
Strange Attractors:
Creating Patterns in Chaos

by
Julien C. Sprott

Converted to PDF by Robert Coldwell
8/1/2000

coldwell@earthlink.net

Contents
Why This Book Is for You

Chapter 1: Order and Chaos
1.1 Predictability and Uncertainty
1.2 Bucks and Bugs
1.3 The Butterfly Effect
1.4 The Computer Artist

Chapter 2: Wiggly Lines
2.1 More Knobs to Twiddle
2.2 Randomness and Pseudorandomness
2.3 What’s in a Name?
2.4 The Computer Search
2.5 Wiggles on Wiggles
2.6 Making Music

Chapter 3: Pieces of Planes
3.1 Quadratic Map in Two Dimensions
3.2 The Butterfly Effect Revisited
3.3 Searching the Plane
3.4 The Fractal Dimension
3.5 Higher-Order Disorder
3.6 Strange Attractor Planets
3.7 Designer Plaids
3.8 Strange Attractors that Don’t
3.9 A New Dimension in Sound

Chapter 4: Attractors of Depth
4.1 Projections
4.2 Shadows
4.3 Bands
4.4 Colors
4.5 Characters
4.6 Anaglyphs
4.7 Stereo Pairs | Stereo Pairs
4.8 Slices

Chapter 5: The Fourth Dimension
5.1 Hyperspace
5.2 Projections
5.3 Other Display Techniques
5.4 Writing on the Wall
5.5 Murals and Movies
5.6 Search and Destroy

4

6
6
8

14
17

25
25
26
28
30
40
48

50
50
54
56
74
80

107
125
132
142

147
147
171
191
208
211
216
222
241

259
259
263
288
315
317
318

Chapter 6: Fields and Flows
6.1 Beam Me up Scotty!
6.2 Professor Lorenz and Dr. Rössler
6.3 Finite Differences
6.4 Flows in Four Dimensions
6.5 Strange Attractors that Aren’t
6.6 Doughnuts and Coffee Cups

Chapter 7: Further Fascinating Functions
7.1 Steps and Tents
7.2 ANDs and ORs
7.3 Roots and Powers
7.4 Sines and Cosines
7.5 Webs and Wreaths
7.6 Swings and Springs
7.7 Roll Your Own

Chapter 8: Epilogue
8.1 How Common is Chaos?
8.2 But Is It Art?
8.3 Can Computers Critique Art?
8.4 What’s Left to Do?
8.5 What Good Is It?

Appendix A: Annotated Bibliography

Appendix B: BASICProgram Listing

Appendix C: Other Computers and BASIC Versions
BASICA and GW-BASIC
Turbo BASICand PowerBASIC
VisualBASIC for MS-DOS
VisualBASIC for Windows
QuickBASICfor Apple Macintosh Systems

Appendix D: C Program Listing

Appendix E: Summary of Equations

Appendix F: Dictionaries of Strange Attractors

322
322
326
329
352
368
384

397
397
408
418
428
438
448
459

460
460
467
468
470
476

480

491

514
514
514
515
515
521

528

566

576

Why This Book Is for You

Art and science sometimes appear in juxtaposition, one aesthetic, the other
analytical. This book bridges the two cultures. I have written it for the artist who is
willing to devote a modicum of effort to understanding the mathematical world of
the scientist and for the scientist who often overlooks the beauty that lurks just
beneath even the simplest equations.

If you are neither artist nor scientist, but own a personal computer for which
you would like to find an exciting new use, this book is also for you. Fractals
generated by computer represent a new art form that anyone can appreciate and
appropriate. You don’t have to know mathematics beyond elementary algebra,
and you don’t have to be an expert programmer. This book explains a simple, new
technique for generating a class of fractals called strange attractors. Unlike other
books about fractals that teach you to reproduce well-known patterns, this one will
let you produce your own unlimited variety of displays and musical sounds with a
single program. Almost none of the patterns you produce will ever have been seen
before.

To get the most out of this book, you will need a personal computer, though
it need not be a fancy one. It should have a monitor capable of displaying graphics,
preferably in color. Some knowledge of BASIC is useful, although you can just type
in the listings even if you don’t understand them completely. For those of you who
are C programmers, I have provided an appendix with an equivalent version in C.
You may find the exercises in this book an enjoyable way to hone your program-
ming skills. As you progress through the book, you will gradually develop a very
sophisticated computer program. Each step is relatively simple and brings exciting
new things to see and explore. Alternately, you can use the accompanying disk
immediately to begin making your own collection of strange attractors.

4

Strange Attractors

How to find them, those regions
Of space where the equation traces

Over and over a kind of path,
Like the moth that batters its way

Back toward the light
Or, hearing the high cry of the bat,

Folds its wings in a rolling dive?

And ourselves, fluttering toward and away
In a pattern that, given enough
Dimensions and point-of-view,

Anyone living there could plainly see—
Dance and story, advance, retreat,

A human chaos that some slight
Early difference altered irretrievably?

For one, the sound of her mother
Crying. For this other,

The hands that soothed
When he was sick. For a third,

The silence that collects
Around certain facts. And this one,
Sent to bed, longing for a nightlight.

Though we think this time to escape,
Holding a head up, nothing wrong,
Finding a way to beat the system,

Talking about anything else—
Travel, the weather, time

At the flight simulator—for some
The journey circles back

To those strange, unpredictable attractors,
Secrets we can neither speak nor leave.

—Robin S. Chapman

5

6

Chapter 1
Order and Chaos

This chapter lays the groundwork for everything that follows in the book.
Nearly all the essential ideas, mathematical techniques, and programming tools
you need are developed here. Once you’ve mastered the material in this chapter,
the rest of the book is smooth sailing.

1.1 Predictability and Uncertainty

The essence of science is predictability. Halley’s comet will return to the
vicinity of Earth in the year 2061. Not only can astronomers predict the very minute
when the next solar eclipse will occur but also the best vantage point on Earth from
which to view it. Scientific theories stand or fall according to whether their predic-
tions agree with detailed, quantitative observation. Such successes are possible
because most of the basic laws of nature are deterministic, which means they allow
us to determine exactly what will happen next from a knowledge of present
conditions.

However, if nature is deterministic, there is no room for free will. Human
behavior would be predetermined by the arrangements of the molecules that
make up our brains. Every cloud that forms or flower that grows would be a direct
and inevitable result of processes set into motion eons ago and over which there
is no possibility for exercising control. Perfect predictability is dull and uninteresting.
Such is the philosophical dilemma that often separates the arts from the sciences.

One possible resolution was advanced in the early decades of the 20th
century when it was discovered that the quantum mechanical laws that govern the
behavior of atoms and their constituents are apparently probabilistic, which means
they allow us to predict only the probability that something will happen. Quantum
mechanics has been extremely successful in explaining the submicroscopic world,
but it was never fully embraced by some scientists, including Albert Einstein, who
until his dying day insisted that he did not believe that God plays dice with the
Universe.

Since the 1970s science has been undergoing an intellectual revolution that
may be as significant as the development of quantum mechanics. It is now widely
understood that deterministic is not the same as predictable. An example is the
weather. The weather is governed by the atmosphere, and the atmosphere obeys

deterministic physical laws. However, long-term weather predictions have im-
proved very little as a result of careful, detailed observations and the unleashing of
vast computer resources.

The reason for this unpredictability is that the weather exhibits extreme
sensitivity to initial conditions. A tiny change in today’s weather (the initial condi-
tions) causes a larger change in tomorrow’s weather and an even larger change
in the next day’s weather. This sensitivity to initial conditions has been dubbed the
butterfly effect, because it is hypothetically possible for a butterfly flapping its wings
in Brazil to set off tornadoes in Texas. Since we can never know the initial conditions
with perfect precision, long-term prediction is impossible, even when the physical
laws are deterministic and exactly known. It has been shown that the predictability
horizon in weather forecasting cannot be more than two or three weeks.

Unpredictable behavior of deterministic systems has been called chaos, and
it has captured the imagination of the scientist and nonscientist alike. The word
"chaos" was introduced by Tien-Yien Li and James A. Yorke in a 1975 paper entitled
"Period Three Implies Chaos." The term "strange attractors," from which this book
takes its title, first appeared in print in a 1971 paper entitled "On the Nature of
Turbulence," by David Ruelle and Floris Takens. Some people prefer the term
"chaotic attractor," because what seemed strange when first discovered in 1963 is
now largely understood.

It’s not hard to imagine that if a system is complicated (with many springs and
wheels and so forth) and hence governed by complicated mathematical equa-
tions, then its behavior might be complicated and unpredictable. What has come
as a surprise to most scientists is that even very simple systems, described by simple
equations, can have chaotic solutions. However, everything is not chaotic. After all,
we can make accurate predictions of eclipses and many other things. An even
more curious fact is that the same system can behave either predictably or
chaotically, depending on small changes in a single term of the equations that
describe the system. For this reason, chaos theory holds promise for explaining many
natural processes. A stream of water, for example, exhibits smooth (laminar) flow
when moving slowly and irregular (turbulent) flow when moving more rapidly. The
transition between the two can be very abrupt. If two sticks are dropped side-by-
side into a stream with laminar flow, they stay close together, but if they are
dropped into a turbulent stream, they quickly separate.

Chaotic processes are not random; they follow rules, but even simple rules
can produce extreme complexity. This blend of simplicity and unpredictability also
occurs in music and art. A piece of music that consists of random notes or of an
endless repetition of the same sequence of notes would be either disastrously

7

discordant or unbearably boring. Likewise, a work of art produced by throwing
paint at a canvas from a distance or by endlessly replicating a pattern, as in
wallpaper, is unlikely to have aesthetic appeal. Nature is full of visual objects, such
as clouds and trees and mountains, as well as sounds, like the cacophony of excited
birds, that have both structure and variety. The mathematics of chaos provides the
tools for creating and describing such objects and sounds.

Chaos theory reconciles our intuitive sense of free will with the deterministic
laws of nature. However, it has an even deeper philosophical ramification. Not only
do we have freedom to control our actions, but also the sensitivity to initial
conditions implies that even our smallest act can drastically alter the course of
history, for better or for worse. Like the butterfly flapping its wings, the results of our
behavior are amplified with each day that passes, eventually producing a com-
pletely different world than would have existed in our absence!

1.2 Bucks and Bugs

Enough philosophizing—it’s time to look at a specific example. This example
requires some mathematics, but the equations are not difficult. The ideas and
terminology are important for understanding what is to follow.

Suppose you have some money in a bank account that provides interest,
compounded yearly, and that you don’t make any deposits or withdrawals. Let’s
let X represent the amount of money in your account. When the time comes for the
bank to credit your interest, its computer does so by multiplying X by some number.
With an interest rate of 10%, the number is 1.1, and your new balance is 1.1 X. If your
balance in the nth year is Xn (where n is 1 after the first year, 2 after the second, and
so forth), your balance in the year n +1 is

Xn +1 = R Xn (Equation 1A)

where R is equal to 1.0 plus your interest rate. (R is 1.1 in this example.)

You probably know that such compounding leads to exponential growth. In
terms of the initial amount X0, the amount in your account after n years is

Xn = X0Rn (Equation 1B)

After 50 years at 10% yearly interest, you will have $117.39 for every dollar you
initially invested. The bank can afford to do this only because of inflation and

8

because money is loaned at an even higher interest rate.

Equation 1A is applicable to more than compound interest. It’s how many of
us have our salaries determined. It also describes population growth. Imagine some
species of bug that lives for a season, lays its eggs, and then dies (thus avoiding the
confusion of overlapping generations). The next year the eggs hatch, and the
number of bugs is some constant R times the number in the previous year. If R is less
than 1, the bugs die out over a number of years; and if R is greater than 1, their
number grows exponentially.

You also know that exponential growth cannot go on forever, whether it be
bucks in the bank, bugs in the back yard or people on the planet. Eventually
something happens, such as the depletion of resources, to slow down or even
reverse growth. Mass starvation, disease, crime, and war are some of the mecha-
nisms that limit unbridled human population growth. Thus we need to modify
Equation 1A in some way if it is to model growth patterns in nature more closely.

Perhaps the simplest modification is to multiply the right-hand side of Equa-
tion 1A by a term such as (1 - X), whose value approaches 1 as X gets smaller (much
less than 1) but is less than 1 as X increases. Since the population dies abruptly as X
approaches 1, we must think of X = 1 as representing some large number of dollars
or bugs (say a million or a billion); otherwise we would never get very far! So our
modified equation, called the logistic equation, is

Xn +1 = R Xn (1 - Xn) (Equation 1C)

Now you’re going to get your first homework assignment. Take your pocket
calculator and start with a small value of X, say 0.1. To reduce the amount of work
you have to do, use a fairly large value of R, say 2, corresponding to a doubling
every year. Run X through Equation 1C a few times and see what happens. This
process is called iteration, and the successive values are called iterates. If you did
it right, you should see that X grows rapidly for the first couple of steps, and then it
levels off at a value of 0.5. The first few values should be approximately 0.1, 0.18,
0.2952, 0.4161, 0.4859, 0.4996, and 0.5. Compare your results with the unbounded
growth of Equation 1A.

You might have predicted the above result, if you had thought to set Xn+1
equal to Xn in Equation 1C and solved for Xn. This value is called a fixed-point
solution of the equation, because if X ever has that value, it remains fixed there
forever. Such a fixed-point solution is sometimes called a point attractor, because
every initial value of X between 0 and 1 is attracted to the fixed point upon repeated
iteration of Equation 1C. Try initial values of X = 0.2 and X = 0.8. A fixed point is also

9

called a critical point, a singular point, or a singularity.

If you’re curious, you might wonder what happens if you start with a value of
X less than 0, such as -0.1, or greater than 1, such as 1.1. You should verify that the
iterates are negative and that they get larger and larger, eventually approaching
minus infinity. We say that the solution is unbounded and that it attracts to infinity.
Thus the values of X = 0 and X = 1 are like a watershed. Between these values the
solution is bounded, and outside these values it is unbounded.

The region between X = 0 and X = 1 is called a basin of attraction because
it resembles a bathroom basin in which drops of water find their way to the drain
from wherever they start. X = 0 is also a fixed point, but it is unstable because values
either slightly above or slightly below zero move away from zero. Such an unstable
fixed point is sometimes called a repellor. Chaos can result when two or more
repellors are present; the iterates then bounce back and forth like a baseball runner
caught in a squeeze play.

Equations that exhibit chaos have solutions that are unstable but bounded;
the solution never settles down to a fixed value or even to a repeating pattern, but
neither does it move off to infinity. Sometimes we say that such equations are linearly
unstable but nonlinearly stable. Small perturbations to the system grow, but the
growth ceases when the nonlinear terms become important, as eventually they
must. Another way to say it is that the fixed points are locally unstable, but the system
is globally stable. In this case initial conditions are drawn to a special type of
attractor called a strange attractor, which is not a point or even a finite set of points
but rather a complicated geometrical object whose properties constitute the
subject of this book.

See what happens if you substitute X = 0 or X = 1 into the logistic equation. As
a check on your calculations, or in case you didn’t do your homework, Table 1-1
shows the successive iterates of X for each of the cases we have discussed.

Table 1-1. Iterates of the logistic equation for various initial values of X with R=2

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

0.1 0.18 0.2952 0.4161 0.4859 0.4996 0.5

0.2 0.32 0.4352 0.4916 0.4999 0.5 0.5

0.8 0.32 0.4352 0.4916 0.4999 0.5 0.5

-0.1 -0.22 -0.5368 -1.6499 -8.7442 -170.41 -58421

1.1 -0.22 -0.5368 -1.6499 -8.7442 -170.41 -58421

0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0 0.0 0.0

10

An equation, such as the logistic equation, that predicts the next value of a
quantity from the previous value is called an iterated map because it is like a road
map in which each point on the earth is mapped to a corresponding point on a
piece of paper. The logistic equation is a one-dimensional map because the
various X values can be thought of as lying along a straight line that stretches from
minus infinity to plus infinity. Each iteration of the map moves every point along the
line to a new position on the line. For the example above with R = 2, all the points
between X = 0 and X = 1 walk toward X = 0.5, where they stop and remain. Other
points run faster and faster toward the end of the line that stretches to minus infinity.

The logistic equation is an example of a quadratic iterated map, so called
because if you multiply out the right-hand side of Equation 1C, it has not only a linear
term RXn but also a quadratic (squared) term -RXn

2. Quadratic maps are
noninvertable because you can find Xn+1 from Xn, but can’t go backward
because there are two values of Xn that produce the same Xn+1, and there is no
way of knowing from which it came. For example, Table 1-1 shows that X0 = 0.2 and
X0 = 0.8 both produce X1 = 0.32. These are the two roots of the quadratic equation
that you get if you try to solve for Xn in Equation 1C in terms of Xn+1.

The graph of Xn+1 versus Xn is a curve called a parabola. Because a
parabola is not a straight line, the map is said to be nonlinear. Chaos and strange
attractors require nonlinearity. The interesting and surprising behavior of nonlinear
iterated maps is the basis for much of this book.

The first surprising result occurs if you iterate Equation 1C with R = 3.2 and an
initial value of X in the range of 0 to 1. After a few iterations the solution will alternate
between two values of approximately 0.5130 and 0.7995. This is called a period-2
limit cycle. Like the fixed point, the limit cycle is another type of simple attractor. It
is sometimes called a periodic or cyclic attractor.

It’s not hard to see how cyclic behavior might arise in nature. If the population
of beetles grows too large, they deplete the plants on whom they depend for food.
With too few plants, the beetles die out, allowing the number of plants to recover,
leading to the next cycle of beetle growth, and so forth.

Increase R a bit more to 3.5, and repeat the calculation. The result is a period-
4 limit cycle with four values of approximately 0.5009, 0.8750, 0.3828, and 0.8269. If
you keep increasing R by ever smaller amounts, the period of the limit cycle doubles
repeatedly, finally reaching chaotic behavior (an infinite period) at about R =
3.5699456. This value is sometimes called the Feigenbaum point, after Mitchell J.
Feigenbaum, a contemporary mathamatician who discovered many of the inter-
esting properties of one-dimensional maps.

11

When chaos occurs, the successive iterates fluctuate in an apparently
random and irreproducible manner. The chaotic behavior persists up to R = 4
except for an infinite number of small periodic windows. For R greater than 4, the
solution is unbounded, and the iterates attract rapidly to minus infinity.

The behavior described above can be summarized in a bifurcation diagram,
as shown in Figure 1-1, in which the limiting iterated values of the logistic equation,
after discarding the first few hundred iterates, are plotted for a range of R from 2 to
4. This plot is called the Feigenbaum diagram, and it resembles a tree on its side.
("Feigenbaum," appropriately but coincidentally, is German for "fig tree.") You see
the fixed-point solution for R less than 3, the period-doubling route to chaos, and the
periodic windows at large R. The chaotic regions toward the right side of the figure
are characterized by values of X that span a wide range and eventually fill the
region densely with points.

Figure 1-1. Bifurcation diagram for the logistic equation, Xn+1 = RXn (1 - Xn)

12

Each period doubling is called a bifurcation because a single solution splits
into a pair of solutions. These splittings are called pitchfork bifurcations for obvious
reasons. Note the period-3 window at about R = 3.84. The period-3 region begins
abruptly when R is increased slightly from within the chaotic region to its left in what
is called a tangent or saddle-node bifurcation. Careful inspection of the period-3
window shows that it also undergoes a period-doubling sequence at about R = 3.85.
Solutions with every period can be found somewhere between R = 3 and R = 4.

Successive period doublings occur with ever-increasing rapidity as one
moves from left to right in Figure 1-1. The ratio of the width of each region to the width
of the previous region approaches a constant equal to 4.669201660910..., called
the Feigenbaum number. Even more remarkable is that this number arises in many
different chaotic systems in nature as well as in the solutions of equations. The
universality of the Feigenbaum number in chaos is reminiscent of the ubiquity of the
number π in Euclidean geometry.

With R = 4 the solutions occupy the entire interval from X = 0 to X = 1. Eventually
X takes on a value arbitrarily close to any point in that interval (a characteristic
called topological transitivity). Curiously, however, infinitely many initial values of X
don’t lead to a chaotic solution even for R = 4. For example X0 = 0.5 and X0 = 0.75
lead to unstable fixed points, while X0 = 0.345491... and X0 = 0.904508... produce an
unstable period-2 limit cycle. By unstable we mean that if the initial values are wrong
by even the slightest amount, successive iterates will wander ever farther away.

Even though there are infinitely many nonchaotic initial values between zero
and one, the chance that you will find one by randomly guessing is negligible. For
every such value, there are infinitely many others that produce chaos. Such a
seemingly paradoxical entity is an example of a Cantor set, named after the 19th-
century Russian-born German mathematician Georg Cantor who is often credited
with developing a mathematically rigorous concept of infinity.

A Cantor set contains infinitely many members (in fact, uncountably infinitely
many), but its members represent a zero fraction of the total! For example, infinitely
many points are required to cover completely the circumference of a circle, but this
number of points doesn’t even begin to cover its interior. Such a collection (or set)
of points, although infinite in number, is said to comprise a set of measure zero,
because the points fill a negligible portion of the plane. An attractor is a set of
measure zero, but its basin of attraction has a nonzero measure.

Few people would have guessed that such complexity could arise from such
underlying simplicity. Furthermore, the logistic equation is only the simplest of an
endless variety of equations that can exhibit chaos. It is this dichotomy of simplicity

13

and complexity that makes chaos beautiful to the mathematician and artist alike.
In the bifurcation diagram of the logistic equation, we have something with
aesthetic appeal, and it came from a simple quadratic equation!

1.3 The Butterfly Effect

If our goal is to seek chaotic behavior in the solution of equations, we need
a simple way to test for chaos. For this purpose we use the fact that chaotic
processes exhibit extreme sensitivity to initial conditions, in contrast to regular
processes in which different starting points usually converge to the same sequence
of points on a simple attractor.

Suppose we iterate the logistic equation with two initial values of X that differ
by only a tiny amount. Think of these values as representing two states of the
atmosphere that differ only by the flapping of the wings of a butterfly. If successive
iterates are attracted to a fixed point as they are for R = 2, the difference between
the two solutions must get smaller and smaller as the fixed point is approached. A
similar thing happens for a limit cycle. The difference between the two solutions will
on average decrease exponentially.

If the solution is chaotic, as is the logistic equation for R = 4, the successive
iterates for the two cases initially on average get farther apart; the difference
usually increases exponentially. If the difference doubles on average with every
iteration, we say the Lyapunov exponent is 1. If it is reduced by half, we say the
Lyapunov exponent is -1. The name comes from the late-19th-century Russian
mathematician Aleksandr M. Lyapunov (sometimes transliterated Liapunov or
Ljapunov).

You can think of the Lyapunov exponent as the power of 2 by which the
difference between two nearly equal X values changes on average for each
iteration. Thus the difference between the values changes by an average of 2L for
each iteration. If L is negative, the solutions approach one another; if L is positive,
we have sensitivity to initial conditions and hence chaos.

One way to detect chaos is to iterate the equation with two nearly equal
initial values and see if, after many iterations, the values are closer together or
farther apart. Another way is to make use of a principle of calculus that says that the
difference in the solutions after one iteration divided by the difference before the
iteration, provided the difference is small, is equal to the derivative of the equation
for the map, which for the logistic equation is

14

∆Xn+1 / ∆Xn = R(1 - 2Xn) (Equation 1D)

where ∆X is the difference between the two values of X. In Equation 1D, ∆Xn is the
difference in the X values after n iterations, and ∆Xn+1 is the difference after n+1
iterations.

Since ∆X increases by the factor on the right of Equation 1D for each iteration,
the proper way to calculate the average is to start with a value of 1 and multiply it
repeatedly by the right-hand side of Equation 1D at each iteration, then divide the
result by the number of iterations, and finally take the logarithm to the base 2 of the
absolute value of the result to get the Lyapunov exponent. If you prefer an
equation, the preceding description is equivalent to

L = ∑ log2 |R (1 - 2Xn)| / N (Equation 1E)

where the vertical bars mean that you are to disregard the sign of the quantity
inside, and ∑ means to sum the quantity to its right from a value of n = 1 to a value
of n = N , where N is some large number. The larger the value of N, the more accurate
the estimate of L.

Suppose you knew the value of X to within 0.01 for an iterated map with L =
1. After one iteration the uncertainty would be about 0.02, and after two iterations
the uncertainty would be about 0.04, and so forth. After about seven iterations, the
error would exceed 1, and your prediction would be totally worthless. If the X values
are expressed as binary numbers, each iteration would result in throwing away the
rightmost (least significant) binary digit (bit). Thus the units of L are bits per iteration.
Sometimes L is expressed in terms of the natural logarithm (base e) rather than log2.
The Lyapunov exponent is the rate at which information is lost when a map is
iterated.

It is as if a succession of cartographers each copied maps from one another,
but every time one was copied it was only half as accurate as the previous one. If
the original map were accurate to 1%, the next copy would be accurate to 2%, and
the seventh generation copy would bear no relation to the original. If the Lyapunov
exponent were -1, one bit of information would be gained at each iteration. Even
a completely unknown initial condition would eventually be perfectly accurate as
it approached the known fixed point or limit cycle. Unfortunately, negative Lyapunov
exponents are not the rule in cartography; otherwise all our maps would be self-
correcting!

15

Figure 1-2. Lyapunov exponent for the logistic equation

Figure 1-2 shows the Lyapunov exponent for the logistic equation using values
of R from 2 to 4. The Lyapunov exponent is 1.0 at R = 4 because that value causes
the interval of X from 0 to 1 to be mapped backed onto itself with a single fold at
X = 0.5. Thus information is lost at a rate of 1 bit per iteration, because each iterate
has two possible predecessors. You can also see some of the periodic windows
where L dips below zero toward the right edge of the plot. Also note that L is zero
wherever a bifurcation occurs, for example at R=2. At these points the solution is
fraught with indecision over which branch to take, and the initial uncertainty persists
forever, neither increasing nor decreasing.

16

1.4 The Computer Artist

By now you have probably surmised that the operations we have described
are best carried out by a computer. The equations are simple, but they must be
applied repeatedly. This is precisely the kind of task at which computers excel.

There are dozens of computer types and programming languages to choose
from. Currently the most popular computers are those based on the IBM PC running
the MS-DOS or IBM-DOS operating system (hereafter simply called DOS). The most
widely available programming language is BASIC (Beginner’s All-purpose Symbolic
Instruction Code), which usually comes bundled with the operating system soft-
ware included with the computer. A version of BASIC called QBASIC has been
included with DOS since version 5.0. BASIC may not be the most advanced
computer language, but it is one of the easiest to learn and to use, its commands
are close to ordinary English, and it is more than adequate for our purposes.
Furthermore, modern versions of BASIC compare favorably with the best of the
other languages.

The American National Standards Institute (ANSI) has established a standard
for the BASIC language, but it is somewhat limited, and most versions of BASIC have
many additions and embellishments. We will intentionally use a primitive dialect to
ensure compatibility with most modern implementations and to simplify the trans-
lation into incompatible versions. In particular, the programs in this book should run
without modification under Microsoft BASICA, GW-BASIC, QBASIC, QuickBASIC,
VisualBASIC for MS-DOS; Borland International Turbo BASIC (no longer available);
and Spectra Publishing PowerBASIC on IBM PCs or compatibles. You will be
happiest using a modern compiled BASIC such as VisualBASIC or PowerBASIC on a
fast computer with a math coprocessor.

Appendix C includes information on translating the computer programs into
other, partially incompatible dialects of BASIC, as well as source code for use with
VisualBASIC for Windows and Microsoft QuickBASIC for the Macintosh. Appendix D
contains a translation into Microsoft QuickC. The BASIC programs use line numbers,
which have been obsolete since the mid-1980s, but they are harmless, and they
provide a convenient way to reference lines of the program and to indicate where
in the program a change is to be made.

If you follow sequentially through this book, you will need to add and change
a only few lines of the program as you meet each new idea. Your program will
gradually grow more versatile as you work through the book. In the end you will
have a powerful program that can reproduce all the examples in this book as well
as an endless variety of new ones. Hence you should avoid the temptation to

17

eliminate or to change the line numbers, at least until you have a fully functional
program. You may prefer to jump to Appendix B where you will find the complete
final program, which is also provided on the accompanying disk along with source
listings in BASIC, Microsoft QuickC, Borland Turbo C++ and a ready-to-run execut-
able version of the program.

If you are an experienced programmer, you might ridicule some of the quaint
program listings. Many powerful programming structures such as block IF state-
ments, DO LOOPs, and callable subroutines with local variables that produce
beautifully structured programs are now standard, but they have been avoided to
allow backwards compatibility with more primitive versions of BASIC. They also often
impose a small speed penalty. The dreaded GOTO statement has been used
primarily to bypass blocks of code in deference to BASIC versions that don’t support
block IF statements. Lines of the program that are bypassed by a GOTO are usually
indented. Blocks of the program contained within FOR...NEXT loops have also been
indented. In the interest of structure and simplicity, the programs have been written
using numerous small modular subroutines, each with a single entry point beginning
with a comment line, and a single exit point containing a RETURN statement, albeit
with global variables. The individual subroutines are separated with blank lines. It
should be relatively easy for an experienced programmer to rewrite the program
in a more modern format.

The program listing PROG01 iterates the logistic equation for R = 4 with an
initial value of X = 0.05 and makes a graph of each iterate versus its predecessor. The
program looks more complicated than it actually is because the various operations
have been relegated to subroutines to provide a template for the more versatile
cases to follow.

PROG01. Program for iterating and graphing the logistic equation

1000 REM LOGISTIC EQUATION

1010 DEFDBL A-Z 'Use double precision

1030 SM% = 12 'Assume VGA graphics

1190 GOSUB 1300 'Initialize

1200 GOSUB 1500 'Set parameters

1210 GOSUB 1700 'Iterate equations

18

1220 GOSUB 2100 'Display results

1230 GOSUB 2400 'Test results

1240 ON T% GOTO 1190, 1200, 1210

1250 CLS

1260 END

1300 REM Initialize

1320 SCREEN SM% 'Set graphics mode

1350 WINDOW (-.1, -.1)-(1.1, 1.1)

1360 CLS

1420 RETURN

1500 REM Set parameters

1510 X = .05 'Initial condition

1560 R = 4 'Growth rate

1570 T% = 3

1590 LINE (-.1, -.1)-(1.1, 1.1), , B

1630 RETURN

1700 REM Iterate equations

1720 XNEW = R * X * (1 - X)

2030 RETURN

19

2100 REM Display results

2300 PSET (X, XNEW) 'Plot point on screen

2320 RETURN

2400 REM Test results

2490 IF LEN(INKEY$) THEN T% = 0 'Respond to user key stroke

2510 X = XNEW 'Update value of X

2550 RETURN

If, when you first run the program, your computer reports an error, it is probably
in one of the following lines:

Line 1010: Be sure your version of BASIC supports double-precision (four-byte)
floating-point variables. If it doesn’t, you may omit this line, but then you probably
will have to change the 4 in line 1560 to 3.99999 to avoid overflow resulting from
round-off errors. With modern versions of BASIC and a computer with a math
coprocessor, there is no penalty, and considerable advantage, in using double
precision. Because of the finite precision of computer arithmetic, all cases will
eventually repeat, but with double precision the average number of iterations
required before this happens is acceptably large.

Line 1320: Either your version of BASIC doesn’t require this command or your
computer or compiler doesn’t support VGA graphics. Try reducing the 12 in line 1030
to a lower number until you find one that works. If none works, try eliminating line
1320 altogether.

Line 1350: The WINDOW command defines the coordinates of the lower-left
and upper-right corners of the graphics window for subsequent PSET and LINE
commands. If your version of BASIC doesn’t support this command, you must delete
this line and convert all the parameters in the PSET and LINE commands to address
screen pixels. In this case try replacing line 2300 with PSET (200 * X, 200 - 200 * XNEW).
One advantage of using the WINDOW command is that when a version of BASIC
comes along that supports higher screen resolutions, the program can be easily
recompiled to take advantage of it.

20

Other errors: Look carefully for typographical errors, or consult your BASIC
manual to determine compatibility.

The correct program should produce a plot of the logistic parabola, as shown
in Figure 1-3. Try different initial values of X (line 1510) and different values of R (line
1560) to confirm the behavior predicted for the logistic equation.

