Physics 104 Exam 1

Name		ID	#
Section #	TA Name		

Fill in your name, student ID # (not your social security #), and section # on the scantron sheet. Fill in the letters given for the first 5 questions on the scantron sheet. These letters determine which version of the test you took and are IMPORTANT to get right.

- 1. C
- 2. B
- 3. E
- 4. A
- 5. D
- 6. Two point charges, separated by 1.5 cm, have charges of +2.0 μ C and -4.0 μ C, respectively. Suppose you determine that 10 field lines radiate out from the +2.0 μ C charge. If so, what might be inferred about the -4.0 μ C charge with respect to field lines?
 - a. 20 radiate in
 - b. 10 radiate in
 - c. 5 radiate out
 - d. 20 radiate out
 - e. 10 radiate out
- 7. An electron with a charge of -1.6×10^{-19} C is moving in an electric field of 400 N/C. What force does the electron experience?
 - a. $2.3 \times 10^{-22} \text{ N}$
 - b. $1.9 \times 10^{-21} \text{ N}$
 - c. 6.4×10^{-17} N
 - d. $4.9 \times 10^{-17} \text{ N}$
 - e. $3.2 \times 10^{-17} \text{ N}$
- 8. You have a hollow metallic sphere with charge -5.0 μ C and radius 5.0 cm. You insert a +10 μ C charge at the center of the sphere through a hole in the surface. What charge now rests on the outer surface of the sphere?
 - a. $+15 \mu C$
 - b. $-5 \mu C$
 - c. $+10 \mu C$
 - d. +5 μC
 - $e. -10 \mu C$

- 9. You wish to use a positively charged rod to charge a ball by induction. Which statement is correct?
 - a. The ball must be an insulator that is connected temporarily to the ground.
 - b. The ball is charged as the area of contact between the two increases.
 - c. The ball must be a conductor.
 - d. The charge on the ball will be positive.
 - e. The ball must be an insulator.
- 10. The beam of electrons that hits the screen of an oscilloscope is moved up and down by:
 - a. the electron gun.
 - b. electrical charges on deflecting plates.
 - c. a phosphorescent coating.
 - d. gravity.
 - e. electrical charges on the screen.
- 11. Two point charges of values +3.4 μ C and +6.6 μ C are separated by 0.10 m. What is the electrical potential at the point midway between the two point charges? ($k = 9 \times 10^9 \text{ N-m}^2/\text{C}^2$)
 - a. $+0.9 \times 10^6 \text{ V}$
 - b. $+3.6 \times 10^6 \text{ V}$
 - c. $-0.9 \times 10^6 \text{ V}$
 - d. $+1.8 \times 10^6 \text{ V}$
 - e. $-1.8 \times 10^6 \text{ V}$
- 12. An electron in a cathode ray tube is accelerated through a potential difference of 5 kV. What kinetic energy does the electron gain in the process? ($q_e = -1.6 \times 10^{-19}$ C)
 - a. 1.6×10^{-16} J
 - b. 8.0×10^{-16} J
 - c. 1.6×10^{-22} J
 - d. 8.0×10^{-22} J
 - e. 4.0×10^{-16} J
- 13. Two capacitors with capacitances of 1.0 and 0.5 μF , respectively, are connected in parallel. The system is connected to a 100 V battery. What electrical potential energy is stored in the 1.0 μF capacitor?
 - a. 1.7×10^{-3} J
 - b. 7.5×10^{-3} J
 - c. 5.0×10^{-3} J
 - d. $10.0 \times 10^{-3} J$
 - e. $2.5 \times 10^{-3} \text{ J}$

- 14. In which case does an electric field do positive work on a charged particle?
 - a. a positive charge completes one circular path around a stationary positive charge.
 - b. a positive charge completes one elliptical path around a stationary positive charge.
 - c. a positive charge is moved to a point of higher potential energy.
 - d. a negative charge moves opposite to the direction of the electric field.
 - e. a positive charge moves opposite to the direction of the electric field.
- 15. If $\mathcal{C}=$ 36 μF , determine the equivalent capacitance for the combination shown.
 - a. 36 μ F
 - b. 32 μF
 - c. 28 μF
 - d. 24 μF
 - e. 20 μF

- 16. If a 500 W heater carries a current of 4.0 A, what is the resistance of the heating element?
 - a. 31.3 Ω
 - b. 11.2 Ω
 - c. 42.8 Ω
 - d. 85.7Ω
 - e. 62.6 Ω
- 17. A 500 W heater carries a current of 4.0 amperes. How much does it cost to operate the heater for 30 minutes if electrical energy costs 6 cents per kW-hr?
 - a. 18.0 cents
 - b. 36.0 cents
 - c. 9.0 cents
 - d. 1.5 cents
 - e. 3.0 cents

- 18. An electric clothes dryer draws 15 A at 220 V. If the clothes put into the dryer have a mass of 7 kg when wet and 4 kg dry, how long does it take to dry the clothes? (Assume all heat energy goes into vaporizing water, $L_{\rm Vap} = 2.26 \times 10^6 \ {\rm J/kg.}$)
 - a. 20.0 min
 - b. 15.6 min
 - c. 34.2 min
 - d. 55.1 min
 - e. 26.4 min
- 19. When you flip a switch to turn on a light, the delay before the light turns on is determined by:
 - a. the speed of the electric field moving in the wire.
 - b. the density of electrons in the wire.
 - c. the drift speed of the electrons in the wire.
 - d. the number of electron collisions per second in the wire.
 - e. none of these, since the light comes on instantly.
- 20. A platinum wire is utilized to determine the melting point of indium. The resistance of the platinum wire is 2 Ω at 20°C and increases to 3.072 Ω as the indium starts to melt. $\alpha_{\text{platinum}} = 3.92 \times 10^{-3}$ /°C. What is the melting temperature of indium?
 - a. 351°C
 - b. 731°C
 - c. 157°C
 - d. 137°C
 - e. 430°C
- 21. Two resistors of values 6 Ω and 12 Ω are connected in parallel. This combination in turn is connected in series with a 3 Ω resistor and a 21 V battery. What is the current in the 6 Ω resistor?
 - a. 12.0 A
 - b. 3.0 A
 - c. 2.0 A
 - d. 4.0 A
 - e. 6.0 A

- 22. Which resistor is in series with resistor R?
 - a. R_1
 - b. R₂ c. R₃ d. R₄

 - e. none of the above

- 23. What is the current through the 8 Ω resistor?
 - a. 1.0 A
 - b. 0 5 A
 - c. 1.5 A
 - d. 2.0 A
 - e. 3.0 A

- 24. What is the equivalent resistance for these resistors?
 - a. 2.3 Ω
 - b. 2.25 Ω
 - c. 3.0 Ω
 - d. 22 Ω
 - e. 5.2 Ω

- 25. Two resistors of values 6 Ω and 12 Ω are connected in parallel. This combination in turn is connected in series with a 3 Ω resistor and a 21 V battery. What is the current in the 6 Ω resistor?
 - a. 12.0 A
 - b. 3.0 A
 - c. 2.0 A
 - d. 4.0 A
 - e. 6.0 A