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Abstract. A new three-dimensional chaotic flow is proposed in this pa-
per. The system is the simplest chaotic flow that has a line of equilibria.
The chaotic attractor of the system is very special with two slow and
fast parts. In other words, the dynamic of the system is a combination
of slow and fast states. The unique chaotic attractor of the system is
investigated. Dynamical properties of the system, such as stability of
equilibrium points and bifurcation diagrams, are studied. We believe
that such a system with these special properties is proposed for the
first time in this paper.

1 Introduction

Chaotic flows have a mysterious in the generation of chaotic attractors. For many
years there was a hypothesis that chaotic attractors are related to saddle equilibria
[1,2]. In 2011, a chaotic system without any equilibrium point was proposed [3]. It
was the first example that infracted the old hypothesis. Many other counterexamples
were proposed after that [4,5]. Chaotic systems with a line of equilibria [6,7], chaotic
systems with a surface of equilibria [8], and chaotic flows with a plane of equilibria [9]
were some examples. To understand the chaotic dynamics, various groups of chaotic
attractors have been studied [10,11]. A chaotic system with total amplitude control
has been constructed in [12]. This method has involved an infinite line of equilibria.
Controlling chaotic dynamics has been a hot topic [13].

Attractors can be categorized in hidden or self-excited attractors [14]. Hidden
attractors are not associated with a saddle point equilibria, while self-excited attrac-
tors are [15]. It means that hidden attractors only can be found using numerical
searches [16]. Hidden chaotic attractors has been a hot topic [17,18]. Multistabil-
ity is an important feature of dynamical systems [19,20]. Multistability can cause a
huge shift from one attractor to another just by a small perturbation. Many studies
have been done on chaotic systems with multistability [21,22]. Multistability of a
hyperchaotic system with a line of equilibria has been discussed in [23].

In [24], three conditions were proposed to have a standard in the publication of
chaotic dynamics. The first one was that the system should credibly model some
important unsolved problems in nature. The second one was that the dynamic of
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the system should be previously unobserved. The third condition is that the system
should be simpler than other known examples, which can show the dynamic. In this
paper, the simplest system with a line of equilibria is proposed. The system shows
some special features which are discussed in the following of the paper. In Section 2,
the system is proposed. The chaotic dynamic of the system is discussed in Section 3.
Also, the bifurcation analysis of the system is studied in this section. The paper is
concluded in Section 4.

2 The proposed system

The new three-dimensional chaotic flow is as follows:

ẋ = ay

ẏ = xz (1)

ż = y − z − y2.

The system shows an elegant chaotic attractor in parameter a = 289 and initial
conditions (x0, y0, z0) = (32, 0.1, 0). Three projections of the chaotic attractor and
three-dimensional chaotic attractor of system (1) are shown in Figure 1. Lyapunov
exponents of the chaotic attractor are (0.0633, 0,−1.0633). The probability P at a
distance r from the D-dimensional strange attractor lies within the basin of attraction
can be calculated to find the basin size of the strange attractor [25]. The probability
P of the chaotic attractor of system (1) is P ∼ 130/r1.7 with the limit of large r.
So the basin of this attractor is Class 3 which means it extends to infinity in some
directions while it occupies an ever-decreasing fraction of the state space. The blue
line in Figure 1 shows the projection of the line of equilibria.

3 Dynamical properties of the proposed system

In this section, the dynamical properties of the simplest chaotic flow with a line of
equilibria are investigated.

3.1 Equilibrium points and their stabilities

The first step of investigating the dynamical properties of system (1) is calcu-
lating equilibrium points and their stabilities. Setting zero the right-hand side of
equation (1) depicts that the system has a line of equilibria at Eq = (x, 0, 0).
Projections of the line of equilibria are shown in blue color in Figure 1. To cal-
culate the stability of the line of equilibria, the Jacobian matrix of system (1) at the
equilibrium point is calculated as equation (2).

Jac|Eq =

 0 a 0
0 0 x
0 1 −1

 . (2)

The characteristic equation is λ3 + λ2 − xλ = 0, so parameter a does not have
any effect on the stability of the line of equilibria. Real and Imaginary parts of
Eigenvalues of system (1) for each point of the line of equilibria are shown in Figure 2
in the interval x ∈ [−200, 200]. The real part of Eigenvalues shows that the line of
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Fig. 1. Projections of chaotic attractor of system (1) in parameter a = 289 and initial
conditions (x0, y0, z0) = (32, 0.1, 0). (a) In X−Y−Z space; (b) in X−Y plane; (c) in X−Z
plane; (d) in Y−Z plane.

Fig. 2. Eigenvalues of system (1) at the origin. (a) Real part of eigenvalues. (b) Imaginary
part of eigenvalues.
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equilibria is unstable in positive x. However, the stability of the line of equilibria
in negative x cannot be determined using the Eigenvalues. Numerical studies show
that the line of equilibria is stable in negative values of x since there are some initial
conditions which make the dynamic to be attracted to the line of equilibria. So the
system is multistable with two equilibrium point and chaotic dynamics. The stable
part of the line of equilibria is spiral. Every dynamics of system (1) is dissipative
since trac(Jac) = −1, which is not dependent on states or parameter.