Figure 1-3. The logistic parabola from PROG01

The logistic parabola comes from a chaotic solution, but it doesn’t look very
complicated, and it would hardly qualify as art. With one small change we can
make things more interesting and, at the same time, illustrate sensitivity to initial
conditions. Instead of plotting each iterate versus its immediate predecessor, we
could plot it versus its second or third or fourth predecessor. Let’s save the last 500
iterates and provide the option to plot X versus any one of them.

21

The changes that you need to make in the program PROG01 to accomplish
this are shown in the listing PROG02. You can either go through the program and
change or add lines as necessary or type the listing and save it in ASCII format and
then use the MERGE command supported by many (mostly old) versions of BASIC
to update the previous version of the program.

PROG02. Changes required in PROG01 to plot the fifth previous iterate

1000 REM LOGISTIC EQUATION (5th Previous Iterate)

1020 DIM XS(499)

1040 PREV% = 5 'Plot versus fifth previous iterate

1580 P% = 0

2210 XS(P%) = X

2220 P% = (P% + 1) MOD 500

2230 I% = (P% + 500 - PREV%) MOD 500

2300 PSET (XS(I%), XNEW) 'Plot point on screen

If you set PREV% = 1 in line 1040, the result is the same as for PROG01. However,
if you set PREV% equal to 2, you see the logistic parabola change into a curve with
two humps. Each time you increase PREV% by 1, you double the number of humps
in the curve. Thus PREV% = 5 results in 16 oscillations, as shown in Figure 1-4.

22

Figure 1-4. The logistic parabola after five iterations from PROG02

Figure 1-4 provides a good graphical illustration of the sensitivity to initial
conditions. The horizontal axis represents all possible initial conditions from zero to
one. The vertical axis shows the value from zero to one corresponding to each initial
condition after five iterations. It’s not hard to see that two nearby points on the
horizontal axis usually translate into two very different values along the vertical axis
after five iterations. Try using PREV% = 10, and convince yourself that information
about the initial condition is almost completely lost after ten iterations.

This exercise provides a good insight into the way a strange attractor is
formed geometrically. The logistic parabola, which began as a line (a one-
dimensional object), is stretched and folded with each iteration, eventually filling
the entire plane (a two-dimensional object) after many iterations. Perhaps it
reminds you of those taffy machines that repeatedly stretch and fold the taffy,
causing two nearby specks in the taffy after a while to be nowhere near one

23

another. On average the distance between the specks initially increases at an
exponential rate.

You should be able to think of many other examples of sensitivity to initial
conditions. When you stir your coffee to mix in the cream, you’re relying on a
chaotic process. Two sticks dropped into the water close together just above a
waterfall eventually end up far apart. Try laying two identical garden hoses side by
side, and turn on the water in each one at the same time without holding the ends.
Chaotic processes are all around us. Their mathematical solutions usually produce
chaotic strange attractors, whose diversity and beauty we are about to explore.

24

Chapter 2
Wiggly Lines

In this chapter we will teach the computer to search for chaotic solutions of
simple equations with a single variable. The solutions are segments of lines, but the
lines can wiggle in an incredibly complicated manner.

2.1 More Knobs to Twiddle

The logistic equation (Equation 1C) is an example of a dynamical system.
Such systems are described by deterministic initial-value equations. This particular
system has a single parameter R whose value determines the solution’s behavior for
all initial values of X within the basin of attraction. This parameter is like a knob on a
radio or on a stove that you can turn up or down to control the sound emitted by
the radio or the convection in a pot of boiling soup.

You can do a simple experiment to observe the period-doubling route to
chaos. Go into your bathroom or kitchen and turn on the tap, only slightly, to
produce a regular periodic pattern of drips. Now slowly open the tap until the
pattern becomes chaotic. Just before the onset of chaos, if you are sufficiently
careful and patient, you should observe one or more period doublings where the
sound changes to something like "drip drip—drip drip—drip drip." The knob that
controls the flow rate corresponds to the parameter R in the logistic equation. The
dripping faucet has been extensively studied by Robert Shaw and discussed at
length in his book The Dripping Faucet as a Model Chaotic System.

Usually a dynamical system has more than one knob. Your kitchen faucet
probably has independent control of the flow rate and the temperature of the
water. With more knobs, you might expect to increase the variety of ways the
system can behave. Such knobs are called control parameters.

The formula for the most general one-dimensional quadratic iterated map is

Xn+1 = a1 + a2Xn + a3Xn2 (Equation 2A)

where a1, a2, and a3 are three control parameters. By exploring all combinations
of their values, we expect eventually to observe every possible peculiar solution
that the equation can have.

25

You might think that the initial condition X0 is a fourth knob, but if the system
is chaotic, the solution is generally a strange attractor, and all initial conditions within
the basin of attraction look the same after many iterations. Of course there is no
guarantee that a particular choice of X0 lies within the basin, but values of X0 close
to zero are within the basin about half the time, and there are so many chaotic
solutions over the range of the other three parameters that we can well afford to
discard half of them.

The search for strange attractors proceeds as follows. Choose values for a1,
a2, and a3 arbitrarily. Start with a value of X0 near zero. Iterate Equation 2A
repeatedly until the solution either exceeds some large number, in which case it is
presumably unbounded, or until the Lyapunov exponent becomes small or nega-
tive, in which case the solution is probably a fixed point or limit cycle. In either event,
choose a different combination of a1, a2, and a3, and start over. If, after a few
thousand iterations, the solution is bounded (X is not enormous) and the Lyapunov
exponent is positive, then it is likely that you have found a strange attractor.

2.2 Randomness and Pseudorandomness

To choose values of a1, a2, and a3, we can use the random-number
generator provided with most computer languages. The random numbers thus
produced are usually uniformly distributed between zero and one. You may
wonder how a computer, the epitome of determinism, could ever produce a
random number. This question deserves a digression because the answer provides
yet another example of the very issues we have been discussing.

One way to produce a random number is to start with a value of X (the seed)
between zero and one and iterate the logistic equation with R = 4 a few dozen
times. The result is a new number in the range of zero to one that is related to the
seed in a complicated and sensitive way. This number is then used as the seed for
the next random number, which is produced in the same way. A given seed will
produce the same sequence of random numbers, but the sequence may not be
the same on different computers or with different languages or even with different
versions of the same language because of the way the numbers are rounded.

However, this method of producing random numbers is not optimal. First, the
numbers are not uniformly distributed over the range. They tend to cluster near zero
and one as the darkness of the right-hand side of Figure 1-1 suggests. Also,
multiplying a non-integer number by itself many times is a relatively slow process on
a computer.

26

Instead, computers usually get their random numbers using the linear
congruential method:

Xn+1 = (aXn + b) mod c (Equation 2B)

In the mod (modulus) operation, the quantity to the left of the mod (aXn + b)
is divided by the quantity to its right (c), and the remainder is kept rather than the
quotient. All the quantities in Equation 2B are integers. The constants a, b, and c are
carefully chosen to maximize the number of steps required for the sequence to
repeat, which in any case can never exceed c. The numbers are uniformly
distributed from zero to c - 1, but they can be transformed to the range zero to one
by simply dividing Xn+1 by c. The numbers appear to be random, but since they are
produced using a deterministic procedure, they are often called pseudorandom.
Equation 2B is another example of a one-dimensional chaotic map, which is related
to the shift map.

Truly random numbers should satisfy infinitely many conditions. Not only must
the numbers be uniform over the interval, but there should be no detectable
relation between the numbers and any of their predecessors. In particular, the
sequence should repeat only after a very large number of steps. Most random-
number generators are deficient in certain ways. For example, the random num-
bers produced by Microsoft QBASIC 1.0, QuickBASIC 4.5, and VisualBASIC for DOS
1.0 repeat after 16,777,216 steps, and this number is too small for some of our
purposes.

The situation can be greatly improved by shuffling the numbers. Suppose we
maintain a table of a hundred or so random numbers. When we want one, we
randomly take an entry from the table and replace it with a new random number.
With this simple modification, the pseudorandom numbers generated by the
computer are sufficiently random for our purpose.

You should always remember that the sequence of random numbers gener-
ated by a digital computer will eventually repeat. You must take care to ensure that
over the duration of a calculation, such a repetition does not occur. You must also
reseed the random-number generator using a truly random seed, such as one
based on the time of day the program is started, if you are to avoid repeating the
same sequence each time you run the program.

27

2.3 What’s in a Name?

When we begin to choose random values for the coefficients a1, a2, and a3,
we are immediately confronted with two issues. The first is the range of values that
the coefficients may have, and the second is the amount by which two values of
a coefficient must differ to produce attractors that are visibly different.

We can address the first issue by referring to the logistic equation (Equation
1C). When the value of R is too small (less than about 3.5), there are no chaotic
solutions, and when the value of R is too large (greater than 4), all the solutions are
unbounded. A similar situation occurs for the more general one-dimensional
quadratic map in Equation 2A. Thus we want to limit the coefficients to values
whose magnitudes (positive or negative) are of order unity. That is, 0.1 is probably
too small a value and 10 is probably unnecessarily large. This assumption can be
verified by numerical experiment.

The second issue requires a subjective judgment of how dissimilar two
attractors must look before we consider them to be different. In practice, a change
in one of the coefficients by an amount of order 0.1 generally produces an object
that is noticeably different. If we let each coefficient take on values ranging from
-1.2 to 1.2 in steps of 0.1, we will have 25 possible values. We can associate each with
a letter of the alphabet, A through Y, and have a convenient way to catalog and
replicate the attractors. Limiting the coefficients to 25 values may seem excessively
restrictive, but since there are three coefficients for one-dimensional quadratic
maps, there are 253 or 15,625 different combinations.

The coefficients that correspond to the logistic equation with R = 4 are a1 =
0, a2 = 4, and a3 = -4, and they fall outside the range of -1.2 to 1.2. Thus for some
purposes, it is convenient to take a larger range. A convenient way to extend the
range is to use the ASCII (American Standard Code for Information Interchange)
character set summarized in Table 2-1.

Table 2-1. ASCII character set and associated coefficient values

Char Dec Coeff Char Dec Coeff Char Dec Coeff

32 -4.5 # 64 -1.3 ` 96 1.9

! 33 -4.4 A 65 -1.2 a 97 2.0

" 34 -4.3 B 66 -1.1 b 98 2.1

28

Char Dec Coeff Char Dec Coeff Char Dec Coeff

35 -4.2 C 67 -1.0 c 99 2.2

$ 36 -4.1 D 68 -0.9 d 100 2.3

% 37 -4.0 E 69 -0.8 e 101 2.4

& 38 -3.9 F 70 -0.7 f 102 2.5

‘ 39 -3.8 G 71 -0.6 g 103 2.6

(40 -3.7 H 72 -0.5 h 104 2.7

) 41 -3.6 I 73 -0.4 i 105 2.8

* 42 -3.5 J 74 -0.3 j 106 2.9

+ 43 -3.4 K 75 -0.2 k 107 3.0

, 44 -3.3 L 76 -0.1 l 108 3.1

- 45 -3.2 M 77 0.0 m 109 3.2

. 46 -3.1 N 78 0.1 n 110 3.3

/ 47 -3.0 O 79 0.2 o 111 3.4

0 48 -2.9 P 80 0.3 p 112 3.5

1 49 -2.8 Q 81 0.4 q 113 3.6

2 50 -2.7 R 82 0.5 r 114 3.7

3 51 -2.6 S 83 0.6 s 115 3.8

4 52 -2.5 T 84 0.7 t 116 3.9

5 53 -2.4 U 85 0.8 u 117 4.0

6 54 -2.3 V 86 0.9 v 118 4.1

7 55 -2.2 W 87 1.0 w 119 4.2

8 56 -2.1 X 88 1.1 x 120 4.3

29

Char Dec Coeff Char Dec Coeff Char Dec Coeff

9 57 -2.0 Y 89 1.2 y 121 4.4

: 58 -1.9 Z 90 1.3 z 122 4.5

; 59 -1.8 [91 1.4 { 123 4.6

< 60 -1.7 \ 92 1.5 | 124 4.7

= 61 -1.6] 93 1.6 } 125 4.8

> 62 -1.5 ^ 94 1.7 ~ 126 4.9

? 63 -1.4 _ 95 1.8 _ 127 5.0

ASCII codes from 0 to 31 are reserved for control codes—things like back-
space, carriage return, and line feed. Codes from 128 to 255 can also be used, but
there is no universal character set associated with them. By making use of all the
ASCII characters from 0 to 255, we can accommodate coefficients in the range of
-7.7 to 17.8. The characters listed in the table will suffice for most of our needs,
however.

With such a coding scheme, we can represent each attractor by a sequence
of characters, with each character corresponding to one of the coefficients. The
sequence can be thought of as the name of the attractor. We preface the name
with a character that indicates the type of equation. Let’s use the letter A to
represent one-dimensional quadratic maps. Thus the logistic equation coded in this
way is AMu%. Note that the letters in the name are case sensitive (u and U are
different), so you should be careful when typing them. Such names may look
strange, which is perhaps appropriate for strange attractors, and you shouldn’t try
to pronounce them! However, they do provide a convenient and compact
method for saving everything you need to reproduce an attractor.

2.4 The Computer Search

Before embarking on a search for strange attractors, we need to generalize
the formula given in Equation 1E for the Lyapunov exponent of the logistic equation.
The generalization is easily obtained using differential calculus, and the result is

30

L = ∑ log2 |a2 + 2a3Xn| / N (Equation 2C)

The program changes that are required to perform a search for strange
attractors in one-dimensional quadratic iterated maps are given in the listing
PROG03.

PROG03. Changes required in PROG02 to search for strange attractors in one-dimensional qua-
dratic maps

1000 REM ONE-D MAP SEARCH

1020 DIM XS(499), A(504), V(99)

1050 NMAX = 11000 'Maximum number of iterations

1160 RANDOMIZE TIMER 'Reseed random-number generator

1360 CLS : LOCATE 13, 34: PRINT "Searching..."

1560 GOSUB 2600 'Get coefficients

1580 P% = 0: LSUM = 0: N = 0: NL = 0

1590 XMIN = 1000000!: XMAX = -XMIN

1720 XNEW = A(1) + (A(2) + A(3) * X) * X

2020 N = N + 1

2110 IF N < 100 OR N > 1000 THEN GOTO 2200

2120 IF X < XMIN THEN XMIN = X

2130 IF X > XMAX THEN XMAX = X

31

2140 YMIN = XMIN: YMAX = XMAX

2200 IF N = 1000 THEN GOSUB 3100 'Resize the screen

2250 IF N < 1000 OR XS(I%) <= XL OR XS(I%) >= XH OR XNEW <= XL OR XNEW >= XH THEN
GOTO 2320

2410 IF ABS(XNEW) > 1000000! THEN T% = 2 'Unbounded

2430 GOSUB 2900 'Calculate Lyapunov exponent

2460 IF N >= NMAX THEN T% = 2 'Strange attractor found

2470 IF ABS(XNEW - X) < .000001 THEN T% = 2 'Fixed point

2480 IF N > 100 AND L < .005 THEN T% = 2 'Limit cycle

2600 REM Get coefficients

2660 CODE$ = "A"

2680 M% = 3

2690 FOR I% = 1 TO M% 'Construct CODE$

2700 GOSUB 2800 'Shuffle random numbers

2710 CODE$ = CODE$ + CHR$(65 + INT(25 * RAN))

2720 NEXT I%

2730 FOR I% = 1 TO M% 'Convert CODE$ to coefficient values

2740 A(I%) = (ASC(MID$(CODE$, I% + 1, 1)) - 77) / 10

2750 NEXT I%

2760 RETURN

2800 REM Shuffle random numbers

32

2810 IF V(0) = 0 THEN FOR J% = 0 TO 99: V(J%) = RND: NEXT J%

2820 J% = INT(100 * RAN)

2830 RAN = V(J%)

2840 V(J%) = RND

2850 RETURN

2900 REM Calculate Lyapunov exponent

2910 DF = ABS(A(2) + 2 * A(3) * X)

3030 IF DF > 0 THEN LSUM = LSUM + LOG(DF): NL = NL + 1

3040 L = .721347 * LSUM / NL

3070 RETURN

3100 REM Resize the screen

3120 IF XMAX - XMIN < .000001 THEN XMIN = XMIN - .0000005: XMAX = XMAX + .0000005

3130 IF YMAX - YMIN < .000001 THEN YMIN = YMIN - .0000005: YMAX = YMAX + .0000005

3160 MX = .1 * (XMAX - XMIN): MY = .1 * (YMAX - YMIN)

3170 XL = XMIN - MX: XH = XMAX + MX: YL = YMIN - MY: YH = YMAX + MY

3180 WINDOW (XL, YL)-(XH, YH): CLS

3310 LINE (XL, YL)-(XH, YH), , B

3460 RETURN

Here are six points to note about PROG03:

1. The maximum number of iterations (NMAX in line 1050) has been set

33

arbitrarily to 11,000. This is the number of iterations after which a strange
attractor is assumed to have been found if the magnitude of X never
exceeded one million and the Lyapunov exponent is positive (actually
greater than 0.005). You can decrease NMAX to speed the rate at which
attractors are found, or you can increase NMAX if you have a very fast
computer or want to give the displays more time to develop. The number of
iterations is a parameter that you can adjust for the most visually appealing
result. Most of the figures in this book were made with NMAX set at between
about 500,000 and 10 million, and they required between about a minute
and an hour to produce.

2. The seed for the random-number generator is taken in line 1160 as the
number of seconds lapsed since midnight (TIMER). This choice ensures that a
new sequence of random numbers is produced each time the program is
run, except in the unlikely event that it is run at exactly the same time each
day.

3. After 1000 iterations (line 2200), the screen is resized and erased by the
subroutine in lines 3100 through 3460 using the minimum and maximum
values of X between the 100th and 1000th iteration, allowing a 10% border
around the attractor.

4. To save time, the difference between each value of X and its predecessor
is evaluated in line 2470, and if the difference is less than one millionth, the
solution is assumed to be a fixed point even if the Lyapunov exponent is still
positive.

5. The Lyapunov exponent is not used as a criterion until after 100 iterations
(line 2480) to ensure that its value is reasonably accurate.

6. The coefficients of the equation are chosen in line 2710 using random
numbers that have been shuffled by the subroutine in lines 2800 through 2850
to minimize the chance of repeating the same search sequence.

The criterion for detecting a strange attractor is somewhat subjective. There
will always be borderline cases for which no amount of computing will suffice to
distinguish between a strange attractor and a periodic solution with a very long
period. However, our interest here is in finding visually interesting attractors quickly,
and so we can afford to make occasional mistakes. Such mistakes account for only
a small fraction of cases.

34

Of the 15,625 combinations of coefficients, exactly 364 (2.3%) are chaotic by
these criteria. Some of the more visually interesting ones are shown in Figures 2-1
through 2-4, in which the values are plotted versus their fifth previous iterate. For
each case, the code and the Lyapunov exponent are shown at the top of the
graph.

Figure 2-1. One-dimensional quadratic map

35

Figure 2-2. One-dimensional quadratic map

36

Figure 2-3. One-dimensional quadratic map

37

Figure 2-4. One-dimensional quadratic map

The search for strange attractors is potentially time-consuming if you have an
old computer without a math coprocessor or if you are using a BASIC interpreter
rather than a compiler. Even if the search is reasonably fast on your computer, be
forewarned that it will slow down considerably as you advance to the more
complicated equations later in the book. Perhaps this is a good time to summarize
some of your options for making the program run faster.

When comparing calculation speeds of various computers and compilers,
you must do the comparison with the actual program or a benchmark that
accurately reflects its mix of instructions, graphics, and disk access. With computer
speeds doubling approximately every two years, speed will eventually cease to be
a consideration for the calculations described in this book. Meanwhile, you need

38

to consider the alternatives.

Table 2-2 lists the average number of strange attractors found by PROG03 per
hour using various versions of BASIC on a 33-MHz 80486DX-based computer with
and without a math coprocessor. The exact numbers are less important than the
relative values. They provide a good indication of how the various versions of BASIC
compare on calculations of the type that are used throughout this book.

Table 2-2. Strange attractors found per hour by PROG03 with various versions of BASIC

Publisher Program Ver Type Attractors/hour

No copro Coproc

Microsoft GW-BASIC 3.2 Interpreter 92 92

Microsoft QBASIC 1.0 Interpreter 73 73

Microsoft QuickBASIC 4.5 Interpreter 78 396

Microsoft QuickBASIC 4.5 Compiler 98 390

Microsoft VB for DOS 1.0 Interpreter 72 393

Microsoft VB for DOS 1.0 Comp (alternate) 315 316

Microsoft VB for DOS 1.0 Comp (emulate) 139 418

Borland Turbo BASIC 1.1 Compiler 96 400

Spectra PowerBASIC 3.0 Comp (procedure) 246 1419

Spectra PowerBASIC 3.0 Comp (emulate) 123 1683

QuickBASIC and VisualBASIC for MS-DOS can be run from the editor environ-
ment, where they function much like an interpreter, or they can be used to compile
a stand-alone executable program. VisualBASIC can be compiled with either of
two floating point math packages; the alternate package is faster for machines
without a coprocessor, and the emulate package is faster for machines with a
coprocessor. Turbo BASIC is now obsolete and has been replaced by PowerBASIC.

39

PowerBASIC, like VisualBASIC, can be compiled with either of two floating point
math packages; the procedure package is similar to the VisualBASIC alternate
package. A third math package, NPX (87) is the same as emulate, except it cannot
work on a machine without a math coprocessor. The tests were done with all error
trapping turned off, which is inadvisable until you have a thoroughly debugged
program.

If you launch the program from Microsoft Windows, you might find the
computation speeds considerably different from those in Table 2.2. In one test, the
PowerBASIC speeds were cut in half, and the QuickBASIC speeds were increased
slightly from the values obtained when the program was run directly from DOS. You
should do your own speed tests to see what configuration provides the optimum
performance on your computer and operating system.

The executable program on the disk that accompanies this book was
compiled with PowerBASIC using the procedure package. If you have PowerBASIC
and a math coprocessor, you can recompile the program using the emulate or NPX
(87) package to achieve a slight improvement in speed.

2.5 Wig
gles on Wiggles

The preceding figures consist of segments of wiggly lines, so they are not very
artistic. To make things more interesting, we can consider one-dimensional maps of
higher order. By this we mean that we will not stop with quadratic (X2) maps, but we
will consider equations containing cubic (X3), quartic (X4), quintic (X5), and even
higher terms.

In one sense, considering higher-order terms is equivalent to plotting each
iterate versus an iterate earlier than the immediately previous one. For example,
two successive iterations of the second-order Equation 2A yields

Xn+2 = a1(1+a2+a1a3) + (a3a2+2a1a3)Xn

+ a3(a2+2a1a3+a2
2)Xn

2 + 2a2a3
2Xn

3 + a3
3Xn

4 (Equation 2D)

which is a fourth-order polynomial. However, there are only three parameters—a1,
a2, and a3—from which the five coefficients are uniquely determined.

A simpler and more general procedure is to allow each term in the polyno-
mial to have its own coefficient, which for fifth order gives

40

Xn+1 = a1 + a2Xn + a3Xn
2 + a4Xn

3 + a5Xn
4 + a6Xn

5 (Equation 2E)

With six coefficients, each with 25 possible values, there are 256 or about 244
million different combinations. Even if only a small percentage of them is chaotic,
we would have to look at one every second for about a year before we would see
them all.

The generalization of the expression for the Lyapunov exponent for a fifth-
order map is given by

L = ∑ log2 |a2 + 2a3Xn + 3a4Xn
2 + 4a5Xn

3 + 5a6Xn
4| / N (Equation 2C)

With these equations in hand, we can easily modify the program in PROG04
to search for one-dimensional attractors of up to fifth order. In our coding scheme,
a first letter of B represents third order, C represents fourth order, and D represents
fifth order. The program is written so that even higher orders can be produced by
changing the quantity OMAX% in line 1060.

PROG04. Changes required in PROG03 to search for strange attractors in one-dimensional maps of
order up to OMAX%

1000 REM ONE-D MAP SEARCH (Polynomials up to 5th Order)

1060 OMAX% = 5 'Maximum order of polynomial

1720 XNEW = A(O% + 1)

1730 FOR I% = O% TO 1 STEP -1

1830 XNEW = A(I%) + XNEW * X

1930 NEXT I%

2650 O% = 2 + INT((OMAX% - 1) * RND)

2660 CODE$ = CHR$(63 + O%)

2680 M% = O% + 1

41

2910 DF = 0

2930 FOR I% = O% TO 1 STEP -1

2940 DF = I% * A(I% + 1) + DF * X

2970 NEXT I%

3000 DF = ABS(DF)

PROG04 produces an interesting array of shapes, samples of which are
shown in Figures 2-5 through 2-10. The objects are still segments of lines, but the
wiggles themselves have wiggles, and the underlying determinism is less obvious
than before.

Figure 2-5. One-dimensional cubic map

42

Figure 2-6. One-dimensional quartic map

43

Figure 2-7. One-dimensional quartic map

44

Figure 2-8. One-dimensional quintic map

45

Figure 2-9. One-dimensional quintic map

46

Figure 2-10. One-dimensional quintic map

47

2.6 Making Music

If the preceding figures don’t qualify as art, perhaps they qualify as music.
Since the quantity X behaves in a deterministic yet unpredictable way, it may be
that a sequence of musical notes determined by X will mimic the order and
unpredictability that characterize music. It’s easy to test.

Suppose we allow the notes to span three octaves from A-220 to A-1760. The
letter refers to the musical note, and the numbers refer to the frequency in cycles
per second (called Hertz). We’ll allow the notes to take one of twelve distinct values
corresponding to the even-tempered scale, and for simplicity we’ll assume all the
notes to be of the same duration. Thus the range of possible values of X is divided
into 36 intervals, and each successive iterate of X is converted into the correspond-
ing musical note. PROG05 shows the changes necessary to accomplish this.

PROG05. Changes required in PROG04 to produce chaotic music

1000 REM ONE-D MAP SEARCH (With Sound)

1100 SND% = 1 'Turn sound on

2310 IF SND% = 1 THEN GOSUB 3500 'Produce sound

2490 Q$ = INKEY$: IF LEN(Q$) THEN GOSUB 3600 'Respond to user command

3500 REM Produce sound

3510 FREQ% = 220 * 2 ^ (CINT(36 * (XNEW - XL) / (XH - XL)) / 12)

3520 DUR = 1

3540 SOUND FREQ%, DUR: IF PLAY(0) THEN PLAY "MF"

3550 RETURN

48

3600 REM Respond to user command

3610 T% = 0

3630 IF ASC(Q$) > 96 THEN Q$ = CHR$(ASC(Q$) - 32)

3770 IF Q$ = "S" THEN SND% = (SND% + 1) MOD 2: T% = 3

3800 RETURN

The program allows you to toggle the sound on and off by pressing the S key.
Pressing any other key exits the program. You might wish to experiment with the
duration DUR of the SOUND statement in line 3520. Increasing its value from 1
(corresponding to approximately 0.055 seconds) makes the sounds more musical,
but then the calculation takes longer.

The use of sound to help interpret data generated by a computer is a
technique that is relatively unexplored. The method is sometimes called sonification.
In some cases, patterns and structure in data can be more readily discerned
audibly than visually. This technique was used to advantage in interpreting data
from the Voyager spacecraft as it detected plasma waves near Jupiter and
micrometeorites as it crossed through the rings of Saturn. The repetitive sound of a
simple limit cycle contrasts sharply with the nonrepetitive waverings of a chaotic
time series.

49

Chapter 3
Pieces of Planes

Whereas the last chapter discussed one-dimensional maps whose graphs
are segments of lines, this chapter deals with two-dimensional maps whose graphs
are pieces of planes and which thus produce much more interesting displays. This
chapter provides the minimum tools for creating attractors that genuinely qualify
as art. Armed with only the information contained here, you have such a great
variety of available patterns that you hardly need to proceed beyond this chapter.
But if you do stop here, you miss some delightful surprises.

3.1 Quadratic Maps in Two Dimensions

In the discussion so far, the maps have involved a single variable X whose
value changes with each iteration of the equation. Such maps are said to be one-
dimensional because the values of X can be thought of as lying along a line, and
a line is a one-dimensional object. By plotting each value of X versus a previous
value of X, the line can be made to wiggle with considerable complexity; but it
always remains a line, and lines are of limited interest and beauty.

The situation is more interesting when you consider iterated maps that involve
two variables, X and Y. In such a case, each iterate produces a point in a plane,
where X, by convention, represents the horizontal coordinate of the point, and Y
represents the vertical coordinate. With successive iteration, the points fill in some
portion of the plane. The visually interesting cases, as usual, are the chaotic ones.

Such two-dimensional maps might arise, for example, from an ecological
model only slightly more complicated than the logistic equation. A classic example
is the predator-prey problem in which X represents the prey and Y the predator. In
a simple linear model, the solution is a fixed point (a unique number of both
predators and prey) or a limit cycle (both the number of predators and the number
of prey oscillate, reaching their maximum values at different times, but eventually
repeating). When nonlinear terms are introduced into the model, the population of
each species can behave chaotically. You can think of each point that makes up
such an attractor as the population of predators and prey in successive years. Since
such complexity arises from these very simple models, it’s easy to understand why
ecologists might have trouble predicting the fate of biological species!

50

Perhaps the best known chaotic two-dimensional map is the Hénon map
(proposed by the French astronomer Michel Hénon in 1976), whose equations are

Xn+1 = 1 + aXn
2 + bYn

Yn+1 = Xn (Equation 3A)

The quantities a and b are the control parameters, analogous to R in the logistic
equation. Hénon used the values a = -1.4 and b = 0.3. The necessary nonlinearity is
provided by the X2 term in the first equation. The Hénon map is special because the
net contraction of a set of initial points covering an area of the XY plane is constant
with each iteration. The area occupied by the points is 30% of the area at the
previous iteration (from the bYn term). Other values of b can be used, but not all
values produce chaotic solutions. Unlike the logistic map, the Hénon map is
invertable; there is a unique value for Xn and Yn corresponding to each Xn+1 and
Yn+1. You may have seen an alternate form of the Hénon equations in which the
factor b appears instead in the second equation and the sign preceding the X2
term is negative. The result of repeated iteration of Equation 3A is shown in Figure
3-1.

51

Figure 3-1. The Hénon map

The resulting graph is more than a line but less than a surface. What resembles
a single line is a pair of lines, each of which is, in turn, another pair of lines, and so
forth to however close you look or whatever magnification you choose. This self-
similarity is a common characteristic of a class of objects that are called fractals.

Fractals are to chaos what geometry is to algebra—the visual expression of
the mathematical idea. Approaching an understanding of chaos through such
visual means is appealing to those with an aversion to conventional mathematics.
The Euclidean geometry we learned in high school originated with the ancient
Greeks and was developed more fully by the French mathematician Descartes and
others in the 1600s. It deals with simple shapes such as lines, circles, and spheres.
Euclidean geometry is now being augmented by fractal geometry, whose father
and champion is the contemporary mathematician, Benoit Mandelbrot. Fractals
appeared in art, such as in the drawings of the Dutch artist Maurits C. Escher, before

52

they were widely appreciated by mathematicians and scientists.

Some fractals are exactly self-similar, which means that they look the same
no matter how much you magnify them. Others, such as most of the ones in this
book, only have regions that are self-similar. There is no part of the Hénon map
where you can zoom in and find a miniature replica of the entire map. Other fractals
are only statistically self-similar, which means that a magnified portion of the object
has the same amount of detail as the whole, but it is not an exact replica of it. Nearly
all strange attractors are fractals, but not all fractals arise from strange attractors.

The Hénon map produces an object with a fractal dimension that is a fraction
intermediate between one and two. The fractal dimension is a useful quantity for
characterizing strange attractors. Isolated points have dimension zero, line seg-
ments have dimension one, surfaces have dimension two, and solids have dimen-
sion three. Strange attractors generally have noninteger dimensions.

Some authors make a distinction between strange attractors, which have
non-interger dimension, and chaotic attractors, which exhibit sensitivity to initial
conditions.

Since the Hénon map has X2 as its highest-order term, it is a quadratic map.
The most general two-dimensional iterated quadratic map is

Xn+1 = a1 + a2Xn + a3Xn
2 + a4XnYn + a5Yn + a6Yn

2

Yn+1 = a7 + a8Xn + a9Xn
2 + a10XnYn + a11Yn + a12Yn

2 (Equation 3B)

The two equations in Equation 3B have 12 coefficients. For the Hénon map, a1 = 1,
a3 = -1.4, a5 = 0.3, a8 = 1, and the other coefficients are zero. If we use the initial letter
E to represent two-dimensional quadratic maps, the code for the Hénon map
according to Table 2-1 is EWM?MPM2WM4, where we have introduced the short-
hand M2 for MM and M4 for MMMM.

