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Abstract

Sinusoidally driven oscillator equations with a power-law nonlinearity are investigated computationally to determine the
driving frequency which produces the “most chaos”, i.e., the maximized largest Lyapunov exponent. It is argued that the
“simplest” such driven chaotic oscillator has a cubic nonIineaﬁLyD 2001 Elsevier Science B.V. All rights reserved.
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The phenomenon of chaos has attracted widespread A “simple” equation should if possible have only
attention amongst mathematicians, physicists and en-one nonlinear term and only one essential control pa-
gineers. Whilst many researchers analyze compli- rameter. For driven systems, this constraint effectively
cated, physically motivated configurations, there is limits the nonlinear term to being a power of the de-
also a need to investigate simple equations which may pendent variable or variants thereof, and precludes
capture the essence of chaos in a less involved setting,a damping term. Thus these flows will be conserva-
thereby aiding the understanding of essential charac-tive. In a general driven oscillator equation of the form
teristics. A wide-ranging programme of searching for X + ax” = g sinwt, two of the three parametess 3,
simple chaotic three-dimensional autonomous systemsw may be eliminated through a change of scales of
of differential equations, commenced by Sprott [1], andt. To standardize the equations, we shall always
and also for simple chaotic third-order ordinary differ- set the parameteks = 1 andg = 1, and regard the
ential equations (“jerk equations”), instigated by Got- driving angular frequency as the control parameter.
tlieb [2], has been sustained by Sprott, Linz and others Some earlier related investigations, such as those de-
([3] and references therein). scribed in [4], sew = 1, and regarde@ as the con-

Nonautonomous, i.e., driven, systems are another trol parameter. Our standard equation, which preserves
widely studied class which provide a wealth of chaotic parity and allows for noninteger total powerswill be
;ltuatlpns (e.g., [4] and refe_rences therein). Th|s_ Lettgr dx Jdi? + sgrio)|x|P = sinar. 1)
investigates algebraically simple examples of sinusoi-
dally driven conservative chaotic flows. The sgrix) term makes the restoring force “centre-

seeking” so that the trajectories are bounded. This

_ equation is related to the “amplitude” equation
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by the dependent variable scale transformatioe-
w?(1=P)x and the independent variable scale trans-
formation T = wt, with B = w??/A=P)_ Conversely,

x =B~ YrX andr = pP—D/2PT with w = p1-P)/2p,

Lyapunov exponents are commonly used in the de-
finition of dynamical chaos. It has been shown [5]
that, under (invertible) transformations of the depen-
dent variable, the Lyapunov exponents are invariant.
However, since these exponents arise essentially in an
exponential time dependence of the form @xp, they
obviously change if a time variable scale transforma-
tion is made, inversely as the scale. Thus the Lya-
punov exponentsi for the above “amplitude” equa-
tion (2) and those of our standard “frequency” equa-
tion (1) are simply related by the relation = AT,

i.e., byA =w1r or A = p1-P)/2r A Numerical ex-
periments on the two equations can therefore be di-
rectly related. Moreover, chaos in one of Egs. (1), (2)
will be accompanied by chaos in the other, with cor-
responding largest positive Lyapunov exponents re-
lated as above. Lyapunov exponents here (bpaere
computed using the method of Wolf et al. [6].

The simplest driven chaotic system would then
be Eqg. (1) with the lowest parity-conserving integer
power p = 3, which corresponds to the simplest non-
linearC® functionx? (i.e., having all derivatives con-
tinuous). This is the dissipationless limit of the Duffing
oscillator which, including the damping, was investi-
gated for instance by Ueda [7]. It would correspond
physically to a mass attached to the middle of an ini-
tially unstretched vertical wire fixed at the ends and
driven with a sinusoidal horizontal force [8]. A plot
of the largest Lyapunov exponent versus the angular
frequency parametep for Eq. (1) with p = 3 (for
initial conditionsx = dx/dt = 0) is given in Fig. 1.
The “simplest, most chaotic” equation can then be
found by searching for the value of control parame-
ter o which maximizes the largest Lyapunov expo-
nent, for p = 3. This exponent has value 0.097 and
occurs forw = 1.88 in Eq. (1). A variant of simu-
lated annealing was used to find this value. For this
p = 3, o = 1.88 case, a Poincaré section in the
dx /dt plane forwr mod 2r = 0 for various initial con-
ditions is depicted in Fig. 2. The prevalence of chaos
is evident.

