a close
second with tc = 162. It seems reasonable that a bang-bang
controller would be most effective in rapidly achieving ther-
mal equilibrium since the feedback changes sign abruptly
and fully. It might be possible to reduce tc for some of the
other cases by introducing an additional parameter and opti-
mizing its value.

Tab. 1. Summary of results

System Eq. tc LE

signum (a = 2) (1) 522 0.3032

signum (a = 4) (1) 159 0.5050

0532 (2) 632 0.1440

TBS (Q = 0.1) (3) 4714 0.2804

TBS (Q = 0.2) (3) 1608 0.1446

HH (4) 1309 0.0680

BBK (5) 406 0.0796

MKT (6) 162 0.0665

The table also shows the largest Lyapunov exponent (LE)
for each case [12], which does not correlate with tc in any ap-
parent way. Furthermore, the entropy, defined as the sum of
the positive Lyapunov exponents, is identical to the LE since
these systems have only one positive Lyapunov exponent.
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