Values of a in the range of -1.2 to 1.2 are sufficient to produce an enormous
variety of strange attractors. With increments of 0.1, there are 2512 or about 6 x 1016
different cases, of which approximately 1.6% or about 1015 are chaotic. Viewing
them all at a rate of one per second would require over 30 million years! Stated
differently, if each one were printed on an 81/2-by-11-inch sheet of paper, the

53

collection would cover nearly the entire land mass of Earth.

Note that not all the cases are strictly distinct. For example, if you replace X
with Y and Y with -X in Equation 3B, you produce an attractor rotated 90 degrees
counterclockwise from the original. When you do this, be sure to change Xn+1 and
Yn+1 as well as Xn and Yn. Thus the code EM4CMWJM3? produces a rotated version
of the Hénon map. In the same fashion, you can rotate an attractor through 180
degrees by replacing X with -X and Y with -Y and through 270 degrees by replacing
X with -Y and Y with X. Perhaps it’s easier just to rotate your computer monitor!

Besides rotations, there are cases that correspond to reflections. When
viewed in a mirror, the attractors have left and right reversed, but up and down
remain the same. A transformation in which X is replaced with -X accomplishes this.
Thus the code for a reflected Hénon map is ECM[MJM2CM4. In addition, the
reflections can be rotated. Thus there are at least eight so-called degenerate states
for each attractor, corresponding to rotations and reflections. Such symmetries and
degeneracies play an important role in science; they often reduce the amount of
work we have to do and provide relations between phenomena that initially
appear different.

Additional degenerate cases correspond to scale changes. For example, if
you replace X by mX and Y by nY with m = n, the attractor remains the same except
it is reduced in size by a factor of m. Some of the coefficients are likely to be outside
the allowed range, however. The Hénon map with m = n = 2 can be generated with
the code ERM1MPM2WM4. With m not equal to n, the horizontal and vertical
dimensions are scaled differently, but since the computer rescales the attractor to
fit the screen, the visual result is the same.

These degeneracies show that there are many ways to code a particular
attractor. Although this is true, there are so many different possible combinations of
coefficients that it is very unlikely that two degenerate cases will be found sponta-
neously. Thus the examples displayed in this chapter represent but a tiny fraction of
the possibilities, and you will be generating many other cases, almost none of which
have been seen before.

3.2 The Butterfly Effect Revisited

Two-dimensional chaotic iterated maps also exhibit sensitivity to initial con-
ditions, but the situation is more complicated than for one-dimensional maps.
Imagine a collection of initial conditions filling a small circular region of the XY plane.

54

After one iteration, the points have moved to a new position in the plane, but they
now occupy an elongated region called an ellipse. The circle has contracted in
one direction and expanded in the other. With each iteration, the ellipse gets
longer and narrower, eventually stretching out into a long filament. The orientation
of the filament also changes with each iteration, and it wraps up like a ball of taffy.

Thus two-dimensional chaotic maps have not a single Lyapunov exponent
but two—a positive one corresponding to the direction of expansion, and a
negative one corresponding to the direction of contraction. The signature of chaos
is that at least one of the Lyapunov exponents is positive. Furthermore, the
magnitude of the negative exponent has to be greater than the positive one so that
initial conditions scattered throughout the basin of attraction contract onto an
attractor that occupies a negligible portion of the plane. The area of the ellipse
continually decreases even as it stretches to an infinite length.

There is a proper way to calculate both of the Lyapunov exponents. For the
mathematically inclined, the procedure involves summing the logarithms of the
eigenvalues of the Jacobian matrix of the linearized transformation with occasional
Gram-Schmidt reorthonormalization. This method is slightly complicated, so we will
instead devise a simpler procedure sufficient for determining the largest Lyapunov
exponent, which is all we need in order to test for chaos.

Suppose we take two arbitrary but nearby initial conditions. The first few
iterations of the map may cause the points to get closer together or farther apart,
depending on the initial orientation of the two points. Eventually, the points will
come arbitrarily close in the direction of the contraction, but they will continue to
separate in the direction of the expansion. Thus if we wait long enough, the rate of
separation will be governed only by the largest Lyapunov exponent. Fortunately,
this usually takes just a few iterations.

However, because the separation grows exponentially for a chaotic system,
the points quickly become too far apart for an accurate estimate of the exponent.
This problem can be remedied if, after each iteration, the points are moved back
to their original separation along the direction of the new separation. The Lyapunov
exponent is then determined by the average of the distance they must be moved
for each iteration to maintain a constant small separation. If the two solutions are
separated by a distance dn after the nth iteration, and the separation after the next
iteration is dn+1, the Lyapunov exponent is determined from

L = ∑ log2 (dn+1 / dn) / N (Equation 3C)

where the sum is taken over all iterations from n = 0 to n = N-1. After each iteration,

55

the value of one of the iterates is changed to make dn+1 = dn. For the cases here,
dn equals 10-6. This procedure also allows us to deal with maps of three and even
higher dimensions in which there are more than two Lyapunov exponents.

3.3 Searching the Plane

We now have all the tools in hand to conduct a computer search for
attractors in two dimensions. The procedure is the same as for one-dimensional
maps, except the Lyapunov exponent calculation is done differently and the X and
Y variables are plotted as a point in the plane after each iteration. PROG06 shows
the changes needed to accomplish such a search.

PROG06. Changes required in PROG05 to search for two-dimensional quadratic strange attractors

1000 REM TWO-D MAP SEARCH

1060 OMAX% = 2 'Maximum order of polynomial

1070 D% = 2 'Dimension of system

1100 SND% = 0 'Turn sound off

1520 Y = .05

1550 XE = X + .000001: YE = Y

1590 XMIN = 1000000!: XMAX = -XMIN: YMIN = XMIN: YMAX = XMAX

1720 XNEW = A(1) + X * (A(2) + A(3) * X + A(4) * Y)

1730 XNEW = XNEW + Y * (A(5) + A(6) * Y)

1830 YNEW = A(7) + X * (A(8) + A(9) * X + A(10) * Y)

1930 YNEW = YNEW + Y * (A(11) + A(12) * Y)

56

2140 IF Y < YMIN THEN YMIN = Y

2150 IF Y > YMAX THEN YMAX = Y

2240 IF D% = 1 THEN XP = XS(I%): YP = XNEW ELSE XP = X: YP = Y

2250 IF N < 1000 OR XP <= XL OR XP >= XH OR YP <= YL OR YP >= YH THEN GOTO 2320

2300 PSET (XP, YP) 'Plot point on screen

2410 IF ABS(XNEW) + ABS(YNEW) > 1000000! THEN T% = 2 'Unbounded

2470 IF ABS(XNEW - X) + ABS(YNEW - Y) < .000001 THEN T% = 2

2520 Y = YNEW

2660 CODE$ = CHR$(59 + 4 * D% + O%)

2680 M% = 1: FOR I% = 1 TO D%: M% = M% * (O% + I%): NEXT I%

2910 XSAVE = XNEW: YSAVE = YNEW: X = XE: Y = YE: N = N - 1

2930 GOSUB 1700 'Reiterate equations

2940 DLX = XNEW - XSAVE: DLY = YNEW - YSAVE

2960 DL2 = DLX * DLX + DLY * DLY

2970 IF CSNG(DL2) <= 0 THEN GOTO 3070 'Don't divide by zero

2980 DF = 1000000000000# * DL2

2990 RS = 1 / SQR(DF)

3000 XE = XSAVE + RS * (XNEW - XSAVE): YE = YSAVE + RS * (YNEW - YSAVE)

3020 XNEW = XSAVE: YNEW = YSAVE

57

3030 IF DF > 0 THEN LSUM = LSUM + LOG(DF): NL = NL + 1

3040 L = .721347 * LSUM / NL

3110 IF D% = 1 THEN YMIN = XMIN: YMAX = XMAX

This program produces an incredible variety of interesting patterns, a small
selection of which is shown in Figures 3-2 through 3-17. Admire the beauty and
variety of these figures, and then make some of you own by running the program.
If your computer has a printer, use the Print Screen key to print any that you find
especially appealing.

Figure 3-2. Two-dimensional quadratic map

58

Figure 3-3. Two-dimensional quadratic map

59

Figure 3-4. Two-dimensional quadratic map

60

Figure 3-5. Two-dimensional quadratic map

61

Figure 3-6. Two-dimensional quadratic map

62

Figure 3-7. Two-dimensional quadratic map

63

Figure 3-8. Two-dimensional quadratic map

64

Figure 3-9. Two-dimensional quadratic map

65

Figure 3-10. Two-dimensional quadratic map

66

Figure 3-11. Two-dimensional quadratic map

67

Figure 3-12. Two-dimensional quadratic map

68

Figure 3-13. Two-dimensional quadratic map

69

Figure 3-14. Two-dimensional quadratic map

70

Figure 3-15. Two-dimensional quadratic map

71

Figure 3-16. Two-dimensional quadratic map

72

Figure 3-17. Two-dimensional quadratic map

73

If you are an experienced programmer, you might consider writing a screen-
saver program based on PROG06. Such a terminate-and-stay-resident (TSR) pro-
gram is run once when the computer is turned on and leaves a portion of itself in
memory, constantly monitoring keyboard and mouse activity. When there is no user
activity for, say, five minutes, it blanks the screen and begins displaying a succession
of unique strange attractors to prevent screen burn-in. The original screen is restored
whenever a key is pressed or the mouse is moved. PowerBASIC version 3.0 allows
you to do this easily by inserting the program between POPUP statements.

3.4 The Fractal Dimension

The previous figures differ considerably in how densely they fill the plane.
Some are very thin, others are thick. A good contrast is provided by Figures 3-16 and
3-17. Figure 3-16 resembles a piece of string that has been laid down in a
complicated shape on the page, whereas Figure 3-17 looks like a twisted piece of
paper with many holes in it. Thus the object in Figure 3-16 has a fractal dimension
close to 1, and the object in Figure 3-17 has a fractal dimension closer to 2.

It is possible to be more explicit and to calculate the fractal dimension
exactly. Consider two simple cases, one in which successive iterates lie uniformly
along a straight line that goes diagonally across the page, and the other in which
successive iterates gradually fill the entire plane, as if they were grains of pepper
sprinkled on the paper from a great height. The first case has dimension 1, and the
second has dimension 2. How would we calculate the dimension, given the X and
Y coordinates of an arbitrary collection of such points?

One method is to draw a small circle somewhere on the plane that surrounds
at least one of the points. We then draw a second circle with the same center but
with twice the radius. Now we count the number of points inside each circle. Let’s
say the smaller circle encloses N1 points and the larger circle encloses N2 points.
Obviously N2 is greater than or equal to N1 because all the points inside the inner
circle are also inside the outer circle.

If the points are widely separated, then N2 equals N1. If the points are part of
a straight line, the larger circle on average encloses twice as many points as the
smaller circle, but if the points are part of a plane, the larger circle on average
encloses four times as many points as the smaller circle, because the area of a circle
is proportional to the square of its radius. Thus for these simple cases the dimension
is given by

74

F = log2 (N2 / N1) (Equation 3D)

It is hardly surprising that if you do this operation for the cases shown in the figures,
the quantity F is neither 0 nor 1 nor 2 but rather a fraction.

With real data, a number of practical considerations determine the accu-
racy of the result and the amount of computation required to obtain it:

1. Is a circle the best shape, or would a square, rectangle, triangle, or some
other shape be better?

2. How large should the circle be?

3. Is doubling the size of the circle optimal, or would some other factor be
better?

4. Where should the circles be placed, and how many circles are required to
obtain a representative average?

5. How many points are needed to produce a reliable fractal dimension?

Let’s address each of these questions in turn.

There is nothing special about circles. A rectangle, triangle, or any other two-
dimensional figure would suffice, because the area scales as the square of the
linear dimension in each case. However, a circle is convenient because it is easy to
tell whether a given point is in its interior by comparing the radius of the circle with
the distance of the point from its center.

The optimum size of the circle represents a compromise. Ideally, the circles
should be invisibly small, because the dimension is defined in the limit of infinite
resolution. However, if the circles are too small, they contain too few points to
produce a statistically meaningful result, unless an unreasonably large number of
iterations is performed. We somewhat arbitrarily use circles with a radius equal to
about 2% of the diagonal of the smallest rectangle that contains the attractor.

Similarly, doubling the radius of the circle is arbitrary. Small values degrade
the statistics, and large values miss too much of the fine-scale structure. We will use
a value of ten, with the smaller circle about 0.6% the size of the attractor and the
larger circle about 6% the size of the attractor. Thus in Equation 3D we will use
logarithms of base 10 (log10) instead of base 2 (log2).

75

Ideally, the circles should be placed uniformly or randomly over the plane.
However, if we were to do this, most of the circles would be empty, and a very long
calculation would be required to obtain an accurate estimate of the dimension.
Instead, we center the circles on the data points themselves. In this way the circles
tend to enclose many points. However, it represents a different type of average
because it weighs more heavily the portions of the attractor where the points are
most dense. Technically, what we are calculating is called the correlation dimen-
sion, because it involves the number of other points that are correlated with each
point in the data set. The correlation dimension is never greater than the fractal
dimension, but it tends not to be much smaller either.

The correlation dimension is only one of many ways to define the dimension
of an attractor. The various methods differ in how the regions of the attractor are
weighed in the average. It is probably the easiest method to implement, and it gives
more reliable results than the fractal dimension when the dimension of the attractor
is greater than about two. The fractal dimension is also called the capacity
dimension, and it is closely related to the Hausdorff-Besicovitch dimension. Further-
more, the correlation dimension is probably a more meaningful measure of the
strangeness of the attractor, because it includes information about its formation as
well as its final appearance.

The number of data points required to provide an accurate estimate of the
dimension is a question still being debated in the scientific literature. Therefore, we
will use a heuristic approach and continually update the dimension estimate with
each iteration, giving you an opportunity to decide when it seems to have
converged to a unique value. To do this, we must modify the procedure slightly.
Rather than count the number of data points within a circle, which would require
that the calculation run to conclusion with the coordinates of all the points saved,
we use the equivalent method of determining the probability that two randomly
chosen points are within a certain distance of one another. To do this, the distance
of each new iterate from one of its randomly chosen predecessors is calculated.
Now you see why we bothered to save the last 500 iterates! We exclude the most
recent 20 points, because the iterates are likely to be abnormally highly correlated
with their recent predecessors. Thus, with each iteration, we have only one
additional calculation to do in which we compare the distance of the iterate to one
of its randomly chosen predecessors and increment N1 and N2, as appropriate.
PROG07 shows the changes needed to calculate and display the fractal dimen-
sion.

PROG07. Changes required in PROG06 to calculate and display the fractal dimension

76

1000 REM TWO-D MAP SEARCH (With Fractal Dimension)

1020 DIM XS(499), YS(499), A(504), V(99)

1580 P% = 0: LSUM = 0: N = 0: NL = 0: N1 = 0: N2 = 0

1620 TWOD% = 2 ^ D%

2210 XS(P%) = X: YS(P%) = Y

2440 GOSUB 3900 'Calculate fractal dimension

3030 LSUM = LSUM + LOG(DF): NL = NL + 1

3060 IF N > 1000 AND N MOD 10 = 0 THEN LOCATE 1, 76: PRINT USING "##.##"; L;

3170 XL = XMIN - MX: XH = XMAX + MX: YL = YMIN - MY: YH = YMAX + 1.5 * MY

3190 YH = YH - .5 * MY

3400 LOCATE 1, 1: PRINT CODE$

3420 LOCATE 1, 63: PRINT "F =": LOCATE 1, 73: PRINT "L ="

3900 REM Calculate fractal dimension

3910 IF N < 1000 THEN GOTO 4010 'Wait for transient to settle

3920 IF N = 1000 THEN D2MAX = (XMAX - XMIN) ^ 2 + (YMAX - YMIN) ^ 2

3930 J% = (P% + 1 + INT(480 * RND)) MOD 500

3940 DX = XNEW - XS(J%): DY = YNEW - YS(J%)

77

3950 D2 = DX * DX + DY * DY

3960 IF D2 < .001 * TWOD% * D2MAX THEN N2 = N2 + 1

3970 IF D2 > .00001 * TWOD% * D2MAX THEN GOTO 4010

3980 N1 = N1 + 1

3990 F = .434294 * LOG(N2 / (N1 - .5))

4000 LOCATE 1, 66: PRINT USING "##.##"; F;

4010 RETURN

At this point you might want to examine the fractal dimension of the various
figures in this book as well as the dimension of those you create with PROG07. One
thing you will notice is that the dimension of objects that resemble lines is often less
than 1.0. One reason is that the points that make up the line are seldom uniformly
distributed along its length. Remember that the correlation dimension is usually
smaller than the fractal dimension. They are equal if the points are uniformly
distributed over the attractor. The correlation dimension of a line consisting of a
uniform distribution of points along its length would be exactly 1.0.

Also note that the dimension of most attractors varies considerably from one
part of the attractor to another. Figure 3-11 is a good example of one in which parts
of the attractor resemble thin lines and other parts resemble filled-in planes. It
obviously is simplistic to characterize such an object by a single average dimension.

The dimension also depends on scale. It is properly defined in the limit where
one zooms in very tightly on the attractor to observe its finest detail. However, a
calculation in this limit would take forever because an infinite number of iterations
would be required to collect enough points to reveal the detail. Figure 3-13 is an
example of an attractor that is nearly one-dimensional on a large scale but closer
to two-dimensional on a fine scale. Our calculation provides what might be called
a visual dimension because it is taken on a scale close to what the eye can visually
resolve. In any case, you should not ascribe undue significance to the calculated
dimension.

Also note that we are using the word "dimension" to mean several different
things. The maps that we are looking at are two-dimensional because they have
two variables, X and Y. However, the attractor has a smaller dimension. We say the

78

attractor is embedded in a two-dimensional space or that the embedding dimen-
sion is 2. A point or a line can be embedded in a plane, but a ball cannot.

An attractor usually fills a negligible portion of the space in which it is
embedded. That’s why it’s called an attractor! Points initially distributed throughout
the embedding space are drawn to the attractor after a number of iterations, and
the remaining space is left empty. Thus the area of an attractor embedded in a two-
dimensional space is zero, and the volume of an attractor embedded in a three-
dimensional space is zero, and so forth.

It is also interesting that the fractal dimension and the Lyapunov exponents
are not entirely independent. It has been conjectured that the fractal dimension is
related to the two Lyapunov exponents by

F = 1 - L1 / L2 (Equation 3E)

where L1 is the more positive of the two exponents and is the one we denote by L
in the figures. If both Lyapunov exponents are known, Equation 3E can be used to
define a dimension of the attractor, called the Lyapunov dimension. The Lyapunov
dimension is also called the Kaplan-Yorke dimension after the scientists who
proposed an extension of Equation 3E to higher dimensions.

This relation is reasonable because, if the two exponents are equal but of
opposite signs (L2 = - L1), the contraction in one direction is just offset by expansion
in the other. A set of initial conditions spread out over a two-dimensional region thus
maintains its area upon successive iteration. Such a mapping is said to be area-
preserving, symplectic, or Hamiltonian, after the 19th-century Irish astronomer,
William Rowan Hamilton. On the other hand, if the contraction is very rapid (L2 is
large and negative), the initial conditions quickly collapse to a very elongated
ellipse whose dimension is close to 1. Such a contraction is sometimes called
filamentation.

Armed with information about the fractal dimension, you can program the
computer to be even more selective. For example, the visually appealing attractors
tend to have fractal dimensions slightly greater than 1, and thus you could reject
those with smaller dimensions or those with dimensions close to 2. We return to this
intriguing possibility in Chapter 8.

79

3.5 Higher-Order Disorder

With one-dimensional maps, the attractors became more interesting when
we considered terms higher than quadratic. It is straightforward to do the same with
two-dimensional maps. For example, the most general equations for two-dimen-
sional cubic maps are

Xn+1 = a1 + a2Xn + a3Xn
2 + a4Xn

3 + a5Xn
2Yn

+ a6XnYn + a7XnYn
2 + a8Yn + a9Yn

2 + a10Yn
3

Yn+1 = a11 + a12Xn + a13Xn
2 + a14Xn

3 + a15Xn
2Yn

+ a16XnYn + a17XnYn
2 + a18Yn + a19Yn

2 + a20Yn
3 (Equation 3F)

Note that there are 20 coefficients, which vastly increases the number of
possible cases. The fourth-order case would have 30 coefficients, and the fifth-order
case would have 42 coefficients. If you prefer an equation, a two-dimensional map
of order O has (O + 1)(O + 2) coefficients. We will code the cubic, quartic, and
quintic cases with the letters F, G, and H, respectively.

The changes that must be made to the program to generate attractors in two
dimensions up to fifth order are given in PROG08.

PROG08. Changes required in PROG07 to generate attractors in two dimensions up to fifth order

1000 REM TWO-D MAP SEARCH (Polynomials up to 5th Order)

1020 DIM XS(499), YS(499), A(504), V(99), XY(4), XN(4)

1060 OMAX% = 5 'Maximum order of polynomial

1720 M% = 1: XY(1) = X: XY(2) = Y

1730 FOR I% = 1 TO D%

1740 XN(I%) = A(M%)

1750 M% = M% + 1

80

1760 FOR I1% = 1 TO D%

1770 XN(I%) = XN(I%) + A(M%) * XY(I1%)

1780 M% = M% + 1

1790 FOR I2% = I1% TO D%

1800 XN(I%) = XN(I%) + A(M%) * XY(I1%) * XY(I2%)

1810 M% = M% + 1

1820 IF O% = 2 THEN GOTO 1970

1830 FOR I3% = I2% TO D%

1840 XN(I%) = XN(I%) + A(M%) * XY(I1%) * XY(I2%) * XY(I3%)

1850 M% = M% + 1

1860 IF O% = 3 THEN GOTO 1960

1870 FOR I4% = I3% TO D%

1880 XN(I%) = XN(I%) + A(M%) * XY(I1%) * XY(I2%) * XY(I3%) * XY(I4%)

1890 M% = M% + 1

1900 IF O% = 4 THEN GOTO 1950

1910 FOR I5% = I4% TO D%

1920 XN(I%) = XN(I%) + A(M%) * XY(I1%) * XY(I2%) * XY(I3%) * XY(I4%) * XY(I5%)

1930 M% = M% + 1

1940 NEXT I5%

1950 NEXT I4%

1960 NEXT I3%

1970 NEXT I2%

1980 NEXT I1%

81

2000 NEXT I%

2010 M% = M% - 1: XNEW = XN(1): YNEW = XN(2)

PROG08 could have been written more compactly, but it is done this way to
simplify its extension to even higher dimensions. Examples of attractors produced by
this program are shown in Figures 3-18 through 3-41.

Figure 3-18. Two-dimensional cubic map

82

Figure 3-19. Two-dimensional cubic map

83

Figure 3-20. Two-dimensional cubic map

84

Figure 3-21. Two-dimensional cubic map

85

Figure 3-22. Two-dimensional cubic map

86

Figure 3-23. Two-dimensional cubic map

87

Figure 3-24. Two-dimensional cubic map

88

Figure 3-25. Two-dimensional cubic map

89

Figure 3-26. Two-dimensional quartic map

90

Figure 3-27. Two-dimensional quartic map

91

Figure 3-28. Two-dimensional quartic map

92

Figure 3-29. Two-dimensional quartic map

93

Figure 3-30. Two-dimensional quartic map

94

Figure 3-31. Two-dimensional quartic map

95

Figure 3-32. Two-dimensional quartic map

96

Figure 3-33. Two-dimensional quartic map

97

Figure 3-34. Two-dimensional quintic map

98

Figure 3-35. Two-dimensional quintic map

99

Figure 3-36. Two-dimensional quintic map

100

Figure 3-37. Two-dimensional quintic map

101

Figure 3-38. Two-dimensional quintic map

102

Figure 3-39. Two-dimensional quintic map

103

Figure 3-40. Two-dimensional quintic map

104

Figure 3-41. Two-dimensional quintic map

Perhaps this is a good point to pause and reiterate in what sense these
objects are attractors. If you choose initial values of X and Y somewhere near the
attractor, within its basin of attraction, and substitute these values into the equa-
tions that describe the attractor, the new values of X and Y represent a point in the
plane that is closer to the attractor. After a number of iterations, the point works its
way to the attractor, and thereafter it moves around on the attractor in some
complicated manner, eventually visiting every part of the attractor. The next
position can always be simply and accurately predicted from the current position,
but the small, inevitable uncertainty in position continually increases so that a long-
term prediction is impossible, except to say that the point is somewhere on the
attractor. You can think of the attractor as the set of all possible long-term solutions
of the equations that produced it.

Besides the error in knowing perfectly the initial conditions, there are also

105

computer round-off errors at each iteration. Given the extreme sensitivity to small
errors, you may wonder whether any computer is capable of calculating correctly
such a chaotic process. It is true that if the same chaotic equations are iterated on
two computers using different precision or round-off methods, the sequence of
iterates is almost certainly completely different after a few dozen iterations.
However, the appearance of the attractor is probably the same. In such a case, we
say that the solution is structurally stable or robust. Furthermore, according to the
shadowing lemma, an appropriate small change in initial conditions produces a
chaotic sequence that follows arbitrarily close to the computed one.

Since computers always round the results of calculations to a finite number
of digits (or more precisely, bits), a limited number of values is allowed. Thus
successive iteration of a map always eventually repeats a previously obtained
value, whereupon the solution reproduces exactly the same sequence of states as
it did before. Strictly speaking, every such solution is periodic, and true chaos
cannot be observed with a computer. However, with double-precision floating-
point variables, which are normally 64 bits, there are 264 or about 1019 possible
values. It can be shown that an average periodicity occurs after about the square
root of this number of iterations, which is about 3 x 109. Until the number of iterations
approaches this value, there is little cause to worry. For maps higher than one
dimension, this problem is even less serious because all the variables have to reach
a previously existing state at the same time.

It is also interesting to realize that infinitely many periodic solutions are
embedded in each attractor. These solutions are called periodic orbits. From
wherever you start on the attractor, you eventually return to a point arbitrarily close
to the starting point. This result is called the Poincaré recurrence theorem, after
Jules-Henri Poincaré, a French mathematician who a hundred years ago por-
tended the modern era of chaos. Thus by making only a small change in the starting
point, it is possible, in principle, to return exactly to the starting point, which implies
a periodic orbit with a period equal to the number of iterations required to return.
Most of these orbits have very large periods, however.

Every point on the attractor is arbitrarily close to such a periodic orbit, but the
chance that a randomly chosen point on the attractor lies on such an orbit is
infinitesimal. We say that the periodic orbits are dense on the attractor. These orbits,
though infinite in number, constitute a Cantor set of measure zero. The periodic
orbits are unstable in the sense that if you get just slightly off the orbit, you continue
to get farther away with each iteration.

The strange attractors exhibited in this book are examples of orbital fractals.
They should be distinguished from escape-time fractals, which show the basin of

106

attraction and typically display with color the number of iterations required for
points outside the basin to escape beyond some predefined region. The Mandelbrot
and Julia sets are perhaps the best-known escape-time fractals. Escape-time
fractals require much longer computing times to develop but provide dazzling
displays with exotic fine-scale structures.

3.6 Strange Attractor Planets

The previous figures have obvious beauty, but they generally lack symmetry.
Nature mixes symmetry with disorder, and our sense of beauty has developed
accordingly. The Earth viewed from outer space is beautiful in part because the
irregular features of the clouds and continents are superimposed on a nearly
perfect sphere.

There are many ways to do the same with our attractors. Suppose, for
example, X and Y are not the horizontal and vertical positions in a plane but rather
the longitude and latitude on the surface of the Earth. The result is an object that
might resemble a strange planet with swirling clouds, oceans, canals, craters, and
other features.

Note that mapping a plane onto a sphere is a nonlinear transformation. You
can’t wrap a piece of paper around a globe without a large nonuniform stretching.
That’s why Greenland looks larger than South America on most flat maps. When a
sphere is projected onto a flat computer screen or onto the page of a book, it is
stretched so as to magnify the central portion of the attractor and compress the
edges.

If θ is the longitude (measured from zero at the right edge) and φ is the latitude
(measured from zero at the top), the X and Y coordinates of the projection of a
sphere onto the screen are given by

Xp = cos _ sin _

Yp = cos _ (Equation 3G)

We get θ from X by a scaling that keeps θ in the range of 0 to π radians (180
degrees), because there is no need to plot points that lie on the back side of the
planet. Similarly, we get φ from Y by a scaling that keeps φ in the range of 0 (at the
North Pole) to π radians (at the South Pole). The program modifications required to
accomplish this transformation are given in PROG09. This program allows you to

107

toggle back and forth between the two types of projection by pressing the P key.

PROG09. Changes required in PROG08 to project attractor onto a sphere

1000 REM TWO-D MAP SEARCH (Projected onto a Sphere)

1110 PJT% = 1 'Projection is spherical

2260 IF PJT% = 1 THEN GOSUB 4100 'Project onto a sphere

3200 XA = (XL + XH) / 2: YA = (YL + YH) / 2

3310 IF PJT% <> 1 THEN LINE (XL, YL)-(XH, YH), , B

3320 IF PJT% = 1 THEN CIRCLE (XA, YA), .36 * (XH - XL)

3330 TT = 3.1416 / (XMAX - XMIN): PT = 3.1416 / (YMAX - YMIN)

3750 IF Q$ = "P" THEN PJT% = (PJT% + 1) MOD 2: T% = 3: IF N > 999 THEN N = 999

4100 REM Project onto a sphere

4110 TH = TT * (XMAX - XP)

4120 PH = PT * (YMAX - YP)

4130 XP = XA + .36 * (XH - XL) * COS(TH) * SIN(PH)

4140 YP = YA + .5 * (YH - YL) * COS(PH)

4150 RETURN

Figures 3-42 through 3-57 show some examples of two-dimensional attractors

108

projected onto a sphere. Note that the features on the attractors tend to converge
at the poles at the tops and bottoms of the figures. This convergence could be
suppressed by using an area-preserving transformation that stretches the Y values
near the poles by the same factor that the X values are compressed. The simplest
way to produce this effect is to delete line 4140.

Figure 3-42. Two-dimensional quadratic map projected onto a sphere

109

Figure 3-43. Two-dimensional quadratic map projected onto a sphere

110

Figure 3-44. Two-dimensional quadratic map projected onto a sphere

111

Figure 3-45. Two-dimensional quadratic map projected onto a sphere

112

Figure 3-46. Two-dimensional cubic map projected onto a sphere

113

Figure 3-47. Two-dimensional cubic map projected onto a sphere

114

Figure 3-48. Two-dimensional cubic map projected onto a sphere

115

Figure 3-49. Two-dimensional cubic map projected onto a sphere

116

Figure 3-50. Two-dimensional quartic map projected onto a sphere

117

Figure 3-51. Two-dimensional quartic map projected onto a sphere

118

Figure 3-52. Two-dimensional quartic map projected onto a sphere

119

Figure 3-53. Two-dimensional quartic map projected onto a sphere

120

Figure 3-54. Two-dimensional quintic map projected onto a sphere

121

Figure 3-55. Two-dimensional quintic map projected onto a sphere

122

Figure 3-56. Two-dimensional quintic map projected onto a sphere

123

Figure 3-57. Two-dimensional quintic map projected onto a sphere

If you are using PowerBASIC or its predecessor, Turbo BASIC, and VGA
graphics, you will notice a slight incompatibility with the CIRCLE command that
causes the size of the circle that surrounds the attractor to vary from case to case.
In these dialects of BASIC, the radius of the circle in SCREEN modes 11 and 12 is
specified in units of the screen height rather than its width. If you encounter this
problem, try replacing .36 * (XH - XL) in line 3320 with .5 * (YH - YL).

Planes and spheres are not the only two-dimensional surfaces onto which
attractors can be projected. A cylinder is another possibility. The cylinder can be
oriented with its axis either horizontal or vertical or tilted at some arbitrary angle. A
torus is another possibility. You may be able to think of other more exotic surfaces
onto which the attractors can be projected.

124

3.7 Designer Plaids

It is interesting that all the one-dimensional maps described in the previous
chapter are included in the two-dimensional cases. One needs only to set the
coefficients of the Y equation to zero. For example, a two-dimensional map
equivalent to the logistic equation is given by the code EMu%M9. However,
because Y doesn’t change with successive iterations, a graph of Y versus X is simply
a straight, horizontal line.

