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This paper describes a class of third-order explicit autonomous differential equations, called jerk 
equations, with quadratic nonlinearities that can generate a catalog of nine elementary dissipative 
chaotic flows with the unusual feature of having a single non-hyperbolic equilibrium. They represent an 
interesting sub-class of dynamical systems that can exhibit many major features of regular and chaotic 
motion. The proposed systems are investigated through numerical simulations and theoretical analysis. 
For these jerk dynamical systems, a certain amount of nonlinearity is sufficient to produce chaos through 
a sequence of period-doubling bifurcations.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In the investigation of chaos and its applications, it is important 
to generate new chaotic systems or to enhance complex dynam-
ics and topological structure based on existing chaotic attractors. 
For a generic three-dimensional smooth quadratic autonomous sys-
tem, Sprott found by exhaustive computer search nineteen simple 
chaotic flows with no more than three equilibria [1].

In the continuous case, some questions about periodic homo-
clinic and heteroclinic orbits and classification of chaos are related 
to questions about the dynamics of some chaotic systems. It is 
concerned with the classification and determination of the type 
of chaos observed experimentally, proved analytically, or tested 
numerically in theory and practice. One of the commonly agreed-
upon analytic criteria for proving chaos in autonomous systems is 
the existence of Smale horseshoes and the Shilnikov condition [2]. 
Therefore, there exist four kinds of chaos: homoclinic chaos, hete-
roclinic chaos, a combination of homoclinic and heteroclinic chaos, 
and chaos without homoclinic orbits or heteroclinic orbits [3].
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Recently, Leonov et al. [4–6] have proposed another type of at-
tractor, called a “hidden attractor” whose basin of attraction does 
not contain neighborhoods of any equilibria and thus cannot be 
computed with the help of the standard procedure for anterior 
types. Therefore, there has been increasing interest in some un-
usual examples of three-dimensional autonomous quadratic sys-
tems such as those having no equilibria [7,8], stable equilibria 
[9–12], or coexisting attractors [13], and in four-dimensional au-
tonomous quadratic systems with no equilibria [14–17].

However, there is little knowledge about the characteristics of 
chaotic flows with a single non-hyperbolic equilibrium. Such sys-
tems can have neither homoclinic nor heteroclinic orbits, and thus 
the Shilnikov method cannot be used to verify the chaos. A non-
hyperbolic equilibrium point has one or more eigenvalues with 
a zero real part. There are eleven such types in three-dimensional 
flows. Six of these have all eigenvalues real and are of the form 
(0, −, −), (+, 0, −), (+, +, 0), (0, 0, −), (+, 0, 0), and (0, 0, 0). Five 
have one real and a complex conjugate pair of eigenvalues, only 
two of which have nonzero real eigenvalues. The stability of those 
systems that do not have an eigenvalue with a positive real part 
cannot be determined from the eigenvalues and requires a nonlin-
ear analysis.

Relatively few such examples have been previously reported. 
The oldest and best-known is the Sprott E system [1], which has 
a single equilibrium point with one real negative eigenvalue and 
a complex conjugate pair with zero real parts. Recently, three 
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other dissipative examples have been reported. One is the Chen–
Zhou system [18], which has a single equilibrium point with 
one zero eigenvalue and a complex conjugate pair with positive 
real parts. Another is the system proposed by Yang et al. [19], 
which has a single equilibrium point with one negative real eigen-
value and a complex conjugate pair with zero real parts. Very 
recently, Sprott [20] reported a similar example as well as one 
with one positive real eigenvalue and a complex conjugate pair 
with zero real parts. Here we identify the most elementary func-
tional forms of the other eight types of three-dimensional dynam-
ical systems with a single non-hyperbolic equilibrium that have 
a chaotic attractor thus demonstrating that chaos can exist in 
three-dimensional systems with all eleven types of non-hyperbolic 
equilibria.

2. The main results

In the investigation of chaos and its applications, it is useful 
to generate new chaotic systems with only one equilibrium point. 
Thus it is natural to ask whether chaotic attractors can exist in 
systems with only one non-hyperbolic equilibrium for each of the 
eleven types that can occur in such systems where the traditional 
Shilnikov theorem is not applicable.

The two cases of systems that have a complex conjugate pair of 
eigenvalues of the form ±iω and a real nonzero eigenvalue (neg-
ative or positive) are given in [20]. Therefore, we only consider 
the remaining nine types where at least one eigenvalue is real and 
zero. A system that admits a wide variety of chaotic solutions is 
the jerk system{ ẋ = y

ẏ = z
ż = f (x, y, z),

(1)

where f (x, y, z) = a1x + a2 y + a3z + a4x2 + a5 y2 + a6z2 + a7xy +
a8xz + a9 yz + a.