Other values ofp also produce interesting re-
sults. Some cases are difficult to optimize since there
are rapid variations of Lyapunov exponent with fre-
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Fig. 1. Largest Lyapunov exponentversus driving angular fre-
guencyw for Eq. (1) withp = 3.

Fig. 2. Poincaré section in the-dx/dt plane forp =3, w = 1.88
case of Eq. (1), fowtr mod 2r = 0.

quency and the calculated Lyapunov exponent con-
verges slowly. The casp = 5 is shown in Fig. 3.
Table 1 shows values of the maximized largest Lya-
punov exponent and corresponding angular frequency
for some representative values pf(for initial con-
ditions x = dx/dt = 0). It appears that, fop > 1,
these quantities increase asincreases. The largest
Lyapunov exponent, if positive, for arbitrapyandw
between 0 and 10 is shown on a grey scale in Fig. 4,
for initial conditionsx = dx/dt = 0. In this plotp is
incremented in units of /64 andw is incremented in
units of 1/48. Note that forp = 1 the field is white,
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Fig. 4. Largest positive Lyapunov exponent for arbitrargndw in
Fig. 3. As for Fig. 1, but withp = 5. Eq. (1), shown on a grey scale—blacker tone for larger exponent.
Table 1
Maximized largest Lyapunov exponenand corresponding angular It would be of interest to find the “most chaotic,

frequency parametes for equations of type (1) for varioys (initial

conditionsx = dx /d1 = 0) simple” equation, by searching amongst the powers

of p in Eqg. (1) to find the equation and the corre-

P » @ sponding value ofv with the greatest value for the
1/2 0.123 5.57 maximized largest Lyapunov exponent. Such an equa-
2 0.051 1.61 tion, controlled by the single parameter could pro-
3 0.097 1.88 vide the clearest demonstration of chaos. However, as
mentioned above, computations, as summarized in Ta-
4 0.139 200 ble 1 and reflected in Fig. 4, indicate that the maxi-
5 0.163 2.19 mized largest Lyapunov exponent, fpr> 1, simply
7 0.198 2.32 increases ap increases. Such a search may therefore
9 0.230 258 be illusory. The idea is nevertheless mentioned here,
as it may be relevant to other classes of chaotic flows
11 0.242 2.79

specified by other criteria.

Other, more complicated, nonlinearities may also be
investigated to find parameter values that maximize
corresponding to the conventional linear driven simple the largest Lyapunov exponent. Some results may be
harmonic oscillator for which there is no chaos. Anin-  found in [9].
teresting feature is the increasingly chaotic behaviour
as p approaches zero. Although is decreasing, the
nonlinearity, as measured by the divergence from the pgterences
linear value 1, is actually increasing. Table 1 includes
the results of computation_s for = 1_/2. Fpr the ac- 1] J.C. Sprott, Phys. Lett. A 173 (1993) 21.
tual casep = 0, corresponding to a sinusoidally driven 2] H.p.w. Gottlieb, Am. J. Phys. 64 (1996) 525.
oscillator with an intrinsic force- sgnx), no chaotic [3] J.C. Sprott, S.J. Linz, Int. J. Chaos Theory Appl. 5 (2000) 3.
solutions were found. [4] J.M.T. Thompson, H.B. Stewart, Nonlinear Dynamics and

Numerical experiments also show that the form of __ Chaos, Wiley, Chichester, 1987. _

L L " [5] R. Eichhorn, S.J. Linz, P. Hanggi, Chaos Solitons Fractals 12
the periodic drive is not critical. For example, a square (2001) 1377
wave of similar frequency also produces chaos in these [g] A. wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16

systems. (1985) 285.
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