To display the logistic parabola, we need to replace X with the next iterate
of X and Y with the second next iterate of X. Two successive iterations of a quadratic
map requires a fourth-order equation. A code that accomplishes this is
GMu%M13NHUIM10.

There are other examples of two-dimensional maps that are really one-
dimensional maps in disguise. Suppose Xn+1 depends only on Yn and Yn+1
depends only on Xn. Then Xn+2 depends only on Xn, and we have a one-
dimensional map for X in which Y is merely an intermediate value of X. The most
general fifth-order polynomial example of such a case is

Xn+1 = a1 + a17Yn + a18Yn
2 + a19Yn

3 + a20Yn
4 + a21Yn

5

Yn+1 = a22 + a23Xn + a24Xn
2 + a25Xn

3 + a26Xn
4 + a27Xn

5 (Equation 3H)

This case can be achieved by setting the remaining 30 coefficients to zero in
PROG09 by adding the following line after line 2730:

2735 IF (I% > 1 AND I% < M% / 2 - O%) OR I% > M% / 2 + O% + 1 THEN MID$(CODE$,
I% + 1, 1) = "M"

The result is to produce a 25th-order, one-dimensional polynomial map displayed
in two dimensions.

Figures 3-58 through 3-61 show sample attractors obtained in this way. Notice
that they fill in rectangular regions resembling a plaid tartan, in sharp contrast to all
the previous cases. These attractors are especially appropriate for projecting onto
spheres because the features line up east-west along parallels and north-south
along meridians. Figures 3-62 and 3-63 show some examples of plaid planetary
attractors.

125

Figure 3-58. Two-dimensional quadratic plaid map

126

Figure 3-59. Two-dimensional cubic plaid map

127

Figure 3-60. Two-dimensional quartic plaid map

128

Figure 3-61. Two-dimensional quintic plaid map

129

Figure 3-62. Two-dimensional quadratic plaid map on a sphere

130

Figure 3-63. Two-dimensional quintic plaid map on a sphere

You might want to try adding colors to emulate a decorative cloth pattern.
One way to do this is to color the pixels according to the number of times they are
visited by the orbit. This is easily done by changing line 2300 in the program to

2300 PSET (XP, YP), (POINT (XP, YP) + 1) MOD 16

which causes the color of the existing point at (XP, YP) to be tested and then plotted
with the next color in the palette of 16 colors. In Chapter 4, we discuss other ways
to produce colorful attractors.

131

3.8 Strange Attractors that Don’t

From the foregoing discussion, you might conclude that all chaotic equa-
tions produce strange attractors. Such is not the case. Under certain conditions, the
successive iterates of an equation wanders chaotically throughout a region of the
plane. There is no basin of attraction, and initial conditions near but outside the
chaotic region are not drawn to the region but rather lie on closed curves. Although
the chaotic region is not a strange attractor, it may have considerable beauty.

For a chaotic solution not to attract, the area occupied by a cluster of nearby
initial conditions must remain the same with successive iterations. The cluster
generally contracts in one direction and expands in the other, but the contraction
and expansion just cancel, producing a long, thin filament of constant area. A
characteristic of such a case is that the two Lyapunov exponents are equal in
magnitude but of opposite signs. Such a system is area-preserving. An important
class of area-preserving systems are Hamiltonian systems with their corresponding
symplectic maps.

You might think that Hamiltonian systems are relatively rare in nature, be-
cause they require a special condition. However, there are many important
examples of Hamiltonian chaos. They arise because there are quantities in nature
such as energy and angular momentum that, in the absence of friction, remain
accurately constant no matter how complicated the behavior of the system. We
say these quantities are conserved or that they are constants of the motion. The
motion of a planet orbiting a binary-star system or the motion of an electron near
the null in a magnetic field exhibits Hamiltonian chaos. A more familiar example is
the filamentation of milk when it is stirred into coffee, in which case the volume of
the milk is conserved because liquids are nearly incompressible.

With equations such as those we have been using with randomly chosen
coefficients, the chance of inadvertently finding an area-preserving solution is
essentially zero. However, by placing appropriate conditions on the coefficients,
we can guarantee such solutions. The following is an example of an area-preserv-
ing, two-dimensional polynomial map:

Xn+1 = a1 + a2Xn + a3Xn
2 + a4Xn

3 + a5Xn
4 + a6Xn

5 ± Yn

Yn+1 = a22 ± Xn (Equation 3I)

This map is fifth order to provide seven arbitrary coefficients that ensure a
large number of solutions. The coefficient labels are consistent with the general two-
dimensional fifth-order map, in which 33 of the coefficients have been set to zero.

132

The two terms preceded with ± have coefficients (a17 and a23) of either +1 or -1,
and this feature guarantees an area-preserving solution. If the signs are the same
(both plus or both minus), chaotic solutions are not found. Hamiltonian chaos can
occur when the signs are opposite. The negative product of these two coefficients
is the Jacobian of the map (J = -a17a23). The Jacobian is a measure of the net
contraction, and it must equal 1.0 for a Hamiltonian system.

Hamiltonian cases can be produced by adding the following lines to PROG09
after line 2730:

2735 IF I% > O% + 1 AND I% <> M% / 2 + 1 THEN MID$(CODE$, I% + 1, 1)
= "M"

2736 MID$(CODE$, M% / 2 - O% + 2, 1) = "W": MID$(CODE$, M% / 2 + 3, 1)
= "C"

Sample chaotic symplectic maps are shown in Figures 3-64 through 3-71.
Most of the cases resemble chains of islands in which each island contains a fixed
point surrounded by closed contours that are not shown. These cases were
produced using initial values of X = Y = 0.05. Other initial conditions would produce
completely different pictures because there is no attractor.

133

Figure 3-64. Two-dimensional quintic symplectic map

134

Figure 3-65. Two-dimensional quintic symplectic map

135

Figure 3-66. Two-dimensional quintic symplectic map

136

Figure 3-67. Two-dimensional quintic symplectic map

137

Figure 3-68. Two-dimensional quintic symplectic map

138

Figure 3-69. Two-dimensional quintic symplectic map

139

Figure 3-70. Two-dimensional quintic symplectic map

140

Figure 3-71. Two-dimensional quintic symplectic map

These cases have a different look from non-symplectic strange attractors.
The difference is even more pronounced if you watch while they develop on the
computer screen. Whereas the regions of a strange attractor tend to be visited
uniformly and apparently randomly, the symplectic maps develop much more
slowly. The points often wander over a small region for tens of thousands of
iterations, and then they suddenly begin to fill in a new distinct region that has never
been visited before. Consequently, many more iterations are required to determine
the stability and chaotic nature of the solution. You need to be patient while the
computer calculates.

The different time behavior of these cases raises an important issue. When
you view any of the figures in this book, you are seeing a static object. However, it
was produced by a dynamic process. Information about the sequence in which the
points accumulated has been lost. This additional information is recovered when

141

you watch the attractors develop on your computer screen. Most of the attractors
fill in uniformly. Their contrast gets progressively greater, much like a photographic
print being developed.

However, the symplectic maps develop more slowly and in stages. If your
computer has a color monitor, you might try exhibiting this sequence by plotting the
points in color and changing the color every few thousand iterations. Some
examples using this technique are shown in Section 7.5. If you try this for the non-
symplectic attractors, the colors overlap and merge into a uniform gray, or you just
see the most recent color. For the symplectic maps, beautiful color patterns can be
produced. Otherwise, continue on to the next chapter, where various color
techniques are discussed.

3.9 A New Dimension in Sound

With one-dimensional maps, we tried to make music by letting successive
iterates control the pitch of the musical notes, all of which were of the same
duration. The same procedure can be used with two-dimensional maps. However,
we have a second variable at our disposal, so let’s use it to control the duration of
each note. With actual music, it turns out that there are many more notes of short
duration than of long duration. There are roughly twice as many half notes as whole
notes, and twice as many quarter notes as half notes, and so forth. This remarkable
result seems to hold for all types of music from different composers and cultures. It
is evidence of hidden determinism in music.

The program modification PROG10 uses the X value to control the pitch and
the Y value to control the duration of the notes. For convenience, we assume that
the longest note is a whole note and the shortest note is a sixteenth note. Dotted
notes and rests are not allowed.

PROG10 also adds to the program a menu screen that reminds you of the S
command, which toggles the sound on and off, and the P command, which
toggles the projection between planar and spherical. We also introduce an A
command to initiate the search for attractors, a D command to toggle between
one-dimensional and two-dimensional maps, an I command to let you input the
code of an attractor that you know, and an X command to exit the program.
Pressing any other key displays the menu screen.

142

PROG10. Changes required in PROG09 to produce chaotic music and provide a menu screen

1000 REM TWO-D MAP SEARCH (With Music and Menu Screen)

1100 SND% = 1 'Turn sound on

1110 PJT% = 0 'Projection is planar

1170 GOSUB 4200 'Display menu screen

1180 IF Q$ = "X" THEN GOTO 1250 'Exit immediately on command

2450 IF QM% > 0 THEN GOTO 2490 'Skip tests when not in search mode

2640 IF QM% > 0 THEN GOTO 2730 'Not in search mode

2650 O% = 2 + INT((OMAX% - 1) * RND)

2660 CODE$ = CHR$(59 + 4 * D% + O%)

2680 GOSUB 4700 'Get value of M%

3530 IF D% > 1 THEN DUR = 2 ^ INT(.5 * (YH - YL) / (YNEW - 9 * YL / 8 + YH / 8))

3610 IF ASC(Q$) > 96 THEN Q$ = CHR$(ASC(Q$) - 32) 'Convert to upper case

3630 IF Q$ = "" OR INSTR("ADIPSX", Q$) = 0 THEN GOSUB 4200

3640 IF Q$ = "A" THEN T% = 1: QM% = 0

3680 IF Q$ = "D" THEN D% = 1 + (D% MOD 2): T% = 1

3730 IF Q$ = "I" THEN IF T% <> 1 THEN SCREEN 0: WIDTH 80: COLOR 15, 1: CLS : LINE
INPUT "Code? "; CODE$: IF CODE$ = "" THEN Q$ = " ": CLS : ELSE T% = 1: QM% = 1:
GOSUB 4700

3790 IF Q$ = "X" THEN T% = 0

143

4200 REM Display menu screen

4210 SCREEN 0: WIDTH 80: COLOR 15, 1: CLS

4220 WHILE Q$ = "" OR INSTR("AIX", Q$) = 0

4230 LOCATE 1, 27: PRINT "STRANGE ATTRACTOR PROGRAM"

4260 PRINT : PRINT

4270 PRINT TAB(27); "A: Search for attractors"

4300 PRINT TAB(27); "D: System is"; STR$(D%); "-D polynomial map"

4370 PRINT TAB(27); "I: Input code from keyboard"

4400 PRINT TAB(27); "P: Projection is ";

4410 IF PJT% = 0 THEN PRINT "planar "

4420 IF PJT% = 1 THEN PRINT "spherical"

4540 PRINT TAB(27); "S: Sound is ";

4550 IF SND% = 0 THEN PRINT "off"

4560 IF SND% = 1 THEN PRINT "on "

4600 PRINT TAB(27); "X: Exit program"

4610 Q$ = INKEY$

4620 IF Q$ <> "" THEN GOSUB 3600 'Respond to user command

4630 WEND

4640 RETURN

4700 REM Get dimension and order

4710 D% = 1 + INT((ASC(LEFT$(CODE$, 1)) - 65) / 4)

144

4740 O% = 2 + (ASC(LEFT$(CODE$, 1)) - 65) MOD 4

4750 M% = 1: FOR I% = 1 TO D%: M% = M% * (O% + I%): NEXT I%

4770 IF LEN(CODE$) = M% + 1 OR QM% <> 1 THEN GOTO 4810

4780 BEEP 'Illegal code warning

4790 WHILE LEN(CODE$) < M% + 1: CODE$ = CODE$ + "M": WEND

4800 IF LEN(CODE$) > M% + 1 THEN CODE$ = LEFT$(CODE$, M% + 1)

4810 RETURN

As you listen to the music produced by the various attractors, you may
discover relations between the quality of the music and the appearance of the
attractor. The cases that seem most musical tend to have certain visual character-
istics, which are left for you to discover. Do attractors that appeal to the eye also
appeal to the ear?

After you have generated some music of your own, you may want to try some
of the cases in Table 3-1 using the I command to input them to the program. These
cases have been selected for their musical quality and are limited to quadratic
maps to simplify typing their codes. An interesting study would be to accumulate
your own longer list of musical attractors and to see if they preferentially have
certain fractal dimensions and Lyapunov exponents. If so, then it should be possible
to program the computer to be a music critic as well as an art critic.

145

Table 3-1. List of some musical attractors and their characteristics

Code F L Code F L

EDFLQJGDGMSJV 1.17 0.35 EPLKQNGALTVDD 1.03 0.20

EGITIKLJNSKAT 1.19 0.04 EQVHVRXREMJED 1.50 0.19

EHXJCQMYLONDK 0.95 0.12 ERKKCUNHERKAV 1.51 0.47

EJETCOHRSIQFN 1.56 0.25 ESHKBEWJFUOPJ 1.43 0.39

EKLVEVAOSGYJX 1.12 0.20 ETFJJNMKESAFX 0.97 0.30

ELLNJNEAMPLDX 1.11 0.64 EUFLXKIETROOO 0.90 0.40

ENIDATWFTPOSL 1.62 0.26 EVHEQLLDMMBFP 1.47 0.49

EOKYEVMDXXJUP 0.84 0.22 EXJNXAIFANNEN 1.60 0.17

After listening to the enormous variety of musical sequences that can be
generated by this technique, you might wonder whether your favorite musical
composition could be compressed into a short code and generated using iterated
maps. After all, even the simple cases in Table 3-1 are chosen from among about
6 x 1016 different codes, and each code corresponds to a different piece of music.

However, a typical musical piece might have hundreds or thousands of
notes, each of which can represent dozens of pitches and many durations. Thus we
can be fairly confident using the principles of information theory that such extreme
compression is unlikely, unless music has considerably more structure than is
apparent. However, if you only want to generate a short tune with a few notes,
there might well be a way to do so using this technique. If you are mathematically
inclined, take it as a challenge to find a way to do this.

The generation of computer music using chaotic iterated maps is a promising
technique still in its infancy. You may want to incorporate more sophisticated
musical rules into the program to generate music that is much more pleasing than
what results from this simple procedure. Furthermore, an interesting project would
be to turn the process around and see if music written by humans resembles a
strange attractor, and if so, to measure its fractal dimension and Lyapunov
exponent. Perhaps music of different types or by different composers would have
different values of these quantities.

146

Chapter 4
Attractors of Depth

A two-dimensional world is a mere shadow of reality. The techniques de-
scribed in the previous chapters are easily extended to produce attractors embed-
ded in the three-dimensional space in which we live. The challenge is in finding ways
to exhibit and visualize such three-dimensional objects within the limitations of the
computer screen and printed page. This chapter emphasizes new visualization
techniques and provides many new examples of strange attractors that have
depth as well as width and height.

4.1 Projections

The procedure for seeking attractors in three dimensions (which we might
whimsically call strange attractors of the third kind) is just like the two-dimensional
case, except that we introduce a third variable Z to accompany X and Y. You can
think of Z as representing the position in a direction out of the screen or page on
which the attractor is displayed. We assume the direction of positive Z is in front of
the page and the direction of negative Z is behind the page, as is customary for a
conventional right-handed coordinate system. The term right-handed comes from
the convention that if you point the fingers of your right hand in the direction of the
X-axis and curl them so that they point along the Y-axis, your thumb points in the Z
direction. This choice is purely arbitrary but widely accepted.

The simplest system of equations that produces strange attractors embed-
ded in a three-dimensional space is a set of coupled quadratic equations, the most
general form of which is given by

Xn+1 = a1 + a2Xn + a3Xn
2 + a4XnYn + a5XnZn + a6Yn

+ a7Yn
2 + a8YnZn + a9Zn + a10Zn

2

Yn+1 = a11 + a12Xn + a13Xn
2 + a14XnYn + a15XnZn + a16Yn

+ a17Yn
2 + a18YnZn + a19Zn + a20Zn

2

Zn+1 = a21 + a22Xn + a23Xn
2 + a24XnYn + a25XnZn + a26Yn

147

+ a27Yn
2 + a28YnZn + a29Zn + a30Zn

2 (Equation 4A)

These equations have 30 coefficients, which allow an enormous variety of
attractors. The extension to equations with orders higher than two is straightforward.
Three-dimensional cubic equations have 60 coefficients, quartic equations have
105 coefficients, and quintic equations have 168 coefficients. The number of
coefficients for order O is given by (O + 1)(O + 2)(O + 3) / 2. We will code the second-
order through fifth-order systems in three dimensions with the initial letters I, J, K, and
L, respectively.

Note that 168 coefficients allows 25168 or about 10234 combinations. This is
a truly astronomical number. Even if only a small fraction of them correspond to
distinct strange attractors, their number enormously exceeds the number of elec-
trons, protons, and neutrons in the entire universe—a mere 1079. Thus the number
of fifth-order three-dimensional strange attractors is essentially infinite. You can
have a large collection of your own, none of which are likely to be reproduced by
anyone else unless you give them the code you used to produce them. The code
is like a combination lock with 168 settings that all must be entered correctly and in
the proper order.

Now we must confront the issue of how best to display an object composed
of points in a three-dimensional space. Such problems are in the domain of a new
specialty called visualization, which we may define as the use of computer imagery
to gain insight into complex phenomena. The need for improved visualization
techniques has emerged from the rapidly growing use of computers as the primary
tool for scientific calculation and modeling. As computers become more powerful,
it is increasingly important to devise methods of dealing with large quantities of
data. The eye and brain are very efficient at discerning visual patterns, and these
patterns permit an intuitive understanding of complicated processes in a way that
equations often cannot. Scientists have recently developed impressive visualiza-
tion techniques, simple versions of which are presented here.

The simplest method is to ignore one of the coordinates and to plot the points
in the remaining two dimensions. This method is equivalent to looking at the shadow
cast by an object when illuminated from directly above by a point-source of light
a large distance away. If the light source is on the Z-axis, we say the attractor is
projected onto the XY plane. The screen used in conjunction with a slide projector
is such a plane. Of course, considerable information about the attractor is lost in
such a projection, but the method is a convenient starting point, and it is simple to
program.

PROG11 provides the changes that must be made in PROG10 to extend the

148

attractor search to three dimensions with order up to five. Since the search slows
down considerably in three dimensions with such a large number of coefficients,
especially if you don’t have a compiled version of BASIC and a fast computer, the
program saves, for each case found, the code, fractal dimension, and Lyapunov
exponent in a disk file with the name SA.DIC (Strange Attractor DICtionary). This
feature allows you to run the program unattended and to collect the attractors it
finds. We will later modify the program to let you examine the cases that you collect.

PROG11. Changes required in PROG10 to search for strange attractors in three dimensions

1000 REM THREE-D MAP SEARCH

1020 DIM XS(499), YS(499), ZS(499), A(504), V(99), XY(4), XN(4)

1070 D% = 3 'Dimension of system

1100 SND% = 0 'Turn sound off

1530 Z = .05

1550 XE = X + .000001: YE = Y: ZE = Z

1600 ZMIN = XMIN: ZMAX = XMAX

1720 M% = 1: XY(1) = X: XY(2) = Y: XY(3) = Z

2010 M% = M% - 1: XNEW = XN(1): YNEW = XN(2): ZNEW = XN(3)

2160 IF Z < ZMIN THEN ZMIN = Z

2170 IF Z > ZMAX THEN ZMAX = Z

2210 XS(P%) = X: YS(P%) = Y: ZS(P%) = Z

2410 IF ABS(XNEW) + ABS(YNEW) + ABS(ZNEW) > 1000000! THEN T% = 2

149

2460 IF N >= NMAX THEN T% = 2: GOSUB 4900 'Strange attractor found

2470 IF ABS(XNEW - X) + ABS(YNEW - Y) + ABS(ZNEW - Z) < .000001 THEN T% = 2

2530 Z = ZNEW

2910 XSAVE = XNEW: YSAVE = YNEW: ZSAVE = ZNEW

2920 X = XE: Y = YE: Z = ZE: N = N - 1

2950 DLZ = ZNEW - ZSAVE

2960 DL2 = DLX * DLX + DLY * DLY + DLZ * DLZ

3010 ZE = ZSAVE + RS * (ZNEW - ZSAVE)

3020 XNEW = XSAVE: YNEW = YSAVE: ZNEW = ZSAVE

3140 IF ZMAX - ZMIN < .000001 THEN ZMIN = ZMIN - .0000005: ZMAX = ZMAX + .0000005

3400 LOCATE 1, 1: IF LEN(CODE$) < 62 THEN PRINT CODE$

3410 IF LEN(CODE$) >= 62 THEN PRINT LEFT$(CODE$, 57) + "..."

3680 IF Q$ = "D" THEN D% = 1 + (D% MOD 3): T% = 1

3920 IF N = 1000 THEN D2MAX = (XMAX - XMIN) ̂ 2 + (YMAX - YMIN) ̂ 2 + (ZMAX - ZMIN)
^ 2

3940 DX = XNEW - XS(J%): DY = YNEW - YS(J%): DZ = ZNEW - ZS(J%)

3950 D2 = DX * DX + DY * DY + DZ * DZ

4760 IF D% = 3 THEN M% = M% / 2

150

4900 REM Save attractor to disk file SA.DIC

4910 OPEN "SA.DIC" FOR APPEND AS #1

4920 PRINT #1, CODE$; : PRINT #1, USING "##.##"; F; L

4930 CLOSE #1

4940 RETURN

Some examples of the attractors produced by PROG11 are shown in Figures
4-1 through 4-16. Note that the fractal dimension shown for each case is the
dimension of the actual attractor and not the dimension of its projection. Thus the
fractal dimension can be as large as 3 even though the projection has dimension
of at most 2. The projection of a point (zero dimensions) onto a surface is a point,
the projection of a line (one dimension) is a line, the projection of a surface (two
dimensions) is a surface, but the projection of a solid (three dimensions) onto a
surface is only a surface (two dimensions).

151

Figure 4-1. Projection of three-dimensional quadratic map

152

Figure 4-2. Projection of three-dimensional quadratic map

153

Figure 4-3. Projection of three-dimensional quadratic map

154

Figure 4-4. Projection of three-dimensional quadratic map

155

Figure 4-5. Projection of three-dimensional quadratic map

156

Figure 4-6. Projection of three-dimensional quadratic map

157

Figure 4-7. Projection of three-dimensional quadratic map

158

Figure 4-8. Projection of three-dimensional quadratic map

159

Figure 4-9. Projection of three-dimensional cubic map

160

Figure 4-10. Projection of three-dimensional cubic map

161

Figure 4-11. Projection of three-dimensional cubic map

162

Figure 4-12. Projection of three-dimensional quartic map

163

Figure 4-13. Projection of three-dimensional quartic map

164

Figure 4-14. Projection of three-dimensional quartic map

165

Figure 4-15. Projection of three-dimensional quintic map

166

Figure 4-16. Projection of three-dimensional quintic map

On the whole, attractors in three dimensions projected onto a plane are not
particularly different or better than the two-dimensional examples of the previous
chapter. Ones with high fractal dimensions (near and above 2) tend to be
uninteresting when projected onto two dimensions because they are too filled-in.
Note also that all the two-dimensional cases are included as special cases of the
three-dimen sional ones and that they can be recovered by setting the appropri-
ate coefficients to zero. For example, the Hénon map can be reproduced in three
dimensions using the code IWM?M2PM5WM18. You may want to try entering this
case into the program using the I command. Be sure to count the number of Ms very
carefully and to use capital letters.

The attractors displayed in the previous figures are projected onto the XY
plane. They could equally well be projected onto the YZ or ZX plane. With a bit more
effort it would be possible to project them onto a plane inclined at an arbitrary
angle. Attractors are most visually appealing when viewed from a particular

167

direction. The formulas that transform a point with coordinates (X, Y, Z) into a two-
dimensional projection (Xp, Yp) with viewing angles (θ, φ) in spherical coordinates
are

Xp = - X sin _ + Y cos _

Yp = - X sin _ cos _ - Y sin _ cos _ + Z sin _ (Equation 4B)

With a sufficiently powerful computer, you could rotate the attractor to produce an
animated display. You may want to experiment with these ideas.

The program can be modified in a number of ways to change the orientation
of the projection. The simplest (though not very practical) way is just to wait until the
search turns up the same attractor viewed from a different angle. Note in Equation
4A, for example, that if you interchange the coefficients in an appropriate way, the
result is to replace X with Y, Y with Z, and Z with X. If the attractor code were
IABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ , the code
IKPQRNSTOLMUZ[\X]^YVWAFGHDIJEBC would produce a projection of the same
attractor onto the YZ plane, and the code IU]^Y\VWXZ[AIJEHBCDFGKSTORLMNPQ
would produce a projection of the attractor onto the ZX plane. Figures 4-17 and 4-
18 show the result of applying these transformations to the attractor in Figure 4-4.

168

Figure 4-17. Attractor in Figure 4-4 projected onto the YZ plane

169

Figure 4-18. Attractor in Figure 4-4 projected onto the ZX plane

170

4.2 Shadows

In the previous figures, the attractors were projected as if illuminated from
directly along the line of sight. Now suppose the point source of illumination is
moved slightly off to one side and you observe the attractor against a background
screen. Each point making up the attractor appears as a dot of reflected light
above the background plane and produces a shadow point opposite the illumina-
tion a distance proportional to the position of the point above the plane. For this
purpose, we assume the most distant point of the attractor is touching the screen
and the nearest point is out of the screen a distance equal to its width. We’ll assume
it is illuminated from above your left shoulder so that the shadow is below and to the
right, in keeping with the Microsoft style guidelines as exhibited in recent versions of
Windows.

To produce a shadow, we need a background shade of gray intermediate
between the black and white that we have been using so far. If your computer has
at least EGA graphics, this poses no difficulty. There are two grays, COLOR 8, which
is 25% illuminated, and COLOR 7, which is 75% illuminated. We’ll use COLOR 8, which
is the darker of the two. For convenience, Table 4-1 lists the 16 default colors
provided with SCREEN modes 7 through 13.

Table 4-1. Default EGA and VGA colors for SCREEN modes 7 to 13

Number Color Number Color

0 Black 8 Gray

1 Blue 9 Bright blue

2 Green 10 Bright green

3 Cyan 11 Bright cyan

4 Red 12 Bright red

5 Magenta 13 Bright magenta

6 Brown 14 Yellow

7 White 15 Bright white

171

If you have CGA graphics, you might try plotting the points in white (COLOR
3) and their shadow in black (COLOR 0) on a magenta (COLOR 2) background
using SCREEN 1 (320 by 200 resolution) and PALETTE 1. In any case, it may help to
adjust the intensity control on the monitor for an easily visible shadow.

Since we have another shade of gray available, we can use it to control the
brightness of the points plotted. The first time a screen pixel is illuminated by a point
on the attractor, we will use low-intensity white (COLOR 7), and subsequent times
we will use high-intensity white (COLOR 15). If your computer has a monochrome
graphics monitor that maps the other colors to various shades of gray, you can
extend this technique to provide additional gray levels, producing an attractor
whose brightness corresponds to the frequency its various regions are visited. This
trick helps to compensate for the limited spatial resolution of the computer screen.

It also helps to draw a grid on the background to make it more obvious that
the attractor is sitting above the screen. The grid is drawn in black (COLOR 0), the
same as the shadow.

If your computer has at least EGA capability, PROG12 produces the desired
shadow display. It allows you to toggle between projections and shadows by
pressing the R key.

PROG12. Changes required in PROG11 to display shadows

1000 REM THREE-D MAP SEARCH (With Shadow Display)

1020 DIM XS(499), YS(499), ZS(499), A(504), V(99), XY(4), XN(4), COLR%(15)

1120 TRD% = 1 'Display third dimension as shadow

1370 GOSUB 5600 'Set colors

2300 GOSUB 5000 'Plot point on screen

3210 IF D% < 3 THEN GOTO 3310

172

3230 IF TRD% = 1 THEN LINE (XL, YL)-(XH, YH), COLR%(1), BF: GOSUB 5400

3430 TIA = .05 'Tangent of illumination angle

3440 XZ = -TIA * (XMAX - XMIN) / (ZMAX - ZMIN)

3450 YZ = TIA * (YMAX - YMIN) / (ZMAX - ZMIN)

3630 IF Q$ = "" OR INSTR("ADIPRSX", Q$) = 0 THEN GOSUB 4200

3760 IF Q$ = "R" THEN TRD% = (TRD% + 1) MOD 2: T% = 3: IF N > 999 THEN N = 999

4460 PRINT TAB(27); "R: Third dimension is ";

4470 IF TRD% = 0 THEN PRINT "projection"

4480 IF TRD% = 1 THEN PRINT "shadow "

5000 REM Plot point on screen

5060 IF TRD% = 0 THEN PSET (XP, YP)

5070 IF TRD% <> 1 THEN GOTO 5130

5090 C% = POINT(XP, YP)

5100 IF C% = COLR%(2) THEN PSET (XP, YP), COLR%(3) ELSE IF C% <> COLR%(3) THEN
PSET (XP, YP), COLR%(2)

5110 XP = XP - XZ * (Z - ZMIN): YP = YP - YZ * (Z - ZMIN)

5120 IF POINT(XP, YP) = COLR%(1) THEN PSET (XP, YP), 0

5130 RETURN

5400 REM Plot background grid

5410 FOR I% = 0 TO 15 'Draw 15 vertical grid lines

173

5420 XP = XMIN + I% * (XMAX - XMIN) / 15

5430 LINE (XP, YMIN)-(XP, YMAX), 0

5440 NEXT I%

5450 FOR I% = 0 TO 10 'Draw 10 horizontal grid lines

5460 YP = YMIN + I% * (YMAX - YMIN) / 10

5470 LINE (XMIN, YP)-(XMAX, YP), 0

5480 NEXT I%

5490 RETURN

5600 REM Set colors

5620 COLR%(0) = 0: COLR%(1) = 8: COLR%(2) = 7: COLR%(3) = 15

5720 RETURN

The angle of illumination is determined by the .05 in line 3430. You might try
different values. The value of .05 is the tangent of both the horizontal and vertical
angle that the source of illumination makes with the perpendicular to the plane. The
angle is about 3 degrees toward the left and 3 degrees toward the top of the figure.
Sample attractors produced by PROG12 are shown in Figures 4-19 through 4-34.

174

Figure 4-19. Three-dimensional quadratic map with shadows

175

Figure 4-20. Three-dimensional quadratic map with shadows

176

Figure 4-21. Three-dimensional quadratic map with shadows

177

Figure 4-22. Three-dimensional quadratic map with shadows

178

Figure 4-23. Three-dimensional quadratic map with shadows

179

Figure 4-24. Three-dimensional quadratic map with shadows

180

Figure 4-25. Three-dimensional quadratic map with shadows

181

Figure 4-26. Three-dimensional quadratic map with shadows

182

Figure 4-27. Three-dimensional quadratic map with shadows

183

Figure 4-28. Three-dimensional quadratic map with shadows

184

Figure 4-29. Three-dimensional quadratic map with shadows

185

Figure 4-30. Three-dimensional cubic map with shadows

186

Figure 4-31. Three-dimensional quartic map with shadows

187

Figure 4-32. Three-dimensional quartic map with shadows

188

Figure 4-33. Three-dimensional quintic map with shadows

189

Figure 4-34. Three-dimensional quintic map with shadows

Look closely at the figures with shadows and you can see that it is hard to tell
whether one portion of the attractor lies above or below another portion. One
reason for this is that we have not allowed the closer portion of the attractor to cast
a shadow on the more distant portion. To do so requires a complicated program,
which will be left as a challenge for you.

If you attempt to improve the shadow display in this way, you must store in an
array the largest Z value corresponding to each screen pixel. With VGA (640 by 480),
you need 600 kilobytes (K), even if you convert the Z values into integers. Most
versions of BASIC limit the size of arrays to 64 K, and the disk operating system usually
limits the total program size to about 600 K. Thus you probably need to use a lower
screen resolution or devise a more compact coding scheme. For example, if you
use only 16 values of Z, you can store two screen pixels per byte, which is four times
better than storing the Z value of each pixel as a two-byte integer. Alternately, you

190

might store the Z values of only those pixels that are illuminated, but then you must
devise a quick way to locate the proper element in the array corresponding to
each pair of screen coordinates.

