
17 December 2001

Physics Letters A 291 (2001) 385–388
www.elsevier.com/locate/pla

Simplest driven conservative chaotic oscillator
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Abstract

Sinusoidally driven oscillator equations with a power-law nonlinearity are investigated computationally to determine the
driving frequency which produces the “most chaos”, i.e., the maximized largest Lyapunov exponent. It is argued that the
“simplest” such driven chaotic oscillator has a cubic nonlinearityx3.  2001 Elsevier Science B.V. All rights reserved.
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The phenomenon of chaos has attracted widespread
attention amongst mathematicians, physicists and en-
gineers. Whilst many researchers analyze compli-
cated, physically motivated configurations, there is
also a need to investigate simple equations which may
capture the essence of chaos in a less involved setting,
thereby aiding the understanding of essential charac-
teristics. A wide-ranging programme of searching for
simple chaotic three-dimensional autonomous systems
of differential equations, commenced by Sprott [1],
and also for simple chaotic third-order ordinary differ-
ential equations (“jerk equations”), instigated by Got-
tlieb [2], has been sustained by Sprott, Linz and others
([3] and references therein).

Nonautonomous, i.e., driven, systems are another
widely studied class which provide a wealth of chaotic
situations (e.g., [4] and references therein). This Letter
investigates algebraically simple examples of sinusoi-
dally driven conservative chaotic flows.
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A “simple” equation should if possible have only
one nonlinear term and only one essential control pa-
rameter. For driven systems, this constraint effectively
limits the nonlinear term to being a power of the de-
pendent variablex or variants thereof, and precludes
a damping term. Thus these flows will be conserva-
tive. In a general driven oscillator equation of the form
ẍ + αxp = β sinωt , two of the three parametersα, β ,
ω may be eliminated through a change of scales ofx

and t . To standardize the equations, we shall always
set the parametersα = 1 andβ = 1, and regard the
driving angular frequencyω as the control parameter.
Some earlier related investigations, such as those de-
scribed in [4], setω = 1, and regardedβ as the con-
trol parameter. Our standard equation, which preserves
parity and allows for noninteger total powersp, will be

(1)d2x/dt2 + sgn(x)|x|p = sinωt.

The sgn(x) term makes the restoring force “centre-
seeking” so that the trajectories are bounded. This
equation is related to the “amplitude” equation

(2)d2X/dT 2 + sgn(X)|X|p = β sinT
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by the dependent variable scale transformationX =
ω2/(1−p)x and the independent variable scale trans-
formation T = ωt , with β = ω2p/(1−p). Conversely,
x = β−1/pX andt = β(p−1)/2pT with ω = β(1−p)/2p.

Lyapunov exponents are commonly used in the de-
finition of dynamical chaos. It has been shown [5]
that, under (invertible) transformations of the depen-
dent variable, the Lyapunov exponents are invariant.
However, since these exponents arise essentially in an
exponential time dependence of the form exp(λt), they
obviously change if a time variable scale transforma-
tion is made, inversely as the scale. Thus the Lya-
punov exponentsΛ for the above “amplitude” equa-
tion (2) and those of our standard “frequency” equa-
tion (1) are simply related by the relationλt = ΛT ,
i.e., byΛ = ω−1λ or λ = β(1−p)/2pΛ. Numerical ex-
periments on the two equations can therefore be di-
rectly related. Moreover, chaos in one of Eqs. (1), (2)
will be accompanied by chaos in the other, with cor-
responding largest positive Lyapunov exponents re-
lated as above. Lyapunov exponents here (basee) were
computed using the method of Wolf et al. [6].