One can see that when

a4 = 0,

or

a4 �= 0,a = a2
1

4a4
,

the system (1) has only one equilibrium. The case with a4 = 0 has 
been examined by Molai et al. [12]. Here, we consider the case 

a4 �= 0, a = a2
1

4a4
and obtain some novel results, which have not 

been previously reported.

Under the linear transformation x → x − a1

2a4
, the lone equilib-

rium is moved to the origin O (0, 0, 0), and system (1) becomes⎧⎪⎪⎨
⎪⎪⎩

ẋ = y
ẏ = z

ż = a2 − a1a7

2a4
y + a3 − a1a8

2a4
z + a4x2 + a5 y2 + a6z2

+ a7xy + a8xz + a9 yz.

(2)

Rearranging b2 = a2 − a1a7

2a4
, b3 = a3 − a1a8

2a4
, and bi = ai (i = 4,

5, 6, 7, 8, 9) gives{ ẋ = y
ẏ = z
ż = b2 y + b3z + b4x2 + a6z2 + b5 y2 + b7xy + b8xz + b9 yz.

(3)

In the interest of simplicity, we set a6 = a9 = 0. The goal of this 
paper is to give chaotic examples of the equilibrium types that 
have not been previously reported using the system
{ ẋ = y
ẏ = z
ż = b2 y + b3z + b4x2 + b5 y2 + b7xy + b8xz,

(4)

where b2, b3, b4, b5, b7, b8 ∈ R .
A non-hyperbolic equilibrium at the origin O (0, 0, 0) has eigen-

values λ that satisfy

λ(λ2 − b3λ − b2) = 0 (5)

whose solutions are λ = 0 and λ =
(

b3 ±
√

b2
3 + 4b2

)
/2. Adjusting 

the parameters b2 and b3 gives the following four cases:
Case 1: Condition: b2

3 + 4b2 < 0
In this case, eigenvalues at the one equilibrium O (0, 0, 0) are 

(0, σ ± iω), where σ ∈ R, ω �= 0. There are three candidates for 
these types of equilibria: σ > 0, σ < 0, or σ = 0.
Case 2: Condition: b2

3 + 4b2 ≥ 0
In this case, eigenvalues at the one equilibrium O (0, 0, 0) are 

(0, μ, ν), where μν �= 0. There are three candidates for these types 
of equilibria: μ > 0, ν > 0, μ < 0, ν < 0 or μν < 0.
Case 3: Condition: b3 �= 0, b2 = 0

In this case, eigenvalues at the one equilibrium O (0, 0, 0) are 
(0, 0, γ ), where γ �= 0. There are two candidates for these types of 
equilibria: γ < 0 or γ > 0.
Case 4: Condition: b3 = 0, b2 = 0

In this case, eigenvalues at the one equilibrium O (0, 0, 0) are 
(0, 0, 0). There is only one such type of equilibrium.

An exhaustive computer search was done considering many 
thousands of combinations of the coefficients and initial condi-
tions subject to the constraints in Eq. (5), seeking cases for which 
the largest Lyapunov exponent [21–23] is greater than 0.001. Ta-
ble 1 shows examples of each of the nine types where at least 
one eigenvalue is real and zero. The search attempted to iden-
tify the simplest example of each case. Thus we believe we have 
identified elementary forms of chaotic flows with quadratic non-
linearities that have a single non-hyperbolic equilibrium for each 
of the nine types.

All nine of the resulting attractors are shown projected onto the 
xy-plane in Fig. 1. The Lyapunov spectra and initial conditions near 
the attractor are given in Table 1. All the cases appear to approach 
chaos through a succession of period-doubling limit cycles. For ex-
ample, Fig. 2 shows the local maximum values of x for Model B 
as the parameter b5 = d ∈ [1, 1.8] is varied with the other param-
eters fixed at b2 = −1, b3 = −1, b4 = −4, b7 = 0, b8 = −1. The plot 
shows a period-doubling Feigenbaum-tree.

When d exceeds a critical value of about 1.210, the attractor of 
Model B undergoes a period-doubling bifurcation which converts 
a period-1 limit cycle to a period-2 limit cycle. As d is further in-
creased, a second bifurcation converts the period-2 attractor to a 
period-4 attractor when d = 1.474. The third bifurcation converts 
the period-4 to attractor to a period-8 attractor when a = 1.535. 
Finally, if we look carefully, we can see a hint of a period-8 to 
period-16 bifurcation, just before the start of the solid red chaotic 
region.