Before each point on the attractor is plotted, you must be sure it doesn’t fall
in the shadow of a previously plotted point. If it doesn’t, then it can be plotted, but
then you have to determine whether it occludes any previously plotted point.
Alternatively, you can first plot all the points and then scan the image starting from
the side toward the illumination, blocking out any points that fall in the shadow of
another point.

4.3 Bands

Another way to display the third dimension is with elevation contours such as
those found on topographic maps. With enough points, you could plot only those
that have specific values of Z. Of course the chance that a point has any particular
exact value of Z is negligibly small, and so the points would accumulate on the
screen very slowly. To make the method work, you have to plot all the points that
lie within bands centered on the desired values.

You have freedom to choose the width of the bands. With narrow bands, the
contours resemble distinct lines, but they form very slowly. With wide bands, the
gaps between the bands are hard to see. By making the bands half as wide as the
spacing between the contours, the bright and dark spaces are equal in width, and
they form rapidly and are easy to see.

You also need to decide how many contours to use. You need at least several
to make the method work, but if you use too many, they begin to run together at
modest screen resolution and number of iterations. For the cases shown here, we
use 15 bands as a reasonable compromise.

Since we used a four-level gray scale to produce the shadows in the previous
displays, we will also use it here to give the bands a softer shading. Of course, this
requires a computer with at least EGA graphics. If your computer has CGA graphics,
you will see only two shades (black and white) with 30 bands in SCREEN mode 2.

The changes required in the program to produce contour bands are shown
in PROG13.

191

PROG13. Changes required in PROG12 to display contour bands

1000 REM THREE-D MAP SEARCH (With Contour Bands)

1120 TRD% = 2 'Display third dimension as bands

3760 IF Q$ = "R" THEN TRD% = (TRD% + 1) MOD 3: T% = 3: IF N > 999 THEN N = 999

4490 IF TRD% = 2 THEN PRINT "bands "

5130 IF TRD% = 2 THEN PSET (XP, YP), COLR%(INT(60 * (Z - ZMIN) / (ZMAX - ZMIN)
+ 4) MOD 4)

5240 RETURN

Some sample attractors with contour bands produced by PROG13 are shown
in Figures 4-35 through 4-50.

192

Figure 4-35. Three-dimensional quadratic map with contour bands

193

Figure 4-36. Three-dimensional quadratic map with contour bands

194

Figure 4-37. Three-dimensional quadratic map with contour bands

195

Figure 4-38. Three-dimensional quadratic map with contour bands

196

Figure 4-39. Three-dimensional quadratic map with contour bands

197

Figure 4-40. Three-dimensional quadratic map with contour bands

198

Figure 4-41. Three-dimensional quadratic map with contour bands

199

Figure 4-42. Three-dimensional cubic map with contour bands

200

Figure 4-43. Three-dimensional cubic map with contour bands

201

Figure 4-44. Three-dimensional cubic map with contour bands

202

Figure 4-45. Three-dimensional quartic map with contour bands

203

Figure 4-46. Three-dimensional quartic map with contour bands

204

Figure 4-47. Three-dimensional quartic map with contour bands

205

Figure 4-48. Three-dimensional quintic map with contour bands

206

Figure 4-49. Three-dimensional quintic map with contour bands

207

Figure 4-50. Three-dimensional quintic map with contour bands

4.4 Colors

It’s not hard to guess that the next logical step is to use the full array of colors
available on a computer with a color monitor. In SCREEN mode 9 (EGA) and SCREEN
mode 12 (VGA), 16 colors can be displayed simultaneously from a palette of 64
(EGA) or 262,144 (VGA). SCREEN mode 13 (VGA), which is supported by some BASIC
versions, allows 256 colors, but the screen resolution of 320 by 200 is inadequate for
our purposes, and thus it will not be used. In SCREEN mode 1 (CGA) only four colors
can be displayed from one of two palettes. We assume your computer has EGA or
VGA capabilities, but the program also works with CGA if you use SM% = 1 in line
1030. The program is written to simplify extending the technique to future new
graphics modes with more colors and higher resolution, provided they are sup-
ported by your BASIC compiler.

208

We will convert the Z values into 15 different colors (COLOR 1 through COLOR
15). The 16th (COLOR 0) is the background color and will not be used. The default
values of the colors are given in Table 4-1. The changes required to the program are
shown in PROG14.

PROG14. Changes required in PROG13 to display colors

1000 REM THREE-D MAP SEARCH (With Color Display)

1120 TRD% = 3 'Display third dimension in color

3760 IF Q$ = "R" THEN TRD% = (TRD% + 1) MOD 4: T% = 3: IF N > 999 THEN N = 999:
GOSUB 5600

4500 IF TRD% = 3 THEN PRINT "colors "

5160 IF TRD% = 3 THEN PSET (XP, YP), COLR%(INT(NC% * (Z - ZMIN) / (ZMAX - ZMIN)
+ NC%) MOD NC%)

5610 NC% = 15 'Number of colors

5630 IF TRD% = 3 THEN FOR I% = 0 TO NC%: COLR%(I%) = I% + 1: NEXT I%

Some sample color attractors produced by PROG14 are shown in Plates 1
through 8. Some of these examples are projected onto a sphere. Note that the
interposition of dots of different colors in some of the figures gives the impression that
there are many more than 16 colors. The addition of color usually enhances the
appearance of the attractors. More such cases could have been included in this
book, but then its cost would have been considerably higher. Henceforth you will
probably want to view your three-dimensional attractors in color.

Notice that, where one part of the attractor lies behind another, you can see

209

the more distant portion through the closer portion. Thus the attractor appears
transparent, which enables you to see its interior but tends to diminish the percep-
tion of depth. You might want to modify the program so that the closer portion
occludes the region behind it. It is relatively easy to do so using the BASIC POINT
function to test the existing color of the pixel before plotting the new point and
plotting it only if its color is higher in the sequence than the existing one. Thus each
pixel eventually is colored according to the closest part of the attractor. This effect
can be accomplished by changing line 5160 of PROG14 to

5160 IF TRD% = 3 THEN C% = INT(NC% * (Z - ZMIN) / (ZMAX - ZMIN) + NC%) MOD NC%:
IF POINT(XP, YP) < C% THEN PSET (XP, YP), C%

You can also alter the sequence of colors by changing the values stored in
the array COLR% in line 5630. For example, a sequence that mimics the rainbow
would advance from red (12) through yellow (14), green (10), cyan (11), and blue
(9) to magenta (13). With aerial perspective, brilliant, warm colors such as red
appear closer to the viewer than lighter, less brilliant, cool colors such as blue, which
we associate with the distant sky. Thus assigning red to the large Z values and blue
to the small Z values enhances the illusion of depth.

Most dialects of BASIC include a PALETTE command that allows you to
change the screen colors without replotting the data, but this command works
differently with different versions of BASIC and in different graphics modes, so we will
not try to provide a program that takes advantage of it. However, a challenging
programming exercise is to add the capability of rotating the color palette by
pressing a key while a color attractor is being displayed to produce a psychedelic
animated display. You might use the + key to rotate in one direction and the - key
to rotate in the opposite direction. For most of the figures in this book, the PALETTE
command was used to interchange black and white before printing them to save
ink and to improve the appearance of the attractors when they are displayed on
a white background.

You may also want to experiment with combining the various display tech-
niques. Clearly there is nothing to preclude displaying a color attractor with
shadows and contour bands. Such combinations offer interesting possibilities that
are exploited for the four-dimensional cases in the next chapter.

210

4.5 Characters

Many computer monitors and printers lack color capabilities. However, it is
often possible to produce a similar effect using a gray scale. In some cases, the
various colors are mapped automatically into a shade of gray. Another technique
that works on almost any computer and offers interesting display possibilities is to
map the Z values into different ASCII characters and print them as a block of text.
Such text files are easily manipulated by word processors, transported to different
computers, displayed on almost any monitor, and printed with any printer on paper
of various sizes.

Perhaps the simplest method is to map the Z values into consecutive ASCII
characters, thereby producing a type of gray scale with bands whose darkness
depends on the density of the character. A more reasonable approach is to order
the characters so that the more dense ones correspond to larger values of Z. The
ordering depends on the font, typeface, and size of the characters. For example,
10-point Letter Gothic bold can be ordered as shown in Table 4-2. The table uses 32
characters, which is about the maximum for this technique because many of the
characters have the same density. The eye can distinguish about 500 levels of gray.
This sequence is only one of many that are equally good. To see the gray scale, you
should view the table from at least six feet away. Squinting and removing your
glasses, if you wear them, might also help.

Table 4-2. Gray scale produced by ordering 10-point Letter Gothic bold characters

.:,;"=>!/+?icl7IjvJL64VOASUDXEBM

.:,;"=>!/+?icl7IjvJL64VOASUDXEBM

.:,;"=>!/+?icl7IjvJL64VOASUDXEBM

.:,;"=>!/+?icl7IjvJL64VOASUDXEBM

.:,;"=>!/+?icl7IjvJL64VOASUDXEBM

.:,;"=>!/+?icl7IjvJL64VOASUDXEBM

.:,;"=>!/+?icl7IjvJL64VOASUDXEBM

.:,;"=>!/+?icl7IjvJL64VOASUDXEBM

.:,;"=>!/+?icl7IjvJL64VOASUDXEBM

.:,;"=>!/+?icl7IjvJL64VOASUDXEBM

211

.:,;"=>!/+?icl7IjvJL64VOASUDXEBM

.:,;"=>!/+?icl7IjvJL64VOASUDXEBM

.:,;"=>!/+?icl7IjvJL64VOASUDXEBM

.:,;"=>!/+?icl7IjvJL64VOASUDXEBM

The character densities for this table were determined by writing each of the
ASCII characters from 33 to 127 (see Table 2-1) to the screen of a Macintosh
computer and then counting the illuminated pixels using the POINT command in
BASIC. Bold characters are chosen for their increased density. Avoid lowercase
characters whenever possible because they often don’t extend the full height and
thus leave a wide blank band between their top and the bottom of the row above.
Be sure to use a monospaced font rather than a proportional one. For the default
font on most IBM computers in VGA SCREEN mode 12, a better sequence is

.-,;=+>i%lI?v7zuCjTFSVGAEUDHBWQ

We will not develop a computer program for implementing this technique
because the resolution is too poor for useful display on a computer screen or page
of a book. Furthermore, the program would be dependent on the fonts available
and the capabilities of the printer. The programming is not difficult and closely
parallels the example in PROG14.

However, Table 4-3 provides an indication of what is possible using 5-point
Letter Gothic bold characters with 78 lines of 103 characters each. The character
sequence ordered by density for this case is given in Table 4-2. This case is a three-
dimensional quadratic map with a code of ILRRHAEYWNTPWFLHTCSLYLFAKQITQTW.

At such a low resolution, much of the detail is lost. However, if you have a
printer or plotter capable of printing small fonts on a large piece of paper, you can
recover the resolution and produce figures of considerable artistic quality. You can
divide the text into many segments on separate pages and tape them together, or
print them on a paper roll or fanfold paper to make a very skinny attractor many feet
long. With ordinary objects such as the text in this book, extreme stretching in one
dimension just produces sticklike figures. However, strange attractors are fractals,

212

and they have detail on all scales, which ensures that they look interesting however
much they are stretched.

Table 4-3. Three-dimensional quadratic map with character scale

::::..

; ::::

;;;;;;;

""""""""""""";

================

>>>==>>>>>>>!!!!!!

!>>>>!!!!////////////

JJ !!!!!!///++++++++++++++++

J //////++++++??iiiiiiiii??????

JJ +///++???? icccccccciccciiiiiiii

JJv ++++??ii? ccllllllllllllllccccccccii

JJv ??+??iiii lll777777777777lllllllllccccc

JJJj ????iicci 7777777IIIII777777777777llllllccc

JJv ii?iiccc IIIIIIIIIIIIIIIIIIIIIIII7777777lllllc

JJvj ciiiclll IIjjjjjjjjjjjjjjjjjjjjIIIIIIII777777lllll

JLvjj cccicclll jjjjjjjvvvvvvvvvvvjjjjjjjjjjjjjIIIIII77777lll

LLvjI llcccl777 jvvvvvvvvvvvvvvvvvvvvvvvvvvvvjjjjjjjjIIIIII7777l

LLvjjI77lllcll777 vvvvvvvJJJJJJJJJJJJJJJJJvvvvvvvvvvvvjjjjjjjIIIII777

LLvvjjI77llll77I7 vJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJvvvvvvvvjjjjjjIIIII7

213

JLLvjjII77lll7III JJJJJJJJJJLLLLLLLLLLLLLLLLLJJJJJJJJJJJJJvvvvvvvjjjjjIIII7

LLvvjjII77777IjI JJJJJLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLJJJJJJJJJvvvvvvjjjjjII

LLvvjjjII7777Ijj JJLLLLLLLLLLL LLLLLLLLLLLL6LLLLLLLLLLLLLLLLLJJJJJJJJvvvvvjjjjI

JLLvvjjIII77IIjjj LLLLLLL 6666666666666LLLLLLLLLLJJJJJJJvvvvvjj

LLvvvjjIIIIIIjvj LLLLL 66666666666666LLLLLLLLJJJJJJvvvvj

LLJvvjjjIIIIjjvv LLLLL 66666666666666LLLLLLLJJJJJJvv

LLvvvjjjjIIjjvv LLL 664446666666666LLLLLLJJJJ

LLJvvvjjjjjjjvvv L66 4444444466666666LLLLLLJ

JLJvvvvjjjjjvvJJ 6666 444444444446666666LLL

LLJvvvvvjjjvvJJ 666 4VV444444444466666

JLJJvv vvvvvvJJJ 66 VVVVVVV44444444

LLJJvv vvvvvJJJ 66 VVVVVVVVVVV444

JLJJJv vvvvJJJJ OOOOOVVVVVVVV

LLJJJv vJJJJL OOOOOOOOOOOOOOOOVV

LJJJJ JJJJLL AAAAAAAAAAAAAOOOOOOOOOOV

JJJJJJ JJJLL OOOOOOOOO AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOO

JJJJJ LLLL OOOOOOOOOOOOOAA

JJJJJ LLL OOOOOAAAAAAAAAAAAAAAAAAAAAASSASAASSSSSSSSAAAAAAA

JJJJJJ LLL AAAAAAAAAAAAASSSSSSSSSSSSSSSSSSSSSSSSSSSS

JJJJJJ LLL AAAAAASSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

JJJJJJ L66 AASSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

JJJJJJ 66 ASSSSSSSSSSSSSSSUUUUUUUUUUUUUUUUUUUU

JJJJJJ 66 SSSSSSSSSSUUUUUUUUUUUUUUUUUUUUUUUU

214

LJJJJLL 6 SSSSSSUUUUUUUUUUUUUUUUUUUUUUUUUUU

LJJJLLL SSUUUUUUUUUUUUUUUUUUUUDDDDDDDDDDD

LLJLLLLL SUUUUUUUUUUUUUUDDDDDDDDDDDDDDDDD

LLJLLLLL UUUUUUUUUUDDDDDDDDDDDDDDDDDDDDD

LLLLLLLL UUUUUUDDDDDDDDDDDDDDDDDDDDDDDD

LLLLLLLLL UUUDDDDDDDDDDDDDDDDDXXXXXXXXXX

LLLLLLLLL UDDDDDDDDDDDDDDXXXXXXXXXXXXXX

LLLLLLLLL DDDDDDDDDDDXXXXXXXXXXXXXXXXXX

LLLLLLLL66 SS DDDDDDDDXXXXXXXXXXXXXXXXXXXX

LLLL6666666 SSSS DDDDDXXXXXXXXXXXXXXXXXEEEEEE

LLL666666444444 SSSS DXXXXXXXXXXXXXXEEEEEEEEEEEE

LLL666666444444VV SSSSS XXXXXXXXXXXXEEEEEEEEEEEEEE

LLL666664446644 SSSSS XXXXXXXXXEEEEEEEEEEEEEEEEE

LLL666666 SSSUU XXXXXXEEEEEEEEEEEEEEEBBBB

LLL6666 SUUUUU XXXXEEEEEEEEEEEEEBBBBBBBB

LLL66 O SUUUUUUU XXEEEEEEEEEEEEBBBBBBBBBB

LLLLL OO UUUUUUUUD EEEEEEEEEEEBBBBBBBBBBBBB

LLL OOO UUUUUUUUDDD EEEEEEEEBBBBBBBBBBBBBBB

LLLL OOOO SUUUUUUUDDDDDDD EEEEEEBBBBBBBBBBBBBMMM

LLLLLLL VOOOO SUUUUUUUDDDDDDDDXX EEEEEBBBBBBBBBBBBMMMMM

LLLLL6666664444444VVVVVOOOO SUUUUUUUUDDDDDDDDXXXXXX EEEBBBBBBBBBBBMMMMMMM

LLLLL6666664444444VVVVVOOO SSUUUUUUUUDDDDDDDXXXXXXXXXEEE EEBBBBBBBBBBBMMMMMMMM

LLLL6666666444444VVVVVVOO SSUUUUUUUDDDDDDDDXXXXXXXXEEEEEEEEEBBBBBBBBBBMMMMMMMMM

215

LLLLL666666444444VVVVVVOO SSSUUUUUUUDDDDDDDDXXXXXXXXEEEEEEEEEBBBBBBBBBMMMMMMMM

LLLL666666444444VVVVVVOOO SSSSUUUUUUUDDDDDDDDXXXXXXXEEEEEEEEEBBBBBBBBBBMMMMM

LL666666444444VVVVVVOOO SSSSUUUUUUUDDDDDDDXXXXXXXXEEEEEEEEBBBBBBBBBB

L66666644444VVVVVVOOOO SSSSSUUUUUUUDDDDDDDXXXXXXXXEEEEEEEEBBB

6666444444VVVVVVOOOO SSSSSSUUUUUUUDDDDDDDXXXXXXXXEEEEEEE

444444VVVVVVOOOOO ASSSSSSUUUUUUUDDDDDDDXXXXXXXEEEE

4VVVVVVOOOOOO AAASSSSSSUUUUUUUDDDDDDDXXXXXXXX

VVVOOOOOOOAAAAAASSSSSSUUUUUUUDDDDDDDXXXXX

VOOOOOOAAAAAASSSSSSUUUUUUUDDDDDDDXXX

OOOAAAAAASSSSSSSUUUUUUDDDDDDDD

AAAAAASSSSSSSUUUUUUDDDDD

AAASSSSSSSUUUUUUDDD

SSSSSUUUUUU

4.6 Anaglyphs

An alternative approach for displaying objects in three dimensions is the
binocular stereogram in which the parallax produced by separate images in each
eye creates the illusion of depth. The idea dates back to Socrates in the fourth
century BC, and the earliest stereograms were produced in the mid-1800s by Sir
Charles Wheatstone and Sir David Brewster. The inception of motion pictures in the
early 1900s was accompanied by 3-D movies using overlapping red-green images
that were viewed through red-green glasses to produce a black-and-white image
in what is called the anaglyphic process. Anaglyphs have also been widely used in
comic books. Color 3-D movies using cross-Polaroid glasses were briefly popular in
the 1950s. They require a special screen to reflect the polarized light from the
projectors without allowing it to depolarize.

The anaglyphic process offers distinct advantages in computer visualization.
The hardware requirements are minimal (a color monitor and a pair of 50-cent

216

glasses), the programming is surprisingly simple, and the results can be impressive.
The main drawback is that the images produced are usually monochromatic,
although a gray scale and some limited coloration are possible.

Our perception of depth arises from a number of psychological and physi-
ological processes. Many of these processes are induced by visual cues that don’t
depend on binocular vision, such as the relative size and motion of objects,
interposition, illumination, shadows, and focal accommodation. Others require the
parallax attendant to stereoscopic vision. When some of the usual visual cues are
absent or contradictory, a rivalry ensues that demands time and mental effort for
our brains to resolve. It is remarkable that, with just the single cue of binocular
stereopsis, most people can quickly perceive a vivid three-dimensional image.

Consider a point at a distance D from the midpoint of your eyes whose
separation we take to be e (typically 6.5 cm), as shown in Figure 4-51(a). Assume
the point is a single illuminated pixel on the computer screen. Each eye must swivel
inward through an angle θ in order for the two images to fuse into a single point,
where θ is the angle whose tangent is e / 2D. It is this muscular response of the eyes
that provides the brain with the relevant depth information.

217

Figure 4-51. Line of sight of each eye when viewing anaglyphs

Now suppose you are to perceive the point to be at a distance D - Z from your
eyes (a distance Z in front of the computer screen) as shown in Figure 4-51 (b). We
must then plot two points on the computer screen separated horizontally by a
distance d. From the similarity of the two triangles, we calculate

d = eZ / (D-Z) (Equation 4C)

The formula works also for negative Z.

To achieve the proper linear perspective, we should plot the closer points a

218

little farther apart than the more distant points, but with unfamiliar objects such as
strange attractors, there is little reason to do so. Usually D is much greater that Z, and
we can approximate the right-hand side of Equation 4C by e Z / D. This approxima-
tion causes some expansion of the image for negative Z (behind the screen) and
compression of the image for positive Z (in front of the screen). This compression can
be desirable to keep the image always in front of your face rather than to let it pass
behind your head.

The length of most people’s arms is almost exactly ten times the distance
between their eyes. Therefore, a value of D / e = 10 is appropriate for a computer
screen viewed at arm’s length. In practice, the viewing distance is not very critical.
The perceived depth of the image is enhanced by viewing from a greater distance,
but it usually takes longer for the brain to accommodate, so it is often best to view
first from close up. It sometimes speeds the adjustment to move your head from side
to side.

A computer display optimized for viewing at arm’s length is very effective
when projected on a large screen and viewed in an auditorium. Were this not the
case, three-dimensional movies could not be shown to theater audiences. In such
a case, the brain perceives a scaled version of the image at a closer distance. The
same effect occurs when viewing 2-D movies. The characters on the screen are not
perceived as giants a large distance from the viewer. Similarly, the brain is able to
compensate almost without limit to other distortions if the objects are familiar. A
movie viewed from the rightmost seat in the front row appears normal after a short
period of adjustment.

It is important to maintain a somewhat limited depth and field of view.
Leonardo da Vinci recommended that a painting be optimally viewed from a
distance equal to three times its width. Most computer screens approximately
satisfy this criterion when viewed at arm’s length. An object as deep as it is wide thus
requires that the two images be separated by up to about an inch, requiring that
the eyes toe-in by about three degrees.

The computational task, therefore, is to plot each point that makes up the
attractor twice, with a horizontal separation proportional to the distance the point
is to appear in front of or behind the screen, and to arrange that one set of points
be visible only to the left eye and the other only to the right eye. In the anaglyphic
process, this is done by plotting one set of points in red and the other in the
complementary cyan (blue-green) and viewing through appropriate color-filtered
glasses. By convention, the left eye should only respond to the red and the right eye
only to the cyan.

219

Note that individuals who are color blind should experience no difficulty
because it is unnecessary (and indeed undesirable) to perceive the individual
colors; it is only necessary that the eyes be sensitive to them. Certain other eye
defects, particularly those resulting in ocular asymmetry, are more problematic.

You can plot the points on either a black or a white background. With a black
background, the images fuse into white (additive process), and with a white
background, the images fuse into black (subtractive process). The sense of Z is
reversed with the choice of background. With a black background, the red is seen
through the red filter on the left eye, while for a white background, red is seen
through the cyan filter on the right eye. In practice the white background is usually
more satisfactory, but you may want to try it both ways to see which works best for
you. Wherever a red and cyan point overlap, they should be plotted as a single
black point if the background is white or as a single white point if the background
is black. The changes required to the program to produce such anaglyphs are
shown in PROG15.

PROG15. Changes required in PROG14 to produce anaglyphs

1000 REM THREE-D MAP SEARCH (With Anaglyphic Display)

1120 TRD% = 4 'Display third dimension as anaglyph

3220 ZA = (ZMAX + ZMIN) / 2

3240 IF TRD% = 4 THEN LINE (XL, YL)-(XH, YH), WH%, BF

3760 IF Q$ = "R" THEN TRD% = (TRD% + 1) MOD 5: T% = 3: IF N > 999 THEN N = 999:
GOSUB 5600

4510 IF TRD% = 4 THEN PRINT "anaglyph "

5170 IF TRD% <> 4 THEN GOTO 5240

220

5180 XRT = XP + XZ * (Z - ZA): C% = POINT(XRT, YP)

5190 IF C% = WH% THEN PSET (XRT, YP), RD%

5200 IF C% = CY% THEN PSET (XRT, YP), BK%

5210 XLT = XP - XZ * (Z - ZA): C% = POINT(XLT, YP)

5220 IF C% = WH% THEN PSET (XLT, YP), CY%

5230 IF C% = RD% THEN PSET (XLT, YP), BK%

5640 WH% = 15: BK% = 8: RD% = 12: CY% = 11

PROG15 assumes EGA or VGA graphics and a color monitor. If you have CGA
graphics, you can obtain satisfactory results in SCREEN mode 1, PALETTE 1 by
changing the colors in line 5640 to WH% = 3: BK% = 0: RD% = 2: CY% = 1.

Some sample anaglyphs are shown in Plates 9 through 16. Use the special
glasses included with the book. If these glasses are missing, you can probably find
a suitable pair at a comic book store. If you have difficulty acclimating to the
anaglyphs, try viewing them from close-up and then back away once you see the
effect. You may need some practice, especially because the attractors you are
viewing are unfamiliar objects and they lack other depth clues. You might also try
reversing the glasses (red over right eye), which reverses in and out.

Because of the large variation of computer monitor colors and spectacle
filters, ghost images are common. Manipulation of the computer color palette is of
limited use because the monitor ultimately constructs its colors from three distinct
phosphors (red, green, and blue). The usual problem is inadequate rejection of the
green by the red filter, resulting in a red ghost image when viewed against a white
background. Suppression of the green by using only red and blue on a magenta
background eliminates this problem but yields poor contrast of the resulting image.
In some cases, the ghost images can be suppressed by viewing through multiple
pairs of glasses. You may want to adjust the intensity of the red, green, and blue, so
the images seen by each eye through the glasses have similar intensities.

221

4.7 Stereo Pairs | Stereo Pairs

Believe it or not, with a bit of practice, you can learn to view attractors in
stereoscopic 3-D without special glasses. For this purpose, we print the two images
side-by-side in the same color instead of superimposed on one another in different
colors as we did with the anaglyphs. This technique permits full-color displays, and
we will exploit this capability in the next chapter. For the moment, let’s consider only
monochrome images.

First we develop the computer program necessary to produce the images.
The images should not be separated more than the distance between your eyes,
which for most people is about 6.5 cm. If the images are separated by a larger
distance, the eyes have to rotate outward beyond the normal parallel position,
which at best is uncomfortable and at worst impossible. Such images are described
as being walleyed. However, if we reduce the images to a sufficiently small size on
the computer screen, the resolution is poor. Therefore, we will plot the images as
large as possible and rely on the printer to reduce the size for comfortable viewing.
If you prefer to sacrifice the resolution and view the attractors directly on the screen,
the program is written to make it easy for you to do so. Alternately, your monitor may
have an adjustment that allows you to shrink the width of the image.

PROG16 shows the changes required to produce such stereo pairs.

PROG16. Changes required in PROG15 to produce stereo pairs

1000 REM THREE-D MAP SEARCH (With Stereo Display)

1120 TRD% = 5 'Display third dimension as stereogram

3250 IF TRD% = 5 THEN LINE (XA, YL)-(XA, YH)

3320 IF PJT% = 1 AND TRD% < 5 THEN CIRCLE (XA, YA), .36 * (XH - XL)

3760 IF Q$ = "R" THEN TRD% = (TRD% + 1) MOD 6: T% = 3: IF N > 999 THEN N = 999:
GOSUB 5600

222

4520 IF TRD% = 5 THEN PRINT "stereogram"

5240 IF TRD% <> 5 THEN GOTO 5280

5250 HSF = 2 'Horizontal scale factor

5260 XRT = XA + (XP + XZ * (Z - ZA) - XL) / HSF: PSET (XRT, YP)

5270 XLT = XA + (XP - XZ * (Z - ZA) - XH) / HSF: PSET (XLT, YP)

5280 RETURN

If you want to shrink the image for direct viewing from the computer screen,
change the horizontal scale factor (HSF) in line 5250 from 2 to a larger value that
separates the images by about 6.5 centimeters, or less if you are having trouble
adapting to them.

Sample stereo pairs produced by this technique are shown in Figures 4-52
through 4-67. You should hold them exactly horizontally, directly in front of your face
at a normal reading distance, and gaze into the distance until you see three
images. The one in the middle should appear in 3-D, and the ones on each side,
which you must train yourself to ignore, should be in 2-D.

223

Figure 4-52. Stereo pair of three-dimensional quadratic map

224

Figure 4-53. Stereo pair of three-dimensional quadratic map

225

Figure 4-54. Stereo pair of three-dimensional quadratic map

226

Figure 4-55. Stereo pair of three-dimensional quadratic map

227

Figure 4-56. Stereo pair of three-dimensional quadratic map

228

Figure 4-57. Stereo pair of three-dimensional quadratic map

229

Figure 4-58. Stereo pair of three-dimensional quadratic map

230

Figure 4-59. Stereo pair of three-dimensional quadratic map

231

Figure 4-60. Stereo pair of three-dimensional quadratic map

232

Figure 4-61. Stereo pair of three-dimensional quadratic map

233

Figure 4-62. Stereo pair of three-dimensional quadratic map

234

Figure 4-63. Stereo pair of three-dimensional cubic map

235

Figure 4-64. Stereo pair of three-dimensional cubic map

236

Figure 4-65. Stereo pair of three-dimensional quartic map

237

Figure 4-66. Stereo pair of three-dimensional quartic map

238

Figure 4-67. Stereo pair of three-dimensional quintic map

You may find it difficult to adjust to the images at first, but with practice you
should be able to see them almost instantly. Viewing them should be relaxing, with
a sensation resembling a blank stare. Effort is required to return to normal viewing,
much like returning to the words on this page after gazing into the distance.

It might help to close your eyes momentarily and then reopen them if you are
having trouble adapting. You can also buy an inexpensive hand stereoscope
containing prisms that separate and magnify the images so that you can view them
from a closer distance. Such viewing forces the side images out of your field of view
and eases the adjustment to the middle image.

In the 1950s, the View-Master stereo viewer was very popular for home use,
and many stereoscopic photographs were produced. Their popularity has waned,
and the View-Master is no longer made, but similar inexpensive models can still be

239

found in toy stores, often with images of cartoon characters. Stereo images are
usually photographed with a dual camera whose separation can be increased
beyond the normal eye separation to enhance the depth sensation in what is
called hyperstereo.

Stereoscopic images are used extensively by geologists and cartographers
to determine terrain elevation from aerial photographs. As an airplane or satellite
travels across the Earth, photographs are taken at two positions separated by a
distance much greater than the distance between the eyes. When viewed through
a stereoscope, the Earth appears as a scaled model viewed from just a foot or so
above, and it is easy to discern the elevation changes.

The preceding technique is called free viewing. An alternate and more
difficult technique, called short-focus viewing, can also be used to view the stereo
pairs. Here the procedure is to place the figure at arm’s length but to look at a point
about halfway to the figure. It may help to hold your finger at the halfway point and
to cross your eyes until you see a single image of your finger. You should then see
the three images of the figure float up off the page in the plane of your finger. The
middle image should be three-dimensional. It may be difficult to keep the image
from wavering and returning to the plane of the page. Squinting sometimes helps.

Some people find short-focus viewing easier than free viewing. If you are
instinctively short-foucus viewing, you will find that the right side of Figure 4-67 is
farther from you than the left side. With free viewing, it will be closer.

An advantage of short-focus viewing is that the images can be separated by
a much larger distance, and so it works for projection on a large screen in a
classroom or auditorium. However, note that the image is in-out reversed from what
it is with free viewing. This reversal is called pseudostereo. With anaglyphs,
pseudostereo can be obtained by reversing the glasses. Pseudostereo images
usually would be very undesirable and would lead to all kinds of visual contradic-
tions, but with our strange attractors, which have no other visual depth cues, it
makes little difference. It can even be an advantage to be able to view the objects
in either of these ways. Can you guess what you will see if you turn the figures upside
down? Think about it, and then give it a try.