3.2 The unique dynamic of the chaotic attractor

The chaotic dynamic of the system has a particular property. Three time series of the
states x, y, and z variables for the chaotic attractor are shown in part a of Figure 3
with black, cyan, and magenta color, respectively. The chaotic dynamic of system (1)
is hidden since it has a line of equilibria. The system has a unique property, which
can be seen in the time series of the chaotic attractor of the system. Variable z plays
the rule of a switch variable in this dynamic. Parts b and c of Figure 3 shows a
zoomed view of time series in two parts of a cycle of variable z: positive part and
negative part. For positive z, x and y grow exponentially. If we consider a positive
constant value of variable z (e.g., z = 0.06), the dynamic of two coupled x and
y are shown in Figure 4. After that, they force z to become negative because of
the y2 term, and the two variables x and y then form a harmonic oscillator with a
frequency given by

√
−az. If we consider a negative constant value of variable z (e.g.,

z = −0.06), the dynamic of two coupled variables x and y are shown in Figure 5. The
variable z is a kind of relaxation oscillator that parametrically drives the frequency
of the x, y sinusoidal oscillator. Figure 3 shows that increasing the variable z causes
a downward sweep in frequency. In other words, the slow variable z plays the rule of
control parameter, which drives the oscillation of fast variables x and y.

To better understand the dynamics of the system in two positive and negative
parts of the variable z, consider the simplified system as equation (3).

ẋ = ay
ẏ = z∗x

. (3)

The system has an equilibrium point in origin. Jacobian matrix of the system is,

Jac =
[

0 a
z∗ 0

]
. (4)

The characteristic equation of the system is λ2 − az∗ = 0. So the system has two
Eigenvalues at λ = ±

√
az∗. In this study, a = 289 and z∗ can be positive or negative.

In positive z∗, the system has one positive and one negative Eigenvalue, so the origin is
unstable. In negative z∗, there are two pure imaginary Eigenvalues as λ = ±i

√
−az∗.

So origin is a center point, which means the dynamic of the system is a cycle, and the
time series are harmonic oscillator with frequency

√
−az∗. In other words, system (3)

can be solved as follows:

dx

dy
=

ay

z∗x
→ z∗

(
x2 − x2

0

)
= a

(
y2 − y2

0

)
→ z∗x2 − ay2 = z∗x2

0 − ay2
0 . (5)

If z∗ is negative, then the solution is ellipsoid, and if z∗ is positive, the solution is
hyperbolic. So the solution is a bounded harmonic oscillator when z∗ is negative,
and the solution is unbounded when z∗ is positive. Figure 4 shows the time series
and state-space of system (3) in z∗ = 0.06. The dynamic of the system exponentially
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Fig. 3. (a) Three time series of the states X,Y , and Z variables for the chaotic attractor
in black, cyan, and magenta color respectively; A zoomed view of time series in two parts
of a cycle of variable Z; (b) in positive part; (c) in negative part.
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Fig. 4. (a) Time series and (b) state space of system (3) in z∗ = 0.06.

Fig. 5. (a) Time series and (b) state space of system (3) in z∗ = −0.06.

Fig. 6. The absolute value of FFT of (a) variable X; (b) variable Y ; (c) variable Z in dB.

goes to infinity in this condition. Figure 5 depicts time series and state-space of the
oscillatory dynamic of system (3) in z∗ = −0.06.

The speed of variables can be compared using the fast Fourier transform (FFT)
of the time series [26]. Figure 6 shows the absolute values of the FFT of variables.
It can be seen that variables X and Y have power in much higher frequency than
variable z.

To study the generation of chaotic attractors, the phase of variables is studied.
Hilbert transform is used to extract the analytical signal of each variable, and then its
phase is extracted as the spontaneous phase of each signal [27]. In part a of Figure 7
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Fig. 7. (a) The logarithm of the spontaneous phase of X, Y and Z signals. (b) The phase
of variable X in the zero cross of variable Z.

the logarithm of the spontaneous phase of x, y, and z signals is shown in black, cyan,
and magenta color, respectively. The phase of fast variable x is extracted in the zero
cross of slow variable z. Part b of Figure 7 shows the phase of fast variable x in the
zero cross of variable z, which is calculated from the last 500 s of the time series of
variable x when it is run for 1000 s. It is not clear where the chaos comes from, but it
probably is related to the phase of the fast oscillator when the slow oscillator crosses
zero. It can be seen that the phase does not have any regular pattern.

3.3 Bifurcation analysis of the proposed system

Dynamical properties of the system are investigated using the bifurcation dia-
gram. Figure 8 shows Lyapunov exponents, Kaplan–Yorke dimension, and bifurca-
tion diagram of system (1) for changing parameter a and constant initial conditions
(x0, y0, z0) = (32, 0.1, 0). Before parameter a = 218.4, the variable x is unbounded.
After parameter 218.4, a chaotic dynamic is generated which does not have any
upper band for the parameter a. So in large values of parameter a, the dynamic of
the system is chaotic and increasing the value of parameter a causes increase in the
maximum peak of variable x. It appears there are many narrow periodic windows
where the maximum Lyapunov exponent goes to zero.

4 Conclusion

In this paper, the simplest chaotic flow with a line of equilibria was proposed. Various
studies have been done to understand the reason for generating the particular chaotic
attractor of the proposed system. The stability of the line of equilibria was studied.
The results showed that half of the line of equilibria was unstable while the other half
was stable. Studying the chaotic attractor presented the switching rule of variable
Z. This variable has switched the dynamic between an oscillator and an unstable
dynamic. The FFT and Hilbert transform have been used to investigate the chaotic
dynamic of the proposed system. Bifurcation analysis has shown that the proposed
system had a chaotic dynamic for parameter a larger than a threshold.
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Fig. 8. (a) Lyapunov exponents, (b) Kaplan–Yorke dimension, and (c) bifurcation dia-
gram of system (1) for changing parameter a and constant initial conditions (x0, y0, z0) =
(32, 0.1, 0).
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