The simplest driven chaotic system would then
be Eq. (1) with the lowest parity-conserving integer
powerp = 3, which corresponds to the simplest non-
linearC∞ functionx3 (i.e., having all derivatives con-
tinuous). This is the dissipationless limit of the Duffing
oscillator which, including the damping, was investi-
gated for instance by Ueda [7]. It would correspond
physically to a mass attached to the middle of an ini-
tially unstretched vertical wire fixed at the ends and
driven with a sinusoidal horizontal force [8]. A plot
of the largest Lyapunov exponent versus the angular
frequency parameterω for Eq. (1) with p = 3 (for
initial conditionsx = dx/dt = 0) is given in Fig. 1.
The “simplest, most chaotic” equation can then be
found by searching for the value of control parame-
ter ω which maximizes the largest Lyapunov expo-
nent, forp = 3. This exponent has value 0.097 and
occurs forω = 1.88 in Eq. (1). A variant of simu-
lated annealing was used to find this value. For this
p = 3, ω = 1.88 case, a Poincaré section in thex–
dx/dt plane forωt mod2π = 0 for various initial con-
ditions is depicted in Fig. 2. The prevalence of chaos
is evident.

Other values ofp also produce interesting re-
sults. Some cases are difficult to optimize since there
are rapid variations of Lyapunov exponent with fre-

Fig. 1. Largest Lyapunov exponentλ versus driving angular fre-
quencyω for Eq. (1) withp = 3.

Fig. 2. Poincaré section in thex–dx/dt plane forp = 3, ω = 1.88
case of Eq. (1), forωt mod 2π = 0.

quency and the calculated Lyapunov exponent con-
verges slowly. The casep = 5 is shown in Fig. 3.
Table 1 shows values of the maximized largest Lya-
punov exponent and corresponding angular frequency
for some representative values ofp (for initial con-
ditions x = dx/dt = 0). It appears that, forp > 1,
these quantities increase asp increases. The largest
Lyapunov exponent, if positive, for arbitraryp andω

between 0 and 10 is shown on a grey scale in Fig. 4,
for initial conditionsx = dx/dt = 0. In this plotp is
incremented in units of 1/64 andω is incremented in
units of 1/48. Note that forp = 1 the field is white,
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Fig. 3. As for Fig. 1, but withp = 5.

Table 1
Maximized largest Lyapunov exponentλ and corresponding angular
frequency parameterω for equations of type (1) for variousp (initial
conditionsx = dx/dt = 0)

p λ ω

1/2 0.123 5.57

2 0.051 1.61

3 0.097 1.88

4 0.139 2.00

5 0.163 2.19

7 0.198 2.32

9 0.230 2.58

11 0.242 2.79

corresponding to the conventional linear driven simple
harmonic oscillator for which there is no chaos. An in-
teresting feature is the increasingly chaotic behaviour
asp approaches zero. Althoughp is decreasing, the
nonlinearity, as measured by the divergence from the
linear value 1, is actually increasing. Table 1 includes
the results of computations forp = 1/2. For the ac-
tual casep = 0, corresponding to a sinusoidally driven
oscillator with an intrinsic force−sgn(x), no chaotic
solutions were found.

Numerical experiments also show that the form of
the periodic drive is not critical. For example, a square
wave of similar frequency also produces chaos in these
systems.

Fig. 4. Largest positive Lyapunov exponent for arbitraryp andω in
Eq. (1), shown on a grey scale—blacker tone for larger exponent.

It would be of interest to find the “most chaotic,
simple” equation, by searching amongst the powers
of p in Eq. (1) to find the equation and the corre-
sponding value ofω with the greatest value for the
maximized largest Lyapunov exponent. Such an equa-
tion, controlled by the single parameterω, could pro-
vide the clearest demonstration of chaos. However, as
mentioned above, computations, as summarized in Ta-
ble 1 and reflected in Fig. 4, indicate that the maxi-
mized largest Lyapunov exponent, forp > 1, simply
increases asp increases. Such a search may therefore
be illusory. The idea is nevertheless mentioned here,
as it may be relevant to other classes of chaotic flows
specified by other criteria.

Other, more complicated, nonlinearities may also be
investigated to find parameter values that maximize
the largest Lyapunov exponent. Some results may be
found in [9].
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