Note that with free viewing, the left image disappears when you close your
right eye and the right image disappears when you close your left eye. With short-
focus viewing, the opposite occurs. However, it is incorrect to assume that each eye
sees only one of the images. Both eyes see both images, and the images fuse into
one when your eyes are aimed in the proper direction.

240

4.8 Slices

We will discuss one final way to view attractors resulting from three-dimen-
sional maps. Low-dimensional attractors are like loosely wound balls of string,
whereas high-dimensional ones are more like loaves of bread filled with holes.
Anaglyphs and stereo pairs are effective for cases of low dimension, but as the
dimension increases, the attractor becomes too opaque, and the illusion of depth
is lost.

Carrying the loaf-of-bread analogy a bit further, you could imagine slicing
the loaf into a large number of very thin slices. The result is to decrease the dimension
of the object by one. For example, an object with a fractal dimension of 2.5 would
become an object of dimension of 1.5 in each slice. This is an example of what is
called a Poincaré section (as in "cross section").

Perhaps it’s easier to consider a specific case. Suppose the attractor were a
loosely wound ball of very thin string. The attractor would then be essentially one-
dimensional. The string would cross the slices at a number of points. Thus the slices
would contain dots wherever the string pierced them. A set of a finite number of
dots is an object of zero dimension.

If the attractor were a loosely crumpled piece of paper, its dimension would
be close to two. If you were to cut a thin slice through the crumpled paper, you
would be left with a handful of wormlike paper strings, which are one-dimensional
objects. You should now set the book down, get a piece of paper and a pair of
scissors, and try it for yourself. Be sure to make the slice as thin as possible.

With our maps, which contain only a finite number of points, we cannot make
the slices too thin, lest they contain so few points as to be invisible. Furthermore, it
is impractical to look at all the slices if they are very thin because there are too many
of them. As always, we have to compromise. We’ll use 16 slices and lay them out
in a 4 by 4 array so that we can see them all at once. On the computer screen, this
method entails a serious sacrifice in resolution, but it does illustrate the principle. You
might want to experiment with using a larger number of slices but displaying only a
fraction of them. For example, try using 64 slices, and display every fourth one.

The modifications that are required to make the program produce a sliced
display are shown in PROG17.

241

PROG17. Changes required in PROG16 to produce slices

1000 REM THREE-D MAP SEARCH (With Sliced Display)

1120 TRD% = 6 'Display third dimension as slices

3260 IF TRD% <> 6 THEN GOTO 3310

3270 FOR I% = 1 TO 3

3280 XP = XL + I% * (XH - XL) / 4: LINE (XP, YL)-(XP, YH)

3290 YP = YL + I% * (YH - YL) / 4: LINE (XL, YP)-(XH, YP)

3300 NEXT I%

3760 IF Q$ = "R" THEN TRD% = (TRD% + 1) MOD 7: T% = 3: IF N > 999 THEN N = 999:
GOSUB 5600

4530 IF TRD% = 6 THEN PRINT "slices "

5280 IF TRD% <> 6 THEN GOTO 5330

5290 DZ = (15 * (Z - ZMIN) / (ZMAX - ZMIN) + .5) / 16

5300 XP = (XP - XL + (INT(16 * DZ) MOD 4) * (XH - XL)) / 4 + XL

5310 YP = (YP - YL + (3 - INT(4 * DZ) MOD 4) * (YH - YL)) / 4 + YL

5320 PSET (XP, YP)

5330 RETURN

Figures 4-68 through 4-83 show some sample attractors displayed as a
succession of slices. The succession is from left to right and top to bottom in the same

242

way you read (in most Western languages, at least). In these cases attractors with
dimensions greater than two have been chosen; otherwise, the dimension of the
slices would be too small to be interesting.

Figure 4-68. Slices of a three-dimensional quadratic map

243

Figure 4-69. Slices of a three-dimensional quadratic map

244

Figure 4-70. Slices of a three-dimensional quadratic map

245

Figure 4-71. Slices of a three-dimensional quadratic map

246

Figure 4-72. Slices of a three-dimensional cubic map

247

Figure 4-73. Slices of a three-dimensional cubic map

248

Figure 4-74. Slices of a three-dimensional cubic map

249

Figure 4-75. Slices of a three-dimensional cubic map

250

Figure 4-76. Slices of a three-dimensional quartic map

251

Figure 4-77. Slices of a three-dimensional quartic map

252

Figure 4-78. Slices of a three-dimensional quartic map

253

Figure 4-79. Slices of a three-dimensional quartic map

254

Figure 4-80. Slices of a three-dimensional quintic map

255

Figure 4-81. Slices of a three-dimensional quintic map

256

Figure 4-82. Slices of a three-dimensional quintic map

257

Figure 4-83. Slices of a three-dimensional quintic map

In this chapter we have described a number of techniques whereby three-
dimensional information can be exhibited on a computer screen or printed page.
However, none of these displays is truly three-dimensional. You have seen the term
"3-D" used loosely in advertisements for computer graphics, often meaning little
more than a perspective drawing or a view from an oblique angle. In a true three-
dimensional display, the viewer must be able to see behind an object by moving
his or her head from side to side. A holographic display allows this, but most so-called
3-D displays do not. Anaglyphs and stereo pairs are probably better described as
stereoscopic displays. They merely provide the illusion of 3-D, as do shadows.
Techniques using bands, colors, and slices deserve even less to be called 3-D,
however useful they are for conveying information about the third dimension. You
should be appropriately discerning when confronted with graphics claimed to be
3-D.

258

Chapter 5
The Fourth Dimension

Although we normally think of space as three-dimensional, mathematics is
not so constrained. Strange attractors can be embedded in space of four and
even higher dimensions. Their calculation is a straightforward extension of what we
have done before. The challenge is to find ways to visualize such high-dimensional
objects. This chapter exploits a number of appropriate visualization techniques
after a digression to explain why dimensions higher than three are useful for
describing the world in which we live.

5.1 Hyperspace

Ordinary space is three-dimensional. The position of any point relative to an
arbitrary origin can be characterized by a set of three numbers—the distance
forward or back, right or left, up or down. An object, such as a solid ball, in this space
may itself be three-dimensional, or perhaps, like an eggshell of negligible thickness,
it may be two-dimensional. You can also imagine an infinitely fine thread, which is
one-dimensional, or the period at the end of this sentence, which is essentially zero-
dimensional. Although we can easily visualize objects with dimensions less than or
equal to three, it is hard to envision objects of higher dimension.

Before discussing the fourth dimension, it is useful to clarify and refine some
familiar terms. Perhaps the best example of a one-dimensional object is a straight
line. The line may stretch to infinity in both directions, or it may have ends. A line
remains one-dimensional even if it bends, in which case we call it a curve.

When we say that a curve is one-dimensional, we are referring to its topologi-
cal dimension. By contrast the Euclidean dimension is the dimension of the space
in which the curve is embedded. If the line is straight, both dimensions are one, but
if it curves, the Euclidean dimension must be higher than the topological dimension
in order for it to fit into the space. Both dimensions are integers. One definition of a
fractal is an object whose Hausdorff-Besicovitch (fractal) dimension exceeds its
topological dimension. For example a coastline on a flat map has a topological
dimension of one, a Euclidean dimension of two, and a fractal dimension between
one and two. It is an infinitely long line. On a globe, its Euclidean dimension would
be three.

259

A special and important example of a curve is a circle—a curve of finite
length but without ends, every segment of which lies at a constant distance from
a point at the center. Every circle lies in a plane, which is a flat, two-dimensional
entity. Like a line, the plane may stretch to infinity in all directions, or it may have
edges. If a plane has an edge, we call it a disk. Note the distinction between a circle,
which is a one-dimensional object that does not include its interior, and a circular
disk, which is a two-dimensional object that includes the interior.

Just as not all lines are straight, not all two-dimensional objects are flat. A
sheet of paper of negligible thickness remains two-dimensional if it is curled or even
crumpled up, in which case it is no longer a plane but is still a surface. A curved
surface has a Euclidean dimension of at least three. A surface can be finite but
without edges. An example is a sphere, every segment of which is at a constant
distance from its center.

Note that just as a circle doesn’t include its interior, neither does a sphere.
When we want to refer to the three-dimensional region bounded by a sphere, we
call it a ball. This terminology is universal among mathematicians, but not among
physicists, who sometimes consider the dimension of circles and spheres to be the
minimum Euclidean dimension of the space in which they can be embedded (two
and three, respectively).

Another example of a finite surface without edges is a torus, most familiar as
the surface of a doughnut or inner tube. Such curved spaces without edges are
useful whenever one of the variables is periodic. Spaces of arbitrary dimensions,
whether flat or curved, are called manifolds. The branch of mathematics that deals
with these shapes is called topology.

If we could describe the world purely by specifying the position of objects,
three dimensions would suffice. However, if you consider the motion of a baseball,
you are interested not only in where it is, but in how fast it is moving and in what
direction. Six numbers are needed to specify both its position and its velocity. This
six-dimensional space is called phase space. Furthermore, if the ball is spinning, six
more dimensions are needed, one to specify the angle and another to specify the
angular velocity about each of three perpendicular axes through the ball.

If you have two spinning balls that move independently, you need a phase
space with twice as many (24) dimensions, and so forth. Contemplate the phase-
space dimension required to specify the motion of more than 1025 molecules in
every cubic meter of air! Sometimes physicists even find it useful to perform
calculations in an infinite-dimensional space, called Hilbert space.

260

You might also be interested in other properties of the balls, such as their
temperature, color, or radius. Thus the state of the balls as time advances can be
described by a curve, or trajectory, in some high-dimensional space called state
space, in which the various perpendicular directions correspond to the quantities
that describe the balls. The trajectory is a curve connecting temporally successive
points in state space.

You have probably heard of time referred to as the fourth dimension and
associate the idea with the theory of relativity. Long before Einstein, it was obvious
that to specify an event, as opposed to a location, it is necessary to specify not only
where the event occurred (X, Y, and Z) but also when (T). We can consider events
to be points in this four-dimensional space.

Note that the spatial coordinates of a point are not unique. An object four
feet in front of one observer might be six feet to the right of a second and two feet
above a third. The values of X, Y, and Z of the position depend on where the
coordinate system is located and how it is oriented. However, we would expect the
various observers to agree on the separation between any two locations. Similarly
we expect all observers to agree on the time interval between two events.

The special theory of relativity asserts that observers usually do not agree on
either the separation or the time interval between two events. Events that are
simultaneous for one observer will not be simultaneous for a second moving relative
to the first. Similarly, two successive events at the same position as seen by one
observer will be seen at different positions by the other.

You have probably heard that, according to the special theory of relativity,
moving clocks run slow and moving meter sticks are shortened. (It is also true that
the effective mass of an object increases when it moves, leading to the famous
E = mc2, but that’s another story.) These discrepancies remain even after the
observers correct for their motion and for the time required for the information
about the events to reach them traveling at the speed of light. It is important to
understand that these facts have nothing to do with the properties of clocks and
meter sticks and that they are not illusions; they are properties of space and time,
neither of which possess the absolute qualities we normally ascribe to them.

What is remarkable is that all observers agree on the separation between the
events in four-dimensional space-time. This separation is called the proper length,
and it is calculated from the Pythagorean theorem by taking the square root of the
sum of the squares of the four components after converting the time interval (∆T) to
a distance by multiplying it by the speed of light (c). The only subtlety is that the
square of the time enters as a negative quantity:

261

Proper length = [_X2 + _Y2 + _Z2 - c2_T2]1/2 (Equation 5A)

Because of the minus sign in Equation 5A, time is considered to be an
imaginary dimension; an imaginary number is one whose square is negative. Note,
however, that the word "imaginary" does not mean it is any less real than the other
dimensions, only that its square combines with the others through subtraction rather
than addition. If you are unfamiliar with imaginary numbers, don’t be put off by the
name. They aren’t really imaginary; they are just the other part of certain quantities
that require a pair of numbers rather than a single number to specify them.

The minus sign also means that proper length, unlike ordinary length, may be
imaginary. If the proper length is imaginary, we say the events are separated in a
timelike, as opposed to a spacelike, manner. Timelike events can be causally
related (one event can influence the other), but spacelike events cannot, because
information about one would have to travel faster than the speed of light to reach
the other, which is impossible. Events separated in a timelike manner are more
conveniently characterized by a proper time:

Proper time = [_T2 - _X2/c2 - _Y2/c2 - _Z2/c2]1/2 (Equation 5B)

In this case, time is real, but space is imaginary. Proper length is the length of an
object as measured by an observer moving with the same velocity as the object,
and proper time is the time measured by a clock moving with the same velocity as
the observer.

Quantities such as proper length and proper time on which all observers
agree, independent of their motion, are called invariants. The speed of light itself
is an invariant. There are many others, and they all involve four components that
combine by the Pythagorean theorem.

Thus the theory of relativity ties space and time together in a very fundamen-
tal way. One person’s space is another person’s time. Since space and time can be
traded back and forth, there is no reason to call time the fourth dimension any more
than we call width the second dimension. It is better just to say that space-time is

262

four-dimensional, with each dimension on an equal footing. The apparent asym-
metry between space and time comes from the large value of c (3 x 108 meters per
second, or about a billion miles per hour) and the fact that time moves in only one
direction (past to future). It is also important to understand that, although special
relativity is called a "theory," it has been extensively verified to high accuracy by
many experiments, most of which involve particle accelerators.

The foregoing discussion explains why it might be useful to consider four-
dimensional space and four-dimensional objects, but it is probably fruitless to waste
too much time trying to visualize them. However, we can describe them math-
ematically as extensions of familiar objects in lower dimensions.

For example, a hypercube is the four-dimensional extension of the three-
dimensional cube and the two-dimensional square. It has 16 corners, 32 edges, 24
faces, and contains 8 cubes. Its hypervolume is the fourth power of the length of
each edge, just as the volume of a cube is the cube of the length of an edge and
the area of a square is the square of the length of an edge.

A hypersphere consists of all points at a given distance from its center in four-
dimensional space. Its hypersurface is three-dimensional and consists of an infinite
family of spheres, just as the surface of an ordinary sphere is two-dimensional and
consists of an infinite family of circles. We have reason to believe that our Universe
might be a hypersurface of a very large hypersphere, in which case we could see
ourselves if we peered far enough into space, except for the fact that we are also
looking backward to a time before Earth existed. We would also need an incredibly
powerful telescope to see Earth in this way. Thus our perception that space is three-
dimensional could be analogous to the ancient view that Earth was flat, a
consequence of experience limited to a small portion of its surface.

5.2 Projections

The previous section was intended to motivate your consideration of strange
attractors embedded in four-dimensional space, but most of the discussion is not
essential to what follows. We will now describe the computer program necessary to
produce attractors in four dimensions and then develop methods to visualize them.

The mathematical generalization from three to four dimensions is straightfor-
ward. Whereas before we had three variables—X, Y, and Z—we now have a fourth.
Having used up the three letters at the end of the alphabet, we must back up and
use W for the fourth dimension, but remember that all the dimensions are on an

263

equal footing. We use the first letters M, N, O, and P to code 4-D attractors of second
through fifth orders, respectively. The number of coefficients for these cases is 60,
140, 280, and 504, respectively. The number of coefficients for order O is (O + 1)(O
+ 2)(O + 3)(O + 4) / 6. The number of four-dimensional fifth-order codes is 25504, a
number too large to compare to anything meaningful; it might as well be infinite.

The program modifications required to add a fourth dimension are shown in
PROG18.

PROG18. Changes required in PROG17 to add a fourth dimension

1000 REM FOUR-D MAP SEARCH

1020 DIM XS(499), YS(499), ZS(499), WS(499), A(504), V(99), XY(4), XN(4), COLR%(15)

1070 D% = 4 'Dimension of system

1120 TRD% = 0 'Display third dimension as projection

1540 W = .05

1550 XE = X + .000001: YE = Y: ZE = Z: WE = W

1610 WMIN = XMIN: WMAX = XMAX

1720 M% = 1: XY(1) = X: XY(2) = Y: XY(3) = Z: XY(4) = W

2010 M% = M% - 1: XNEW = XN(1): YNEW = XN(2): ZNEW = XN(3): WNEW = XN(4)

2180 IF W < WMIN THEN WMIN = W

2190 IF W > WMAX THEN WMAX = W

2210 XS(P%) = X: YS(P%) = Y: ZS(P%) = Z: WS(P%) = W

264

2410 IF ABS(XNEW) + ABS(YNEW) + ABS(ZNEW) + ABS(WNEW) > 1000000! THEN T% = 2

2470 IF ABS(XNEW - X) + ABS(YNEW - Y) + ABS(ZNEW - Z) + ABS(WNEW - W) < .000001
THEN T% = 2

2540 W = WNEW

2910 XSAVE = XNEW: YSAVE = YNEW: ZSAVE = ZNEW: WSAVE = WNEW

2920 X = XE: Y = YE: Z = ZE: W = WE: N = N - 1

2950 DLZ = ZNEW - ZSAVE: DLW = WNEW - WSAVE

2960 DL2 = DLX * DLX + DLY * DLY + DLZ * DLZ + DLW * DLW

3010 ZE = ZSAVE + RS * (ZNEW - ZSAVE): WE = WSAVE + RS * (WNEW - WSAVE)

3020 XNEW = XSAVE: YNEW = YSAVE: ZNEW = ZSAVE: WNEW = WSAVE

3150 IF WMAX - WMIN < .000001 THEN WMIN = WMIN - .0000005: WMAX = WMAX + .0000005

3680 IF Q$ = "D" THEN D% = 1 + (D% MOD 4): T% = 1

3920 IF N = 1000 THEN D2MAX = (XMAX - XMIN) ̂ 2 + (YMAX - YMIN) ̂ 2 + (ZMAX - ZMIN)
^ 2 + (WMAX - WMIN) ^ 2

3940 DX = XNEW - XS(J%): DY = YNEW - YS(J%): DZ = ZNEW - ZS(J%): DW = WNEW - WS(J%)

3950 D2 = DX * DX + DY * DY + DZ * DZ + DW * DW

4760 IF D% > 2 THEN FOR I% = 3 TO D%: M% = M% / (I% - 1): NEXT I%

If you run PROG18 under certain old versions of BASIC, such as BASICA and
GW-BASIC, you are likely to get an error in line 2710 when the program attempts to
construct a code for the fourth-order and fifth-order maps as a result of the string-
length limit of 255 characters. In such a case, you may need to restrict the search

265

to second and third orders by setting OMAX% = 3 in line 1060. Alternatively, it’s not
difficult to modify the program to store the code in a pair of strings or to replace the
string with a one-dimensional array of integers containing the numeric equivalents
of each character in the string, perhaps with a terminating zero to signify the end
of the string. For example, after dimensioning CODE%(504) in line 1020, line 2710
would become

2710 CODE%(I%) = 65 + INT(25 * RAN)

and line 2740 would become

2740 A(I%) = (CODE%(I%) - 77) / 10

Also notice that the search for attractors is painfully slow unless you have a
very fast computer and a good compiler. Refer back to Table 2-2, which lists some
options for increasing the speed. The search can be made faster by limiting it to
second order by setting OMAX% = 2 in line 1060.

We have another trick we can use to increase dramatically the rate at which
four-dimensional strange attractors are found without sacrificing variety. It turns out
that most of these attractors have their constant terms near zero. The reason
presumably has to do with the fact that the origin (X = Y = Z = W = 0) is then a fixed
point, and the initial condition is chosen near the origin (X0 = Y0 = Z0 = W0 = 0.05).
If the fixed point is unstable, then we have one of the conditions necessary for
chaos. It is easy to accomplish this by adding after line 2730 a statement such as

2735 IF I% MOD M% / D% = 1 THEN MID$(CODE$, I% + 1, 1) = "M"

This increases the rate of finding attractors by about a factor of 50. Many of the
attractors illustrated in this chapter were produced in this way. This change also
increases the rate for lower-dimensional maps, but by a much smaller factor. This

266

improvement suggests that there is yet room to optimize the search routine by a
more intelligent choice of the values of the other coefficients.

Note that PROG18 does not attempt to display the fourth dimension but
projects it onto the other three, for which all the visualization techniques of the last
chapter are available. Don’t waste too much time trying to understand what it
means to project a four-dimensional object onto a three-dimensional space. It is just
a generalization of projecting a three-dimensional object onto a two-dimensional
surface. In the program, it simply involves plotting X, Y, and Z and ignoring the
variable W.

Some examples of four-dimensional attractors projected onto the two-
dimensional XY plane are shown in Figures 5-1 through 5-20. They don’t look
particularly different from those obtained by projecting three-dimensional attractors
onto the plane or, indeed, by just plotting two-dimensional attractors directly. Note
that most of these attractors have fractal dimensions less than or about 2.0, so
perhaps it is not too surprising that their projections resemble those produced by
equations of lower dimension. It is rare to find attractors with fractal dimensions
greater than 3.0 produced by four-dimensional polynomial maps, as will be shown
in Section 8.1.

267

Figure 5-1. Projection of four-dimensional quadratic map

268

Figure 5-2. Projection of four-dimensional quadratic map

269

Figure 5-3. Projection of four-dimensional quadratic map

270

Figure 5-4. Projection of four-dimensional quadratic map

271

Figure 5-5. Projection of four-dimensional quadratic map

272

Figure 5-6. Projection of four-dimensional quadratic map

273

Figure 5-7. Projection of four-dimensional quadratic map

274

Figure 5-8. Projection of four-dimensional quadratic map

275

Figure 5-9. Projection of four-dimensional quadratic map

276

Figure 5-10. Projection of four-dimensional quadratic map

277

Figure 5-11. Projection of four-dimensional quadratic map

278

Figure 5-12. Projection of four-dimensional quadratic map

279

Figure 5-13. Projection of four-dimensional quadratic map

280

Figure 5-14. Projection of four-dimensional quadratic map

281

Figure 5-15. Projection of four-dimensional quadratic map

282

Figure 5-16. Projection of four-dimensional quadratic map

283

Figure 5-17. Projection of four-dimensional quadratic map

284

Figure 5-18. Projection of four-dimensional cubic map

285

Figure 5-19. Projection of four-dimensional cubic map

286

Figure 5-20. Projection of four-dimensional quartic map

287

5.3 Other Display Techniques

Projecting two of the four dimensions onto the remaining two is akin to buying
a Ferrari to make trips to the grocery store. Much of our effort is wasted. We need
to use the techniques developed in the last chapter to display three dimensions and
devise additional methods to display simultaneously the fourth dimension.

Since we have several methods for displaying three dimensions, we should
be able to use some of them in combination to visualize all four dimensions. Table
5-1 summarizes the display techniques we have used and indicates the number of
dimensions that can be visualized with various combinations of them. In the table,
a dash indicates that the combination is not possible, and a question mark indicates
that the combination is possible but leads to contradictory visual information.

Table 5-1. Combinations of display techniques and the number of dimensions that can be visualized
with each

Third Dimension

Fourth Project Shadow Bands Color Anaglyph Stereo Slices

Dimension

Project 2D 3D 3D 3D 3D 3D 3D

Shadow 3D - 4D 4D ? ? 4D

Bands 3D 4D ? 4D 4D 4D 4D

Color 3D 4D 4D - - 4D 4D

Anaglyph 3D ? 4D - - ? 4D

Stereo 3D ? 4D 4D ? - 4D

Slices 3D 4D 4D 4D 4D 4D -

In Table 5-1, the entries in boldface are the ones we will implement in the
program. They were chosen because of their visual effectiveness, ease of program-
ming, and lack of redundancy with other combinations. Cases below and to the left
of the diagonal duplicate those above and to the right. The changes needed in the
program to produce such four-dimensional displays are shown in PROG19.

288

PROG19. Changes required in PROG18 to display the fourth dimension

1000 REM FOUR-D MAP SEARCH (With 4-D Display Modes)

1040 PREV% = 5 'Plot versus fifth previous iterate

1120 TRD% = 1 'Display third dimension as shadow

1130 FTH% = 2 'Display fourth dimension as colors

3630 IF Q$ = "" OR INSTR("ADHIPRSX", Q$) = 0 THEN GOSUB 4200

3720 IF Q$ = "H" THEN FTH% = (FTH% + 1) MOD 3: T% = 3: IF N > 999 THEN N = 999:
GOSUB 5600

4330 PRINT TAB(27); "H: Fourth dimension is ";

4340 IF FTH% = 0 THEN PRINT "projection"

4350 IF FTH% = 1 THEN PRINT "bands "

4360 IF FTH% = 2 THEN PRINT "colors "

5010 C4% = WH%

5020 IF D% < 4 THEN GOTO 5050

5030 IF FTH% = 1 THEN IF INT(30 * (W - WMIN) / (WMAX - WMIN)) MOD 2 THEN GOTO
5330

5040 IF FTH% = 2 THEN C4% = 1 + INT(NC% * (W - WMIN) / (WMAX - WMIN) + NC%)
MOD NC%

5050 IF D% < 3 THEN PSET (XP, YP): GOTO 5330 'Skip 3-D stuff

5060 IF TRD% = 0 THEN PSET (XP, YP), C4%

5080 IF D% > 3 AND FTH% = 2 THEN PSET (XP, YP), C4%: GOTO 5110

5130 IF TRD% <> 2 THEN GOTO 5160

289

5140 IF D% > 3 AND FTH% = 2 AND (INT(15 * (Z - ZMIN) / (ZMAX - ZMIN) + 2) MOD
2) = 1 THEN PSET (XP, YP), C4%

5150 IF D% < 4 OR FTH% <> 2 THEN C% = COLR%(INT(60 * (Z - ZMIN) / (ZMAX - ZMIN)
+ 4) MOD 4): PSET (XP, YP), C%

5260 XRT = XA + (XP + XZ * (Z - ZA) - XL) / HSF: PSET (XRT, YP), C4%

5270 XLT = XA + (XP - XZ * (Z - ZA) - XH) / HSF: PSET (XLT, YP), C4%

5320 PSET (XP, YP), C4%

5630 IF TRD% = 3 OR (D% > 3 AND FTH% = 2 AND TRD% <> 1) THEN FOR I% = 0 TO NC%:
COLR%(I%) = I% + 1: NEXT I%

In presenting sample displays from PROG19, we ignore those that convey
only three-dimensional information and concentrate on the new combinations
that permit full four-dimensional displays. They fall into two groups—those that
require the use of color and those that do not. Examples of the three 4-D mono-
chrome combinations are shown in Figures 5-21 through 5-44, and examples of the
six color combinations are shown in Plates 17 through 22.

290

Figure 5-21. Four-dimensional quadratic map with shadow bands

291

Figure 5-22. Four-dimensional quadratic map with shadow bands

292

Figure 5-23. Four-dimensional quadratic map with shadow bands

293

Figure 5-24. Four-dimensional quadratic map with shadow bands

294

Figure 5-25. Four-dimensional quadratic map with shadow bands

295

Figure 5-26. Four-dimensional quadratic map with shadow bands

296

Figure 5-27. Four-dimensional quadratic map with shadow bands

297

Figure 5-28. Four-dimensional cubic map with shadow bands

298

Figure 5-29. Four-dimensional quadratic map with stereo bands

299

Figure 5-30. Four-dimensional quadratic map with stereo bands

300

Figure 5-31. Four-dimensional quadratic map with stereo bands

301

Figure 5-32. Four-dimensional cubic map with stereo bands

302

Figure 5-33. Four-dimensional cubic map with stereo bands

303

Figure 5-34. Four-dimensional cubic map with stereo bands

304

Figure 5-35. Four-dimensional quartic map with stereo bands

305

Figure 5-36. Four-dimensional quartic map with stereo bands

306

Figure 5-37. Four-dimensional quadratic map with sliced bands

307

Figure 5-38. Four-dimensional quadratic map with sliced bands

308

Figure 5-39. Four-dimensional quadratic map with sliced bands

309

Figure 5-40. Four-dimensional quadratic map with sliced bands

310

Figure 5-41. Four-dimensional cubic map with sliced bands

311

Figure 5-42. Four-dimensional quartic map with sliced bands

312

Figure 5-43. Four-dimensional quartic map with sliced bands

313

Figure 5-44. Four-dimensional quintic map with sliced bands

You might be interested in the challenge of producing attractors embedded
in dimensions higher than four. In five dimensions, you need to define a new
variable, say V, and modify the program as was done for four dimensions in PROG18.
The program has been written to make it relatively easy to extend it to five or even
higher dimensions. Be forewarned that the calculation will be very slow. You will
almost certainly want to set the coefficients of the constant terms to zero and
probably restrict your search to quadratic maps. The number of fifth-dimension
polynomial coefficients for order O is (O + 1)(O + 2)(O + 3)(O + 4)(O + 5) / 24. With
O = 5, the number is 1260.

The simplest display technique is to project the fifth dimension onto the other
four. This is what the program does automatically if you don’t do anything special.
Several combinations of techniques, which we have already developed, are
capable of displaying five dimensions. You might try combining shadows, bands,

314

and color, for example. Table 5-2 lists the seven possible combinations of five-
dimensional display techniques that don’t lead to visual contradictions.

Table 5-2. Combinations of display techniques that can be used in five dimensions

Shadow Bands Color

Shadow Bands Slices

Shadow Color Slices

Bands Color Stereo

Bands Anaglyph Slices

Bands Stereo Slices

Color Stereo Slices

For a heroic exercise in programming, visualization, and patience, you can
try to extend the calculation to six dimensions. A six-dimensional, fifth-order system
of polynomials has 2772 coefficients. There are only two appropriate combinations
of display techniques suitable for six dimensions: shadow-bands-color-slices and
bands-color-stereo-slices. If you decide to try seven dimensions, you must invent a
new display technique.

5.4 Writing on the Wall

Since four-dimensional attractors have the greatest complexity and variety
of all the cases described in this book, they offer the greatest potential as display
art. For such purposes, you will probably want to print them on a large sheet of
paper. With an appropriate printer or plotter, any of the visualization techniques
previously described can be used to produce such large prints.

An alternate technique that has proved very successful is an extension of the
character-based method described in Section 4.5. In this technique, the third
dimension is coded as an ASCII character with a density related to the Z value, and
the fourth dimension is coded in color. Color pen and pencil plotters and ink-jet
plotters, as well as more expensive but high-quality electrostatic and thermal
plotters, normally used for engineering and architectural drawings, can print text on
sheets up to 36 inches wide. Ink-jet plotters are growing in popularity over the more

315

traditional pen plotters because they are faster and quieter and don’t require
special paper. They can also print gray scales. With care, you can piece together
smaller segments printed by more conventional means.

When the attractors are reduced to sequences of text, resolutions of 640 by
480 (VGA) or 800 by 600 (Super VGA) produce large figures whose individual
characters can be read when examined closely but that blend into continuous
contours when viewed from a distance. Artists often use this technique in which the
viewer is provided with a different visual experience on different scales. You should
use the largest and boldest characters available to maximize the contrast, pro-
vided they remain readable. There should be little or no space between rows and
columns of characters. With a pen plotter, the pen size can be chosen for the best
compromise of contrast and readability. A pen that makes a line width of 0.35 mm
(fine) is a reasonable choice.

Inks are available in only a limited number of colors, and pen plotters are
usually capable of accommodating only a small number of pens. The pens can be
sequenced to place compatible colors next to one another. With eight pens and
commonly available inks, a good sequence is magenta, red, orange (or yellow),
brown, black, green, turquoise, and blue. The closest color sequence for viewing on
the computer screen from Table 4-1 is 13, 12, 4 (or 14), 6, 8, 2, 3, and 9, with a white
(15) background. With upwards of 20 characters producing different color intensi-
ties, the limitation of eight colors of ink is not a serious one. With eight colors and ASCII
codes from 32 to 255, you can have 28 different intensities for each color. The inks
can be mixed to produce different shades of the colors. Pencils are less expensive
and don’t clog or dry out as pens often do, but pencil plots have a tendency to
smudge. Ink, of course, also smudges until it is thoroughly dry. Plotters are relatively
slow, and attractors produced by this method typically require a few hours to a full
day to produce.

Paper commonly used for engineering drawings comes in at least five
standard sizes—A (8 1/2 by 11 inches), B (12 by 18 inches), C (18 by 24 inches), D (24
by 36 inches), and E (36 by 48 inches). English sizes and architectural sizes are slightly
different, and thus a sheet may vary somewhat from these dimensions. Also, 36-
inch-wide paper is available on long rolls.