From the observed bifurcations, a scaling law is obtained in the 
form:

δ = 1.474 − 1.210

1.535 − 1.474
= 4.328.

Therefore, δ is a mere 7.3% lower than Feigenbaum’s constant. 
Although Model B in this parameter region has a single non-
hyperbolic equilibrium, the existence of a universal ratio character-
izes the transition to chaos via period-doubling bifurcations, and 
this behavior is typical of the other systems.

In addition to the nine cases listed in the table, dozens of ad-
ditional cases were found that are extensions of these cases with 
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Fig. 1. State space diagram of the cases in Table 1 projected onto the xy-plane.

Table 1
Nine simple chaotic systems with a single non-hyperbolic equilibrium at (0, 0, 0).

Model System Eigenvalues Lyapunov exponents (x0, y0, z0)

A ẋ = y λ1 = 0 L1 = 0.1127 (−4.5,−3,−2.5)

ẏ = z λ2,3 = 2.25 ± 1.3919i L2 = 0.0000
ż = −7y + 4.5z + x2 + 3xz L3 = −0.7174

B ẋ = y λ1 = 0 L1 = 0.1476 (6.38,4.22,−3.15)

ẏ = z λ2,3 = −0.5 ± 0.86603i L2 = 0.0000
ż = −y − z − 4x2 + 3y2 − xz L3 = −2.7904

C ẋ = y λ1 = 0 L1 = 0.1028 (−3.19,1.38,1.43)

ẏ = z λ2,3 = ±i L2 = 0.0000
ż = −y + x2 − 3y2 + xz L3 = −1.3193

D ẋ = y λ1 = 0 L1 = 0.1117 (−1.74,1.59,−7.07)

ẏ = z λ2,3 = 3 L2 = 0.0000
ż = −9y + 6z + x2 + 3xz L3 = −2.5959

E ẋ = y λ1 = −0.7236 L1 = 0.0684 (3.90,−2.16,−12.42)

ẏ = z λ2 = −0.2764 L2 = 0.0000
ż = −0.2y − z − 2x2 + 3y2 − xz λ3 = 0 L3 = −2.1072

F ẋ = y λ1 = −0.2361 L1 = 0.1629 (1.58,−1.22,10.35)

ẏ = z λ2 = 0 L2 = 0.0000
ż = y + 4z − x2 − 3xy − xz λ3 = 4.2361 L3 = −0.7119

G ẋ = y λ1,2 = 0 L1 = 0.0389 (−1.55,3.41,−5.37)

ẏ = z λ3 = −1 L2 = 0.0000
ż = −z + x2 − y2 + 0.6xz L3 = −3.1208

H ẋ = y λ1,2 = 0 L1 = 0.1503 (−4.5,−3,−2.5)

ẏ = z λ3 = 0.5 L2 = 0.0000
ż = 0.5z + 7x2 + 4.5xy − 2y2 + xz L3 = −2.3917

I ẋ = y λ1,2,3 = 0 L1 = 0.1575 (−8.54,−3.85,2.32)

ẏ = z L2 = 0.0000
ż = 9x2 + 4.5xy − 2.5y2 + xz L3 = −2.7936
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Fig. 2. Bifurcation diagram of model B showing a period-doubling route to chaos.

additional terms. We believe we have identified most if not all of 
the elementary forms of three-dimensional chaotic systems with 
quadratic nonlinearities that have a single non-hyperbolic equilib-
rium.

3. Conclusion

In this paper, systems of autonomous ordinary differential equa-
tions of the form of Eq. (1) admit chaotic solutions with chaotic 
attractors in the presence of a single non-hyperbolic equilibrium 
point for each of the nine types as shown in Table 1. The re-
sults support the idea that any dynamic not explicitly forbidden by 
some theorem will occur in an appropriately designed dynamical 
system, and it answers the question whether chaotic attractors can 
occur in systems with all the types of non-hyperbolic equilibrium 
points that can occur in three dimensions. There are still abundant 
and complex dynamical behaviors and topological structures of the 
new systems that should be completely and thoroughly investi-
gated and exploited, such as finding new criteria for the existence 
of chaos in systems with no homoclinic or heteroclinic orbits. It is 
expected that more detailed theoretical analysis and simulation in-
vestigations about these systems will be provided in a forthcoming 
study.
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