Common paper types are tracing bond, which is the most economical,
vellum, which is smooth and translucent, and polyester film, which is highly translu-
cent, dimensionally stable, and relatively expensive. The translucent papers offer
the interesting possibility of backing the print with a monochrome or color copy of
itself to enhance the contrast or to produce a shadow effect if the two are
displaced slightly. Other interesting effects can be achieved by backing one

316

translucent attractor with a print of another or by back-lighting the print. Some
papers stretch slightly and thus have a tendency to wrinkle. Paper with significant
acid content should be avoided because it turns yellow and becomes brittle with
age.

Some of the most artistic examples of strange attractors have been pro-
duced by these techniques, but they cannot be adequately illustrated in this book.
No computer program is offered, since it is so dependent on your hardware. You will
want to experiment to find the technique that works best for you and that makes
the most effective use of your printer or plotter.

5.5 Murals and Movies

The technique of making large-scale attractors for display can be carried to
its logical extreme by making a mural. Special techniques using some type of stencil
are required to transform the computer output to paint on the wall. Silk screen is
useful for transferring the image to fabrics. Fractal tee-shirts employing this tech-
nique have recently become popular.

To produce a mural, you need to start with a large number of plots, each
showing a small section of the attractor. A property of fractals is that they have
detail on all scales, and thus a large mural should look interesting when viewed
either from a distance or close up.

You might also photograph the computer screen or a high-quality print and
produce slides that can be projected onto a large surface or screen with a slide
projector. Equipment is available commercially for producing slides directly from
digital computer output. A sequence of such slides makes a very compelling
presentation or visual accompaniment to a lecture or musical production.

The color slices shown in Plate 22 suggest the possibility of making color
movies by extending the technique to a very large number of slices and using each
one as a frame of a movie. The effect is to cause the attractor to emerge at a point
in an empty field and to grow slowly, bending and wiggling until fully developed,
and then to disappear slowly into a different point. If the technology for doing this
is not available to you, try printing a large number of attractor slices on small cards
and fanning through them to produce a semblance of animation. This technique,
using the attractors described in Section 7.6, was used to produce the animation
in the upper-right corner of the odd pages of this book.

317

If the idea of making strange-attractor movies appeals to you, another
technique is to take one of your favorite attractors and slowly change one or more
of the coefficients in successive frames of the movie. A good way to start is to
multiply all the coefficients by a factor that varies from slightly less than 1.0 to slightly
greater than 1.0. You must determine the range over which the coefficients can be
changed without the solutions becoming unbounded or nonchaotic. The ends of
this range then become the beginning and end of the movie.

Sometimes the attractor slowly and continuously alters its shape. The changes
can involve bifurcations, such as the period-doubling sequence in the logistic
equation described in Chapter 1. Such bifurcations are called subtle. At other times,
the attractor and its basin abruptly disappear at a critical value of the control
parameter. Such discontinuous bifurcations are called catastrophes.

If the control parameter is changed in the opposite direction, the result may
be different from simply running the movie backward. This is an example of
hysteresis, which is a form of memory in a dynamical system. It serves to limit the
occurrence of catastrophes. The thermostat that controls your heat probably uses
hysteresis to keep the furnace from cycling on and off too frequently. Catastrophic
bifurcations usually exhibit hysteresis, whereas subtle bifurcations do not.

These four-dimensional maps are also well suited for color holographic
display or for experimentation with virtual reality, in which the view is controlled by
the motion of your head and hands to give the sensation of moving through the
object. The technology is complicated, but the results are visually and mentally
stimulating.

5.6 Search and Destroy

If you have worked carefully through the text, your program has created a
disk file SA.DIC containing the codes of all the attractors generated since you ran
the PROG11 program. We now develop the capability to examine these attractors
and save the interesting ones in a file FAVORITE.DIC, while discarding the others. This
feature allows you to run the program overnight and collect attractors for rapid
viewing the next day. This capability is especially useful if you have a slow computer.
The required program changes are shown in PROG20.

PROG20. Changes required in PROG19 to evaluate the attractors in SA.DIC and save the best of

318

them in FAVORITE.DIC

1000 REM FOUR-D MAP SEARCH (With Search and Destroy)

1380 IF QM% <> 2 THEN GOTO 1420

1390 NE = 0: CLOSE

1400 OPEN "SA.DIC" FOR APPEND AS #1: CLOSE

1410 OPEN "SA.DIC" FOR INPUT AS #1

2420 IF QM% = 2 THEN GOTO 2490 'Speed up evaluation mode

2610 IF QM% <> 2 THEN GOTO 2640 'Not in evaluate mode

2620 IF EOF(1) THEN QM% = 0: GOSUB 6000: GOTO 2640

2630 IF EOF(1) = 0 THEN LINE INPUT #1, CODE$: GOSUB 4700: GOSUB 5600

3340 IF QM% <> 2 THEN GOTO 3400 'Not in evaluate mode

3350 LOCATE 1, 1: PRINT "<Space Bar>: Discard <Enter>: Save";

3370 LOCATE 1, 49: PRINT "<Esc>: Exit";

3380 LOCATE 1, 69: PRINT CINT((LOF(1) - 128 * LOC(1)) / 1024); "K left";

3390 GOTO 3430

3620 IF QM% = 2 THEN GOSUB 5800 'Process evaluation command

3630 IF INSTR("ADEHIPRSX", Q$) = 0 THEN GOSUB 4200

3710 IF Q$ = "E" THEN T% = 1: QM% = 2

319

4220 WHILE Q$ = "" OR INSTR("AEIX", Q$) = 0

4320 PRINT TAB(27); "E: Evaluate attractors"

5800 REM Process evaluation command

5810 IF Q$ = " " THEN T% = 2: NE = NE + 1: CLS

5820 IF Q$ = CHR$(13) THEN T% = 2: NE = NE + 1: CLS : GOSUB 5900

5830 IF Q$ = CHR$(27) THEN CLS : GOSUB 6000: Q$ = " ": QM% = 0: GOTO 5850

5840 IF Q$ <> CHR$(27) AND INSTR("HPRS", Q$) = 0 THEN Q$ = ""

5850 RETURN

5900 REM Save favorite attractors to disk file FAVORITE.DIC

5910 OPEN "FAVORITE.DIC" FOR APPEND AS #2

5920 PRINT #2, CODE$

5930 CLOSE #2

5940 RETURN

6000 REM Update SA.DIC file

6010 LOCATE 11, 9: PRINT "Evaluation complete"

6020 LOCATE 12, 8: PRINT NE; "cases evaluated"

6030 OPEN "SATEMP.DIC" FOR OUTPUT AS #2

6040 IF QM% = 2 THEN PRINT #2, CODE$

6050 WHILE NOT EOF(1): LINE INPUT #1, CODE$: PRINT #2, CODE$: WEND

320

6060 CLOSE

6070 KILL "SA.DIC"

6080 NAME "SATEMP.DIC" AS "SA.DIC"

6090 RETURN

The program uses the E key to enter the evaluation mode. When in this mode,
the attractors in SA.DIC are displayed one by one. Each case remains on the screen
and continues to iterate until you press the spacebar, which deletes it, the Enter key,
which saves it in the file FAVORITE.DIC, the Esc key, which exits the evaluation mode,
or, in rare cases, until the solution becomes unbounded, whereupon it is deleted.
While an attractor is being displayed, you can press the H, R, P, and S keys to change
the way it is displayed without returning to the menu screen. The upper-right corner
of the screen shows the number of kilobytes left to be evaluated in the SA.DIC file.
When in the evaluation mode, the program bypasses the calculation of the fractal
dimension and Lyapunov exponent so that each case is displayed more quickly.

As you begin to accumulate a collection of favorite attractors, you will
probably want to go back and find your favorites of the favorites. You merely need
to rename the FAVORITE.DIC file to SA.DIC and evaluate them a second time. The
attractors exhibited in this book were selected by this method after looking at about
100,000 cases. Since the FAVORITE.DIC file is in ordinary ASCII text, you can share
your favorites with a friend who may have a different computer or operating system.
You can easily e-mail the file to someone or upload it to a computer bulletin board
or mainframe computer. Remember, however, that the programs in this book are
copyrighted and are for your personal use. It is a violation of the copyright to share
the programs with anyone else. You can now begin your own private collection of
strange attractors artwork!

321

Chapter 6
Fields and Flows

In this chapter, we consider equations whose iterates move gradually rather
than abruptly from one place to another. Such equations are called differential
equations, and they are the basis for most dynamical systems that describe natural
processes. The programming is a simple extension of what we have done before,
but the calculation requires more computing time. The attractors produced by
differential equations consist of continuous lines whose weavings and waverings
describe the trajectory and yield objects of considerable beauty.

6.1 Beam Me Up Scotty!

Successive iterates of the maps in the previous chapters are usually at widely
different positions on the attractors. The points dance around like fleas jumping on
the back of a dog, eventually, but gradually, visiting every allowed location. Most
processes in nature don’t occur that way but progress slowly and continuously from
some initial condition through a succession of nearby intermediate states to the
final condition.

If you take a trip across the country, your trajectory through three-dimen-
sional space (or even in four-dimensional space-time) is a continuous one-dimen-
sional curve. Only in science fiction is Captain Kirk able to dematerialize at one
position and rematerialize somewhere else, without occupying a succession of
intermediate positions. Most substances in nature obey a continuity equation,
which guarantees that if their quantity decreases at some position, the decrease
must be accompanied by a flow of the substance away from the position. Note that
this is a stronger condition than a conservation law, which requires only that the total
quantity of the substance remains the same.

There is a relation between flows and maps. Imagine a fly trapped in a room
and moving in a complicated, random manner. Its trajectory is a one-dimensional
curve that eventually fills the entire room. However, if you observe the fly with a
strobe lamp that flashes periodically, the trajectory is a succession of dots, with
each dot separated from the previous dot by a significant distance. The dots also
eventually fill the entire three-dimensional region, but it takes longer for this to occur.

However, if the fly’s motion is chaotic rather than random, neither the curve

322

nor the dots fill the room; rather, they lie on a strange attractor that occupies a
negligible portion of the room. The attractor consisting of all the possible dots often
has a lower dimension than the attractor consisting of all the possible curves. Thus
a map can be thought of as a crude description of a flow, in which the intervening
details of the motion are ignored.

It’s easy to think of an object such as a fly or a human, imbued with
intelligence, however limited, moving by free will along a complicated trajectory.
However, inanimate objects, such as astronomical bodies or sub-microscopic,
electrically charged particles, can also execute complicated motions. They do so
because they move through a space filled with gravitational or electromagnetic
fields.

It is important to recognize that a field has no objective reality other than to
describe mathematically the force on an object moving through it. When some-
thing is dropped, it falls toward Earth. It is a deeply philosophical question, not
answered very well by science, how the object knows to move toward Earth rather
than in some other direction. We say that it is acted upon by the gravitational field
of the Earth, but this description, however useful for calculating the motion, begs the
issue. Ultimately, the laws of physics describe very accurately how things move, but
not very well why.

The equations that describe flows are of a different type than those that
describe maps. They are called differential equations, and they involve the rate of
change of a quantity. We will consider only ordinary differential equations (ODEs),
as distinguished from the partial differential equations (PDEs) used to describe the
behavior of complicated objects like fluids that have intrinsically infinite-dimen-
sional state spaces. Dynamical systems described by ODEs involve only the time
rate of change of the position of a point in state space, whereas with PDEs, the
variables are quantities like density, temperature, and electric field that change in
space as well as time. A wave is an example of a dynamical system described by
a PDE.

Consider an object moving in the X direction. Its speed is the rate of change
of its position, and we will denote this quantity by X’ (pronounced "X prime"). It is the
distance the object moves in a brief interval of time divided by the time interval. If
you know some calculus, you recognize this as the time-derivative of X, usually
denoted by dX/dt. The rate of change of position is what the speedometer on your
car, or the police radar, reads. The rate of change of the speed is the acceleration.
More properly, we should call these quantities the time rate of change, since
quantities can also change in space. For example, the spatial rate of change in
altitude of a road is called its grade.

323

An object moving in three-dimensional space has a constantly changing
value not only of X but also of Y and Z. Furthermore, X’, Y’, and Z’ usually depend
on position (X, Y, and Z). For example, a particle moving clockwise in a circle about
the origin in the XY plane is described by the following pair of differential equations:

X’ = Y

Y’ = -X (Equation 6A)

Such a set of equations describes, at least approximately, the motion of the earth
around the sun. This type of regular motion is not chaotic, and it does not lead to
visually interesting strange attractors.

Some differential equations can be solved easily using calculus. For example,
Equation 6A has the solution

X = A sin(t + _)

Y = A cos(t + _) (Equation 6B)

which specifies the X and Y positions at any time t. The quantities A and φ are
constants that are determined from the initial conditions (the values of X and Y at
t = 0). If you are interested only in the shape of the trajectory, and not in where the
object is along it at any particular time, you can eliminate the t in Equations 6B to
get a relation between X and Y,

X2 + Y2 = A2 (Equation 6C)

which is the equation for a circle of radius A centered on the origin (X = Y = 0).

Equation 6A also arises in a different context. Imagine an object moving back
and forth in the X direction, perhaps attached to a spring that alternately stretches
and compresses. Since Y is equal to X’, we can associate Y with the velocity in the
X direction. The XY plane then becomes the two-dimensional phase space for this
one-dimensional motion, and the trajectory in this plane is the phase-space
trajectory. A circular phase-space trajectory is a characteristic of a one-dimen-
sional, simple harmonic oscillator, such as a mass on a spring. Usually the phase-
space trajectory is an ellipse, just as the orbit of the earth around the sun is an ellipse,
but we can always measure Y in appropriate units, or adjust the scale of the graph,
to change the ellipse into a circle.

With this interpretation, the first part of Equation 6A defines the velocity (Y) as

324

the rate of change of position (X’). If you remember your physics, the second part
of Equation 6A is Newton’s second law (F = ma), in which the force F obeys Hooke’s
law for springs (F = - kX), and the acceleration a is the rate of change of velocity (Y’).
It is interesting that the same set of differential equations with a change in the
meaning of the variables can describe the motion of an object traveling in a circle
or an object oscillating on the end of a spring. Equation 6A describes many other
phenomena in nature, such as the oscillations in an electrical circuit containing a
capacitor and inductor.

A two-dimensional system of differential equations such as Equation 6A
cannot exhibit chaos, according to the Poincaré-Bendixon theorem, because the
trajectory cannot cross itself. The most complicated bounded behavior is thus a
simple closed loop, corresponding to periodic motion. The reason the trajectory
cannot cross itself is that every point in the XY plane has associated with it a unique
direction of flow, so the trajectory must approach and leave every point in a single
particular direction. If the orbit were to return to a point previously visited, it would
thereafter repeat what it did before. In two dimensions, the orbit can do only one
of three things: spiral into a fixed point, approach a stable limit cycle, or spiral off to
infinity.

Trajectories may appear to cross if they come very close to a fixed point that
is stable in one direction and unstable in another (called a saddle point or X point
because of its shape). Such a trajectory is called a separatrix because it separates
regions with different flows. Trajectories approaching the fixed point on one side of
the separatrix veer off to the right, and those approaching from the other side veer
off to the left. Such a separatrix exists upstream (and downstream) of an island in a
river where two sticks placed side by side in the water end up going around
opposite sides of the island. The island seems at first to attract the sticks and then to
repel them at right angles as they approach it.

In three dimensions, we have the possibility of an orbit wrapping around in a
complicated manner, like a ball of string, never intersecting itself, but producing a
never-ending tangle. By contrast, maps can be chaotic in one or two dimensions
because the points jump from place to place with little danger of intersecting
another point. Captain Kirk need not be concerned about a collision while being
transported from one point to another. He only needs to worry about landing on top
of a diabolical Romulan at his destination!

325

6.2 Professor Lorenz and Dr. Rössler

Although differential equations have been the mathematical basis for most
descriptions of nature for hundreds of years, almost no one suspected that the
trajectories resulting from their solution could be a chaotic strange attractor. The
history of the discovery of such solutions is interesting and bears retelling.

In the early 1960s, Edward Lorenz, a meteorologist at the Massachusetts
Institute of Technology, was developing models of atmospheric convection to be
solved by a primitive computer that required about one second per iteration. His
models involved a large number of differential equations and produced solutions
that varied with time in a complicated manner, not unlike the variation of the
weather over long intervals of time. On one occasion, he happened to restart one
of his computer runs using numbers rounded to three digits rather than the six
significant figures used by the computer.

For some time, the solutions followed one another, but after a while they
began to depart, and eventually they bore no relation to one another. He had
discovered the sensitivity to initial conditions that is perhaps the most salient feature
of chaos. He began simplifying his equations in an attempt to determine the
minimum conditions necessary for this bizarre behavior. The result is the now famous
Lorenz equations, which represent the first example of a strange attractor arising
from differential equations,

X’ = _(Y - X)

Y’ = -XZ + rX - Y

Z’ = XY - bZ (Equation 6D)

where σ, r, and b are constants that Lorenz took to be σ = 10, r = 28, and b = 8/3.
Lorenz published his findings in 1963 in the Journal of the Atmospheric Sciences,
where they went largely unnoticed for the next decade. The title of his paper,
"Deterministic Nonperiodic Flow," is an apt description of what we now call chaos.

Although the Lorenz equations were distilled from a model of atmospheric
convection, the trajectory in XYZ space does not represent air currents in any literal
way. Instead, X corresponds to the size of the convective motion, Y is proportional
to the temperature difference between the ascending and descending fluids, and
Z is proportional to the deviation of the vertical temperature profile from a linear
function. Nevertheless, the behavior is reminiscent of a fluid with turbulent convec-
tion.

326

Since the Lorenz equations were proposed, several phenomena have been
found that are at least approximately modeled by them. Perhaps the simplest
example is the thermosiphon. Imagine a continuous tube, like a bicycle tube, filled
with a liquid and mounted vertically. If the bottom of the tube is heated and the top
cooled, a convection ensues, with the warm fluid rising and the cold fluid falling. The
convection is equally likely to start in either direction. After it starts, the circulation
continues in that direction a few times around the loop and then abruptly reverses.

In the 1970s other examples of chaotic differential equations began to be
discovered. An important contribution was made in 1976 by Otto Rössler, a
nonpracticing medical doctor in Germany. Rössler was interested in chaos in
chemistry and theoretical biology, and he set about to find a system of equations
even simpler than those of Lorenz that exhibited chaotic behavior. What he came
up with are the now famous Rössler equations:

X’ = -(Y + Z)

Y’ = X + aY

Z’ = b + Z(X - c) (Equation 6E)

where a, b, and c are constants that Rössler took to be a = 0.2, b = 0.2, and c = 5.7.
The Rössler equations are sometimes described as the simplest known example of
chaos arising from a system of ordinary differential equations. They contain a single
nonlinearity (ZX in the third equation). Rössler’s original paper is also interesting
because it contains a stereoscopic view of his strange attractor as well as the Lorenz
attractor.

Until very recently, the discovery of a new strange attractor was a cause to
rush to publication. With the program in this book, you can produce them by the
thousands! Even today researchers tend to focus on a few well-known examples
such as the Lorenz and Rössler attractors. An entire book has been written on the
Lorenz attractor alone. Think of the libraries that could be filled by books describing
your attractors in similar detail!

The Lorenz and Rössler attractors are shown in Figures 6-1 and 6-2, respec-
tively, albeit with slightly different values of the parameters than they used. These
cases are known to have fractal dimensions slightly greater than 2.0. These
examples are more important for their historical interest than for their visual appeal.
If you have never seen these attractors in 3-D, be sure to return to these cases and
view them with the various display techniques after the program has been appro-
priately modified, as described in the next section. The Lorenz attractor resembles

327

the wings of a butterfly, making it an appropriate emblem of chaos, since the
sensitivity to initial conditions is most dramatically illustrated by the butterfly effect.

Figure 6-1. The Lorenz attractor

328

Figure 6-2. The Rössler attractor

6.3 Finite Differences

Some differential equations, such as Equation 6A, can be solved exactly in a
straightforward manner using calculus. However, if a system of equations exhibits
chaos, no such solution is possible. The reason is that no mathematical function
analogous to the sine and cosine can describe a strange attractor the way those
functions describe a circle. The equations must be solved by computer. We say that
such solutions are numerical as opposed to analytical.

Unfortunately, digital computers, which are ideal for iterating maps, are
inherently incapable of exactly solving differential equations. The equations require
that the solution advance slowly and smoothly. That is, the successive iterates must
differ by an infinitesimal amount, thus infinitely many iterations are required to make
any progress. Special analog computers have been designed for the task, but they

329

are not common or simple to program.

Books have been written on methods for the approximate numerical solution
of differential equations, and it is as much an art as a science. All the methods
involve, in one form or another, a finite-difference approximation to the differential
equation. Rather than taking infinitesimal steps, one advances in finite steps
according to a prescription that attempts to minimize the inevitable errors. Fortu-
nately, for our purpose, our solutions need not be highly accurate, so we can use
a simple procedure.

Perhaps the easiest and most transparent method for finding approximate
solutions to differential equations is the Euler method. When this procedure is
applied to the simple example of Equation 6A, X and Y are advanced according
to

Xn+1 = Xn + _Yn

Yn+1 = Yn - _Xn (Equation 6F)

where ε is the time step that ideally should be negligibly small but in reality is made
as large as possible to reduce the number of iterations required to advance the
solution by a substantial distance along the trajectory. You see that the Euler
method provides just another example of an iterated map in which successive
iterates are near one another. It is perhaps the least accurate method for solving
differential equations, and it is easily improved upon. However, for most of our
purposes, the Euler method is adequate. Furthermore, it is simple to modify the
program to solve differential equations by this method. The necessary changes are
shown in PROG21.

PROG21. Changes required in PROG20 to solve differential equations by the Euler method

1000 REM ODE SEARCH

1070 D% = 3 'Dimension of system

1080 EPS = .1 'Step size for ODE

1090 ODE% = 1 'System is ODE

330

1990 IF ODE% = 1 THEN XN(I%) = XY(I%) + EPS * XN(I%)

2660 CODE$ = CHR$(59 + 4 * D% + O% + 8 * ODE%)

3050 IF ODE% = 1 THEN L = L / EPS

3660 IF ODE% = 1 THEN D% = D% + 2

3680 IF Q$ = "D" THEN D% = 1 + (D% MOD 6): T% = 1

3700 IF D% > 4 THEN ODE% = 1: D% = D% - 2 ELSE ODE% = 0

4300 PRINT TAB(27); "D: System is"; STR$(D%); "-D polynomial ";

4310 IF ODE% = 1 THEN PRINT "ODE" ELSE PRINT "map"

4730 IF D% > 4 THEN D% = D% - 2: ODE% = 1 ELSE ODE% = 0

In PROG21, the value of ε is 0.1, and the three-dimensional equations are
polynomials up to fifth order, with coefficients chosen by analogy to the three-
dimensional polynomial maps previously described. We don’t consider differential
equations in less than three dimensions because they cannot have chaotic
solutions. The second-order through fifth-order equations are coded with the first
letters Q, R, S, and T, respectively.

If ε is sufficiently small, its value should not affect whether a system is chaotic
or the general appearance of the attractor, but it certainly changes the trajectory
on the attractor. Just as a chaotic trajectory is sensitive to initial conditions, it also
is sensitive to the approximations used to calculate it. Unfortunately, a value of ε =
0.1 is not sufficiently small, and many of the resulting attractors would disappear or
change their appearance if ε were reduced. Conversely, other attractors would
emerge for smaller values of e. Fortunately, for our purposes, the solutions need not
be even qualitatively correct. Be forewarned that reducing e has unpredictable
effects on the attractors and increases the computation time.

331

The Lyapunov exponent is calculated as with the corresponding maps,
except that it is divided by e; thus its units are bits per second rather than bits per
iteration, because each iteration advances the solution by e seconds. It is custom-
ary to express the Lyapunov exponent in this way for differential equations because
the step size depends on the numerical approximation that is being used, whereas
the divergence of the trajectories per unit time is an intrinsic property of the
differential equations.

Sample attractors produced by three-dimensional ordinary differential equa-
tions projected onto the XY plane are shown in Figures 6-3 through 6-6.

Figure 6-3. Projection of three-dimensional quadratic ODE

332

Figure 6-4. Projection of three-dimensional cubic ODE

333

Figure 6-5. Projection of three-dimensional quartic ODE

334

Figure 6-6. Projection of three-dimensional quintic ODE

These figures are like time-exposed photographs of the shadow on the wall
of a fly moving chaotically in a room. However, because of the finite difference
approximation used to solve the equation of motion, you must imagine that the fly
is illuminated by a strobe lamp that flashes rapidly. The trajectory thus consists of a
large number of closely spaced dots. The separation of the dots provides a measure
of the accuracy of the solution. Although some of the cases produce apparently
continuous trajectories, others more nearly resemble the maps of the previous
chapters. You might prefer to alter the program so that the dots are connected by
lines. This is most easily done by changing line 5060 to

5060 IFTRD% = Ø THEN IFODE% = 1 THEN

LINE-(XP, YP), C4% ELSEPSET(XP, YP), C4%

Another consequence of dealing with differential equations is that many

335

criterion for the number of iterations as we did for the maps, a significant number
(perhaps 20%) of the attractors found in a random search are not chaotic, and a
few are even unbounded. When you evaluate the attractors found by the search,
you will recognize these cases by the way they eventually settle onto a simple
closed loop that is visually indistinguishable from a limit cycle, spiral into a fixed point,
or leave the screen. You will also notice a few cases that consist of isolated islands
with no bridge connecting them, such as the one in Figure 6-3. You can be sure
these are not true flows, because such discontinuities are impossible in the trajec-
tories that arise from the solution of our differential equations.

There is no reason to limit the display of attractors arising from differential
equations to projections onto a plane. All the display techniques developed in
Chapter 4 for three-dimensional maps are also available here. Figures 6-7 through
6-22 and Plates 23 and 24 show a selection of such examples.

Figure 6-7. Three-dimensional quadratic ODE with shadows

336

Figure 6-8. Three-dimensional cubic ODE with shadows

337

Figure 6-9. Three-dimensional quartic ODE with shadows

338

Figure 6-10. Three-dimensional quintic ODE with shadows

339

Figure 6-11. Three-dimensional quadratic ODE with contour bands

340

Figure 6-12. Three-dimensional cubic ODE with contour bands

341

Figure 6-13. Three-dimensional quartic ODE with contour bands

342

Figure 6-14. Three-dimensional quintic ODE with contour bands

343

Figure 6-15. Stereo pair of three-dimensional quadratic ODE

344

Figure 6-16. Stereo pair of three-dimensional cubic ODE

345

Figure 6-17. Stereo pair of three-dimensional quartic ODE

346

Figure 6-18. Stereo pair of three-dimensional quintic ODE

347

Figure 6-19. Slices of a three-dimensional quadratic ODE

348

Figure 6-20. Slices of a three-dimensional cubic ODE

349

Figure 6-21. Slices of a three-dimensional quartic ODE

350

Figure 6-22. Slices of a three-dimensional quintic ODE

351

6.4 Flows in Four Dimensions

Flows, like maps, can be embedded in spaces of arbitrary dimension. Four-
dimensional flows are hard to visualize but pose no difficulty for the computer to
calculate. Buried in PROG21 is the capability for calculating four-dimensional flows.
You only need to press the D key to access the four-dimensional ODEs. All the
techniques previously developed for displaying four-dimensional maps are avail-
able. The quadratic, cubic, quartic, and quintic equations are coded with the first
letters U, V, W, and X, respectively. Figures 6-23 through 6-38 and Plates 25 through
30 show a selection of strange attractors arising from four-dimensional ordinary
differential equations with polynomial terms.

Figure 6-23. Projection of a four-dimensional quadratic ODE

352

Figure 6-24. Projection of a four-dimensional cubic ODE

353

Figure 6-25. Projection of a four-dimensional quartic ODE

354

Figure 6-26. Projection of a four-dimensional quintic ODE

355

Figure 6-27. Four-dimensional quadratic ODE with shadow bands

356

Figure 6-28. Four-dimensional cubic ODE with shadow bands

357

Figure 6-29. Four-dimensional quartic ODE with shadow bands

358

Figure 6-30. Four-dimensional quintic ODE with shadow bands

359

Figure 6-31. Four-dimensional quadratic ODE with stereo bands

360

Figure 6-32. Four-dimensional cubic ODE with stereo bands

361

Figure 6-33. Four-dimensional quartic ODE with stereo bands

362

Figure 6-34. Four-dimensional quintic ODE with stereo bands

363

Figure 6-35. Four-dimensional quadratic ODE with sliced bands

364

Figure 6-36. Four-dimensional cubic ODE with sliced bands

365

Figure 6-37. Four-dimensional quartic ODE with sliced bands

366

Figure 6-38. Four-dimensional quintic ODE with sliced bands

367

6.5 Strange Attractors that Aren’t

In Section 3.8, we discussed chaotic orbits that don’t approach an attractor
("Strange Attractors that Don’t"). Here we consider nonchaotic orbits that ap-
proach attractors that aren’t strange. These attractors are not fractals. They have
dimensions that are integers such as 0, 1, 2, or 3. Some of them are beautiful, so they
are worth displaying even if they are technically outside the scope of this book.

Such attractors can arise from maps as well as from differential equations.
They don’t require high embedding dimensions, although the dimension of the
attractor always is at least one less than the dimension of the embedding space.
Thus some of the examples are taken from equations described in earlier chapters.

The simplest nonchaotic attractor is a point attractor. Suppose we modified
Equation 6A so the solution is not a circle but an inward spiral. One way to do this
is as follows:

X’ = Y - bX

Y’ = -X - bY (Equation 6G)

You can think of the coefficient b as a measure of the friction that eventually brings
the trajectory to rest at the origin (X = Y = 0) in phase space. If b is zero (frictionless),
the orbit is a circle. Negative values of b (antifriction) cause the solution to spiral
outward, approaching infinity. This case corresponds to a point repellor at the
origin. An attractive fixed point is called a sink and a repelling fixed point is called
a source. Some authors reserve the term fixed point for maps and prefer to call the
stationary solutions of ODEs critical points or equilibrium points.

The two occurrences of b in Equation 6G need not have the same value or
even the same sign. In such a case, the orbit moves in or out but not in a symmetrical
manner. Many physical processes have b = 0 in one of the equations. If b is close
to zero, it doesn’t matter much in which equation it appears.

If b is zero in one of the equations above, small positive values of the other b
cause the radius of the circle to decrease slowly, approaching what is called a
spiral-point or focal-point attractor, or simply a focus. Larger positive values of b
cause the radius to decrease more rapidly. With very large values of b, there is little
circulation around the point, and the trajectory is more nearly radial toward what
is called a radial-point or nodal-point attractor, or simply a node. The boundary
between the two cases occurs at b = 2 and corresponds to critical damping in an
oscillator. In either case, the resulting attractor is a point at the origin with a

368

dimension of zero. A code that produces a point attractor (with b = 1) is
QMLM3NM5LM3LM14. For this case, the largest Lyapunov exponent is negative (L
= - 0.1/ln 2 = - 0.14), and it produces a single dot on the screen.

More interesting cases can occur because the program assumes the trajec-
tory is on the attractor after 1000 iterations. For trajectories that approach the
attractor very slowly, there can be interesting behavior after the thousandth
iteration and before the fixed point is reached. Such slowly attracting fixed points
have negative Lyapunov exponents, at least one of which is very close to zero. The
search can be expanded to include them as well as other nonchaotic attractors
by changing the .005 in line 2480 of the program to -.005, for example. Then
attractors that have Lyapunov exponents near zero but have not settled to a fixed
point after NMAX iterations are included in the file SA.DIC. If you prefer, you can
collect them in a separate file TORUS.DIC by changing line 4910 of PROG21 to

4910 IF L > .005 THEN OPEN "SA.DIC" FOR APPEND AS #1 ELSE OPEN "TORUS.DIC" FOR

APPEND AS #1

Several such cases are shown in Figures 6-39 through 6-42. Figure 6-39 shows
a spiral-point attractor. Figure 6-40 shows what appears to be a radial-point
attractor with several different initial conditions; it is really a spiral-point attractor
with successive iterates that move rapidly around the fixed point. This phenomenon
is called aliasing, and it is most easily detected by connecting temporally succes-
sive points with continuous lines. Figures 6-41 and 6-42 show cases where the rate
of circulation around the fixed point changes significantly as the fixed point is
approached.

369

Figure 6-39. Trajectory approaching a spiral-point attractor

370

Figure 6-40. Trajectory emulating a radial-point attractor

371

Figure 6-41. Trajectory approaching a point attractor

372

Figure 6-42. Trajectory approaching a point attractor

The point attractor is the simplest type of nonchaotic attractor. It has a
dimension of zero. An attractor can also have a dimension of one, which is a line.
Such attractors are limit cycles. They correspond to systems that settle into a
periodic or cyclic behavior. Consequently, such attractors are also called cyclic
attractors.

The simplest differential equations that produce a cyclic trajectory are the
equations in Equation 6A. The resulting orbit is a circle in the XY plane. This case is not
an attractor, however, because every initial condition produces a circular trajec-
tory whose radius is the distance of the initial point from the origin. There is no unique
circle to which nearby orbits are attracted, and there is no basin of attraction.
Furthermore, if you attempt to display the trajectory using a code such as
QM5NM5LM18, you will find that the orbit is unbounded and spirals outward as if
there were a point repellor at the origin. The reason is that our iteration scheme for

373

approximating the solution of the differential equations is not exact. The errors
compound and eventually cause the orbit to be lost.

The simple undamped (frictionless) oscillator is said to be structurally unstable
because an arbitrarily small perturbation to the equation (such as using the Euler
finite difference approximation of Equation 6F) changes the structure of the solution
from a closed loop to a never-ending spiral. Note the distinction between an
unstable equation, in which a small modification of the equation causes a large
change in the solution, and an unstable solution, in which a small variation of the
initial condition away from the equilibrium value causes the solution to move ever
farther from equilibrium.

To produce a true limit cycle that is structurally stable, we need a system of
equations whose solutions spiral outward from initial conditions in the interior and
spiral inward from initial conditions on the exterior of the attractor. A suitable set of
such equations is the following:

X’ = Y + (1 - X2 - Y2)X

Y’ = -X + (1 - X2 - Y2)Y (Equation 6H)

The quantity (1 - X2 - Y2) plays the role of -b in Equation 6G. Whenever the trajectory
lies inside the circle of radius one, it spirals outward, and whenever it lies outside the
circle of radius one, it spirals inward. Thus the limit cycle is defined by the circle X2
+ Y2 = 1. There is a point repellor at the origin, and the basin of attraction is the entire
XY plane. A code that produces such a stable limit cycle, except with a smaller
radius is RMNMAM3AM3NM9LM2AM6NMAM26.

A limit cycle may be either stable or unstable, just like a fixed point. With an
unstable limit cycle, nearby orbits move progressively farther from the limit cycle. An
unstable limit cycle can be identified in an invertable map or system of ordinary
differential equations by running time backwards, in which case the limit cycle
becomes stable and attracts rather than repels nearby orbits.

A slightly simpler version of Equation 6H that produces a stable limit cycle,
although not a symmetrical one, is the following:

X’ = Y

Y’ = -X + (1 - X2)Y (Equation 6I)

This system is called the Van der Pol equation, and it was first used to model vacuum-

374

tube oscillator circuits, but it has been used in other applications such as the
modeling of pulsating stars called Cephids. A code for the Van der Pol equation is
RM11OM9KM2KM6OM28.

Such limit cycles are characterized by a dimension of one and a Lyapunov
exponent of zero. The dimension as approximated by the program will usually not
be exactly 1.0 for the reasons discussed in Section 3.4. The Lyapunov exponent is a
much better criterion for identifying limit cycles. In a two-dimensional embedding
space, as in the previous examples, there are two Lyapunov exponents. The smaller
(more negative) of them is the rate at which trajectories with different initial
conditions approach the attractor. The larger exponent (the one calculated by the
program) is the rate at which two nearby points on the limit cycle separate. For a
limit cycle produced by ODEs, this exponent must be zero because points along the
trajectory are governed by the same rates of flow, except delayed in time.

In two dimensions, the limit cycles cannot cross, so the most complicated
shapes are simple distorted loops. In three or more dimensions, they can wrap
around in a complicated tangle like a ball of string, but without ends. Figures 6-43
through 6-50 show a collection of visually interesting limit cycles. They are plotted
as stereo pairs so that you can see how the trajectories pass beneath one another.

375

Figure 6-43. Limit cycle from a three-dimensional quadratic map

376

Figure 6-44. Limit cycle from a three-dimensional quadratic ODE

377

Figure 6-45. Limit cycle from three-dimensional quadratic ODE

378

Figure 6-46. Limit cycle from a three-dimensional quadratic ODE

379

Figure 6-47. Limit cycle from a three-dimensional cubic ODE

380

Figure 6-48. Limit cycle from a three-dimensional quintic ODE

381

Figure 6-49. Limit cycle from a four-dimensional quadratic ODE

382

Figure 6-50. Limit cycle from a four-dimensional quartic ODE

As you examine the figures, note that some of the limit cycles, such as the one
in Figure 6-43, form knots. You cannot straighten them out into circular loops. By
contrast, Figure 6-47 is unknotted. This knottedness or helicity is an important
topological property of an attractor. Some processes in nature tend to conserve
helicity, just as mechanical energy is conserved in frictionless motion. Thus when
some parameter of the system is changed, the limit cycle may change its size and
shape but in such a way that it always links itself in the same way. An example is a
magnetic field line in a turbulent conducting fluid such as a plasma of electrically
charged particles.

For many of the limit cycles exhibited here, it is very hard to tell whether they
are knotted. Even when they appear to be knotted, it is hard to tell whether two
cases are knotted in the same way. Such patterns might provide a useful psycho-
logical test for one’s spatial acuity because they require both depth perception

383

and a mental dexterity to visualize their shape when untangled as much as possible.
See which of the limit cycles in the figures you think are knotted.

6.6 Doughnuts and Coffee Cups

Non-chaotic attractors can be points or lines. They can also be surfaces.
Surfaces are two-dimensional manifolds. Perhaps the simplest set of equations
whose solution is a trajectory that fills a surface is the following:

X’ = Y

Y’ = -X

Z’ = aW

W’ = -Z (Equation 6J)

You will recognize the first two equations as the same as Equation 6A that produces
a circle in the XY plane. The second two equations produce an ellipse in the ZW
plane. The two motions are uncoupled (X and Y don’t depend on Z or W; Z and W
don’t depend on X or Y). The parameter a is the square of the angular frequency
of the second motion. If the square root of a is a rational number (a ratio of two
integers) the trajectory is a closed one-dimensional loop in the four-dimensional
embedding space.

If the square root of a is irrational, the trajectory fills a two-dimensional toroidal
surface (called a 2-torus). The trajectory winds endlessly around the surface of a
dougnut, never intersecting itself. In such a case we say the frequencies (the
number of transits per second the long way around and the short way around) are
incommensurate and that the trajectory is quasi-periodic. The sequence never
repeats, but it is not chaotic. It is sometimes difficult to distinguish between quasi-
periodic and chaotic behavior.

A useful tool for distinguishing between a quasi-periodic and a chaotic
attractor is the power spectrum of the time series, which has sharp peaks at discrete
frequencies for quasi-periodic trajectories but a broad (continuous) spectrum for
chaotic trajectories. The power spectrum contains about half of the information
required to reconstruct the trajectory; the frequency information is present, but the
phase information is lost. Nevertheless, the power spectrum serves as a kind of
fingerprint that is very useful in categorizing attractors.

384

The equation set in Equation 6J has the same problems as Equation 6A. They
don’t represent an attractor because nearly all initial conditions produce different
tori. Furthermore, the tori produced in this way are structurally unstable, just like the
circles of Equation 6A. These difficulties can be circumvented by using instead an
extension of Equations 6H to produce two uncoupled limit cycles as follows:

X’ = Y + (1 - X2 - Y2)X

Y’ = -X + (1 - X2 - Y2)Y

Z = aW + (1 - Z2 - W2)Z

W = -Z + (1 - Z2 - W2)W (Equation 6K)

A value of a = 2 provides an acceptable irrational frequency ratio, because the
square root of 2 cannot be represented as a ratio of two integers. The correspond-
ing trajectory can be generated using the code VMNMAM4AM7NM19LM2-
AM11NMAM42NMAM2AOM28LM2AM2NMA. A rotated version of the 2-torus in
which one loop is in the XZ plane and the other is in the YW plane is produced by
the code VMNMAM8AM13 NM24 NMAM6AM6OM3LM 3AM20NMAM22 L-
M3AM11NMA.

Two uncoupled limit cycles lie on a torus that is attractive, but it is not
technically an attractor; it is called an invariant manifold. For an object to be an
attractor, it must not only attract nearby trajectories, but most trajectories on it must
wander all over it, in which case we say the set is transitive and the orbits are
ergodic. Ergodic orbits produce mixing, which means that an orbit starting from
anywhere on the attractor eventually comes arbitrarily close to every other point
on the attractor. Mixing ensures that an attractor cannot be split into two different
attractors, although the attractor need not be connected. Figure 5-11 shows an
attractor that is not connected. Thus not all attractive tori are attractors, just as not
all attractors are tori.

Tori can be identified in the computer search by a Lyapunov exponent close
to zero and a dimension well above one. It is easy to distinguish them visually from
limit cycles, which also have Lyapunov exponents close to zero but resemble lines
rather than surfaces. A selection of tori projected onto the XY plane is shown in
Figures 6-51 through 6-60.

385

Figure 6-51. Torus from a three-dimensional cubic ODE

386

Figure 6-52. Torus from Three-Dimensional Cubic ODE

387

Figure 6-53. Torus from a four-dimensional quadratic ODE

388

Figure 6-54. Torus from a four-dimensional quadratic ODE

389

Figure 6-55. Torus from a four-dimensional quadratic ODE

390

Figure 6-56. Torus from a four-dimensional quadratic ODE

391

Figure 6-57. Torus from a four-dimensional quadratic ODE

392

Figure 6-58. Torus from a four-dimensional quadratic ODE

393

Figure 6-59. Torus from a four-dimensional cubic ODE

394

Figure 6-60. Torus from a four-dimensional quartic ODE

Most of the attractors shown in the figures look like tori in the sense that you
can see or imagine the hole in the doughnut. However, it is important to understand
that, just as not all limit cycles are circles, not all 2-tori look like doughnuts. They are
topologically equivalent in the sense that there is a "rubber-sheet" deformation
(called a homeomorphism) that maps them into a doughnut. A coffee cup, for
example, is topologically equivalent to a doughnut as long as the handle is
unbroken.

Those cases that are not obviously equivalent to a simple torus are distorted
by the fact that they are viewed projected onto the XY plane or because they are
rotated at an awkward angle. Also note that most of these tori are embedded in
a four-dimensional space, so it is even more difficult to grasp their shape from a two-
dimensional projection. You might want to display them using some of the ad-
vanced visualization techniques provided by the program.

395

It is possible, though difficult, to produce a 3-torus in a four-dimensional
embedding space. A 3-torus is a generalization of a 2-torus. It is hard to visualize. It
involves three mutually incommensurate frequencies. It is characterized by a
dimension of three and a largest Lyapunov exponent of zero. Some of the attractors
in the figures seem to be 3-tori according to their calculated dimension. However,
the calculation is not sufficiently precise to distinguish unambiguously between a 2-
torus and a 3-torus. It is necessary to search embedding dimensions greater than
four to have a good chance of finding 3-tori.

Dynamical systems whose trajectories lie on a 3-torus or other hypertori of
even higher dimensions are difficult to observe in nature. The reason is that such
attractors can be perturbed by an arbitrarily small change to the system that
causes them to become strange attractors. According to Peixoto’s theorem (which
strictly applies only to compact, orientable manifolds), 2-tori tend to be structurally
stable, while 3-tori and higher are structurally unstable. Thus it appears that
complicated deterministic systems that exhibit nontrivial behavior are well repre-
sented by the strange attractors that constitute the subject of this book.

396

Chapter 7
Further Fascinating Functions

For a system of equations to exhibit chaos, the equations must contain at
least one nonlinear term, that is, a term that is not simply proportional to one of the
variables. In all the preceding examples, the nonlinearity involved simple polynomi-
als. Such polynomials are capable of modeling an enormous variety of physical
phenomena. Virtually all nonlinear functions can be approximated by polynomials
with sufficiently many terms. However, by limiting the polynomials to fifth order, we
have missed many interesting possibilities. In this chapter we examine a few of these
possibilities and suggest others that you might want to explore on your own.

7.1 Steps and Tents

Perhaps the simplest nonlinear function is the absolute value, which is
denoted by |X| and programmed in BASIC with the command ABS(X). The
absolute value of X is the magnitude of X without regard to its sign. For example, if
X is -6 then |X| is 6. It is a nonlinear function because a graph of |X| versus X is a
V-shaped curve with its notch at the origin rather than a straight line as would result
if |X| were proportional to X. By adding linear terms, the V can be rotated to
resemble an L or a staircase step. Computers can evaluate ABS(X) very quickly,
since they only need to discard the sign.

An example of a one-dimensional chaotic map that involves |X| is the tent
map, so called because its graph is an inverted V. A tent map that maps the interval
-1 to 1 back onto itself is

Xn+1 = 1 - 2|Xn| (Equation 7A)

The behavior of Equation 7A is very similar to the behavior of the logistic equation
(Equation 1C) with R = 4, which maps the interval 0 to 1 back onto itself. A mapping
that returns a set onto itself is called an endomorphism.

Since one-dimensional maps tend not to be very interesting visually, we can
generalize Equation 7A to two dimensions as follows:

Xn+1 = a1 + a2Xn + a3Yn + a4|Xn| + a5|Yn|

397

Yn+1 = a6 + a7Xn + a8Yn + a9|Xn| + a10|Yn| (Equation 7B)

This form is analogous to the general two-dimensional quadratic map in Equation
3B.

To make things a little more interesting, we can add two more dimensions (Z
and W) to take advantage of the visualization techniques that we have previously
developed. However, to keep things simple, we will demand that X and Y not
depend on Z or W. They are just along for the ride, so to speak. The dynamical
behavior is determined only by X and Y. We can choose any convenient equation
for Z and for W. One possibility is to evaluate Z from X and Y according to

Zn+1 = Xn
2 + Yn

2 (Equation 7C)

Thus Z is the square of the distance of the previous iterate from the origin. You might
want to experiment with other forms.

For the fourth dimension (W), we will do something completely different. We
will arrange for W to increase linearly with the iteration number. Thus W becomes the
time coordinate in four-dimensional space-time.

The program modifications required to extend the computer search to such
cases are shown in PROG22. Codes for this case begin with the letter Y.

PROG22. Changes required in PROG21 to search for special functions of the Y type

1000 REM SPECIAL FUNCTION SEARCH (Steps and Tents)

1090 ODE% = 2 'System is special function Y

1710 IF ODE% > 1 THEN GOSUB 6200: GOTO 2020 'Special function

2670 IF ODE% > 1 THEN CODE$ = CHR$(87 + ODE%)

3650 IF ODE% > 1 THEN D% = ODE% + 5

398

3680 IF Q$ = "D" THEN D% = 1 + (D% MOD 7): T% = 1

3690 IF D% > 6 THEN ODE% = D% - 5: D% = 4: GOTO 3710

4290 IF ODE% > 1 THEN PRINT TAB(27); "D: System is 4-D special map "; CHR$(87
+ ODE%); " ": GOTO 4320

4720 IF D% > 6 THEN ODE% = ASC(LEFT$(CODE$, 1)) - 87: D% = 4: GOSUB 6200: GOTO
4770

6200 REM Special function definitions

6210 ZNEW = X * X + Y * Y 'Default 3rd and 4th dimension

6220 WNEW = (N - 100) / 900: IF N > 1000 THEN WNEW = (N - 1000) / (NMAX - 1000)

6230 IF ODE% <> 2 THEN GOTO 6270

6240 M% = 10

6250 XNEW = A(1) + A(2) * X + A(3) * Y + A(4) * ABS(X) + A(5) * ABS(Y)

6260 YNEW = A(6) + A(7) * X + A(8) * Y + A(9) * ABS(X) + A(10) * ABS(Y)

6270 RETURN

Examples of attractors produced by PROG22 are shown in Figures 7-1 through
7-8. They are displayed as projections onto the XY plane to let you observe the
higher dimensional representations for the first time on your computer screen. Note
that these attractors differ from the cases produced by polynomials in that they
tend to have sharp angular corners. The one in Figure 7-3 is not an attractor but is
an example of an area-preserving system sometimes called the gingerbread man
because of its shape.

399

Figure 7-1. Four-dimensional special map Y

400

Figure 7-2. Four-dimensional special map Y

401

Figure 7-3. Four-dimensional special map Y (gingerbread man)

402

Figure 7-4. Four-dimensional special map Y

403

Figure 7-5. Four-dimensional special map Y

404

Figure 7-6. Four-dimensional special map Y

405

Figure 7-7. Four-dimensional special map Y

406

Figure 7-8. Four-dimensional special map Y

407

7.2 ANDs and ORs

A very different type of nonlinear map can be produced using logical
(Boolean) operations to manipulate the individual bits of the binary numbers that
represent the variables. This is best done after rounding the variables to the nearest
integer using the BASIC CINT function. As a variation, you could use the FIX or INT
function, both of which truncate rather than round. Most versions of BASIC auto-
matically apply the CINT function before performing logical operations on numbers
that are not integers. The conversion of a noninteger to an integer is itself a nonlinear
operation, because the graph of CINT(X) versus X resembles a staircase.

The basic logical operators are AND and OR. If you are not sure what these
operations mean, your BASIC manual is a good reference. The operation X AND Y
produces a new number whose bits are 1 if the corresponding bits of X and Y are
both 1, and 0 otherwise. The operation X OR Y produces a new number whose bits
are 1 if either (or both) of the corresponding bits of X or Y are 1, and 0 otherwise. This
is also called the inclusive OR to distinguish it from the exclusive OR (XOR), which
produces a number whose bits are 1 if either (but not both) of the corresponding
bits of X or Y are 1, and 0 otherwise.

The following is a general two-dimensional system of equations that includes
the AND and OR operators:

Xn+1 = a1 + a2Xn + a3Yn + a4Xn AND a5Yn + a6Xn OR a7Yn

Yn+1 = a8 + a9Xn + a10Yn + a11Xn AND a12Yn + a13Xn OR a14 Yn

(Equation 7D)

The third and fourth dimensions are determined in the same way as in the previous
section.

The program modifications required to extend the computer search to such
cases are shown in PROG23. Codes for this case begin with the letter Z.

PROG23. Changes required in PROG22 to search for special functions of the Z type

1000 REM SPECIAL FUNCTION SEARCH (ANDs and ORs)

1090 ODE% = 3 'System is special function Z

408

3680 IF Q$ = "D" THEN D% = 1 + (D% MOD 8): T% = 1

6270 IF ODE% <> 3 THEN GOTO 6310

6280 M% = 14

6290 XNEW = A(1) + A(2) * X + A(3) * Y + (CINT(A(4) * X) AND CINT(A(5) * Y))
+ (CINT(A(6) * X) OR CINT(A(7) * Y))

6300 YNEW = A(8) + A(9) * X + A(10) * Y + (CINT(A(11) * X) AND CINT(A(12) *
Y)) + (CINT(A(13) * X) OR CINT(A(14) * Y))

6310 RETURN

Examples of attractors produced by PROG23 are shown in Figures 7-9 through
7-16. Most of the attractors produced in this way have a streaked or checkered
appearance, arising presumably from rounding the variables to integers before
performing the logical operations. The ones shown in the figures tend to be the
exceptions.

409

Figure 7-9. Four-dimensional special map Z

410

Figure 7-10. Four-dimensional special map Z

411

Figure 7-11. Four-dimensional special map Z

412

Figure 7-12. Four-dimensional special map Z

413

Figure 7-13. Four-dimensional special map Z

414

Figure 7-14. Four-dimensional special map Z

415

Figure 7-15. Four-dimensional special map Z

416

Figure 7-16. Four-dimensional special map Z

417

7.3 Roots and Powers

Polynomial maps involve powers of the variables that are small positive
integers, such as the square (2) and the cube (3). Polynomials exclude such
nonlinearities as the square root or the reciprocal of the variables. Roots and powers
are mathematically equivalent except for the value of the exponent. The square
root of X can be written as X0.5, and the reciprocal of X can be written as 1/X or as
X-1. It is interesting to examine strange attractors that involve fractional and
negative powers.

The following is a general two-dimensional system of equations that involves
arbitrary powers:

Xn+1 = a1 + a2Xn + a3Yn + a4|Xn|a5 + a6|Yn|a7

Yn+1 = a8 + a9Xn + a10Yn + a11|Xn|a12 + a13|Yn|a14

(Equation 7E)

The absolute values are needed because BASIC cannot take a root of a negative
number. The result would have an imaginary component. Note that if all the
exponents happen to be +1, Equation 7E is equivalent to Equation 7B. The third and
fourth dimensions are determined in the same way as in Section 7.1.

The program modifications required to extend the computer search to such
cases are shown in PROG24. Since we have exhausted the capital letter codes, we
must invent some new ones. We will continue using the standard ASCII characters
beyond Z, as shown in Table 2-1. Thus the codes for this case begin with the left
bracket ([), which is ASCII 91.

PROG24. Changes required in PROG23 to search for special functions of the [type

1000 REM SPECIAL FUNCTION SEARCH (Roots and Powers)

1090 ODE% = 4 'System is special function [

3680 IF Q$ = "D" THEN D% = 1 + (D% MOD 9): T% = 1

6310 IF ODE% <> 4 THEN GOTO 6350

418

6320 M% = 14

6330 XNEW = A(1) + A(2) * X + A(3) * Y + A(4) * ABS(X) ^ A(5) + A(6) * ABS(Y)
^ A(7)

6340 YNEW = A(8) + A(9) * X + A(10) * Y + A(11) * ABS(X) ̂ A(12) + A(13) * ABS(Y)
^ A(14)

6350 RETURN

Examples of attractors produced by PROG24 are shown in Figures 7-17
through 7-24. These attractors are localized mostly to a small region of the XY plane
with tentacles that stretch out to large distances. If any of the exponents are
negative and the attractor intersects the line along which the respective variable
is zero, a point on the line maps to infinity. However, large values are visited
infrequently by the orbit, so many iterations are required to determine that the orbit
is unbounded. For this reason most of the attractors in the figures have holes in their
interiors where their orbits are precluded from coming too close to their origins (X =
Y = 0).

419

Figure 7-17. Four-dimensional special map [

420

Figure 7-18. Four-dimensional special map [

421

Figure 7-19. Four-dimensional special map [

422

Figure 7-20. Four-dimensional special map [

423

Figure 7-21. Four-dimensional special map [

424

Figure 7-22. Four-dimensional special map [

425

Figure 7-23. Four-dimensional special map [

426

Figure 7-24. Four-dimensional special map [

You may become frustrated seeing a beautiful attractor develop for thou-
sands of iterations and then having the orbit escape. Such behavior is called a crisis
or transient chaos, not to be confused with a catastrophe. For example, the logistic
equation with R slightly greater than 4.0 is chaotic for many iterations until an iterate
happens to exceed 1.0, whereupon the orbit abruptly moves off toward infinity. By
contrast, a catastrophe occurs when the solution undergoes a qualitative change
at some critical value of a control parameter.

Related to a crisis is another phenomenon called intermittency. At certain
values of the control parameters, a system exhibits periodic behavior for many
cycles and then suddenly becomes chaotic for a while before settling back into
periodic behavior. Classic examples of intermittency occur in the logistic equation
at about R = 3.82812 and in the Lorenz equations at about r = 166.2. Intermittency
has been observed in many natural systems, and it is a bane to those who try to

427

make predictions. It is possible that the solar system is intermittently chaotic or even
that a crisis can occur leading to a complete loss of its stability, perhaps precipi-
tated by a rare conjunction of a planet with a large asteroid or comet.

Those solutions of Equation 7E that remain bounded tend to have a wispy
appearance and to go beyond the frame of the figure because of the occasional
large excursions. Artistically, this feature gives the attractors a sense of being
connected to the surrounding world rather than being isolated objects suspended
in a void. If you frame these cases, a surrounding mat is desirable to provide the
illusion that they are being viewed through a window.

7.4 Sines and Cosines

Two of the most common nonlinear functions are the sine and its comple-
ment, the cosine. The sine and cosine can be approximated by polynomials as
follows:

sin X = X - X3/6 + X5 /120 - X7/5040 + ...

cos X = 1 - X2/2 + X4/24 - X6/720 + ... (Equation 7F)

When the argument X is small, the approximations are very accurate using only a
few terms in the expansion. The denominator of each term is the factorial of the
exponent of that term. For example, the factorial of five (written 5!) is equal to 5 x
4 x 3 x 2 x 1 = 120. When X is large, many terms are required. In such a case, we would
expect to observe dynamics different from those produced by the fifth-order
polynomials previously examined.

A general two-dimensional system of equations whose nonlinearity is re-
stricted to the sine function is the following:

Xn+1 = a1 + a2Xn + a3Yn + a4sin(a5Xn + a6) + a7sin(a8Yn + a9)

Yn+1 = a10 + a11Xn + a12Yn + a13sin(a14Xn + a15) + a16sin(a17Yn + a18)

(Equation 7G)

It is not necessary to consider the cosine separately; the phase terms (a6, a9, a15,
and a18) have the same effect because cos X is equal to sin(X + π/2). The third and

428

fourth dimensions are determined in the same way as in Section 7.1.

The program modifications required to extend the computer search to such
cases are shown in PROG25. These cases are coded with the backslash (\), which
is ASCII 92.

PROG25 Changes Required in PROG24 to Search for Special Functions of the \ Type

1000 REM SPECIAL FUNCTION SEARCH (Sines and Cosines)

1090 ODE% = 5 'System is special function \

3680 IF Q$ = "D" THEN D% = 1 + (D% MOD 10): T% = 1

6350 IF ODE% <> 5 THEN GOTO 6390

6360 M% = 18

6370 XNEW = A(1) + A(2) * X + A(3) * Y + A(4) * SIN(A(5) * X + A(6)) + A(7)
* SIN(A(8) * Y + A(9))

6380 YNEW = A(10) + A(11) * X + A(12) * Y + A(13) * SIN(A(14) * X + A(15)) +
A(16) * SIN(A(17) * Y + A(18))

6390 RETURN

Examples of attractors produced by PROG25 are shown in Figures 7-25
through 7-32.

429

Figure 7-25. Four-dimensional special map \

430

Figure 7-26. Four-dimensional special map \

431

Figure 7-27. Four-dimensional special map \

432

Figure 7-28. Four-dimensional special map \

433

Figure 7-29. Four-dimensional special map \

434

Figure 7-30. Four-dimensional special map \

435

Figure 7-31. Four-dimensional special map \

436

Figure 7-32. Four-dimensional special map \

437

7.5 Webs and Wreaths

In this section, we consider a special type of map that involves sines and
cosines. The solutions are chaotic, but they are not attractors. The systems they
describe are Hamiltonian. Such Hamiltonian systems obey the Liouville theorem,
which states that the phase-space volume occupied by a set of points is conserved
as the system evolves in time. Thus the orbit eventually returns arbitrarily close to any
initial condition. Contrast this to dissipative systems in which the phase-space
volume decreases in time, eventually collapsing all initial conditions within the basin
of attraction onto the attractor. In dissipative systems, the basin of attraction is
usually much larger than the attractor. The equations are as follows:

Xn+1 = 10a1 + [Xn + a2sin(a3Yn + a4)]cos _ + Yn sin _

Yn+1 = 10a5 - [Xn + a2sin(a3Yn + a4)]sin _ + Yn cos _ (Equation 7H)

where α = 2π / (13 + 10a6). The third and fourth dimensions are determined in the
same way as in Section 7.1.

The special form of Equation 7H guarantees that the solution is not only area-
preserving but also has circular symmetry. Furthermore, an inherent periodicity
arises from the fact that α is 2π divided by an integer that ranges from 1 to 25. The
periodicity is indicated by the last letter of the code (a6): A for period-1, B for period-
2, and so forth. Because of the circular symmetry and infinite extent, it is interesting
to project these cases onto a sphere using the P command.

The program modifications required to extend the computer search to such
cases are shown in PROG26. These cases are coded with the right bracket (]), which
is ASCII 93.

PROG26. Changes required in PROG25 to search for special functions of the] type

1000 REM SPECIAL FUNCTION SEARCH (Webs and Wreaths)

1090 ODE% = 6 'System is special function]

1150 TWOPI = 6.28318530717959# 'A useful constant (2 pi)

3680 IF Q$ = "D" THEN D% = 1 + (D% MOD 11): T% = 1

438

6390 IF ODE% <> 6 THEN GOTO 6450

6400 M% = 6

6410 IF N < 2 THEN AL = TWOPI / (13 + 10 * A(6)): SINAL = SIN(AL): COSAL = COS(AL)

6420 DUM = X + A(2) * SIN(A(3) * Y + A(4))

6430 XNEW = 10 * A(1) + DUM * COSAL + Y * SINAL

6440 YNEW = 10 * A(5) - DUM * SINAL + Y * COSAL

6450 RETURN

As you watch the patterns develop, you can see the orbit wander throughout
the XY plane along a network of channels. The network is infinite in extent and is
called a stochastic web. The global wandering is evidence of minimal chaos, and
it causes the orbit eventually to leave the boundary of the computer screen. If you
interrupt the calculation at some point, the resulting structure resembles a wreath
or a snowflake. The infinite structure is a tiling, but its symmetry is slightly spoiled by
the finite thickness of the web. This breaking of the symmetry eliminates the
monotony and contributes to the aesthetic appeal of the patterns.

The slow wandering of the orbit throughout the web is an example of Arnol’d
diffusion, which is named after the Russian mathematician Vladimir Arnol’d. Nor-
mally we associate diffusion with a random process in which, for example, the
molecules of a gas move slowly from one region to another by countless collisions
with other molecules. The presence of diffusion in such simple deterministic systems
has many practical consequences such as providing a means for heating a gas of
electrically charged particles (a plasma) in a magnetic field using electromagnetic
waves.

These stochastic webs contain circular chains of islands, or beads on a
necklace, if you prefer a different analogy, whose interiors contain periodic orbits.
Surrounding the islands is a stochastic sea in which the orbits are chaotic and
connected to all other points in the sea. You will also note that the Lyapunov
exponents are small. Since the orbits diffuse slowly in the sea, nearby orbits remain
close together for many iterations. For a similar reason, the calculated fractal
dimension is lower than it should be. Recall that the dimension calculation is based

439

on the previous 500 iterates, whose values tend to be nearly equal in this case.

Examples of stochastic webs produced by PROG26 are shown in Figures 7-33
through 7-40. Because of the slow diffusion of the orbit, these cases provide a good
opportunity to exhibit the time variation with colors as shown in Plates 31 and 32. You
may want to try different values of NMAX% in line 1050 to control the rate at which
the colors change. Web maps provide a perfect illustration of how chaos and
determinism coexist. The underlying symmetry of the equations is evident in the
figures, but the orbit exhibits apparently random motion within the chaotic region.

Figure 7-33. Four-dimensional web map (period-4)

440

Figure 7-34. Four-dimensional web map (period-13)

441

Figure 7-35. Four-dimensional web map (period-5)

442

Figure 7-36. Four-dimensional web map (period-12)

443

Figure 7-37. Four-dimensional web map (period-12)

444

Figure 7-38. Four-dimensional web map (period-7)

445

Figure 7-39. Four-dimensional web map (period-23)

446

Figure 7-40. Four-dimensional web map (period-9)

447

7.6 Swings and Springs

All the previous examples of maps and differential equations in this book
share the property that the right-hand sides of the equations are independent of
the iteration number (N) or time (t). Such equations are called autonomous. For a
given set of initial conditions, they produce the same solution for whatever time or
iteration number they are started.

Some important physical processes are most conveniently expressed by
nonautonomous equations. An example is a driven (forced), damped, linear,
harmonic oscillator, which is described by the following equations:

X’ = Y

Y’ = -X - bY + A sin _t (Equation 7I)

In Equation 7I, b is the damping constant (friction), A is the amplitude of the drive
(forcing) function, and ω is the angular frequency (radians per second) of the drive.
The friction force is assumed to be proportional and opposite to the velocity (-Y),
although other forms give qualitatively similar results. This type of friction is called
linear damping.

The usual trick for dealing with nonautonomous equations is to introduce an
additional variable (say Z) and rewrite Equation 7I, for example, as

X’ = Y

Y’ = -X - bY + A sin Z

Z’ = _ (Equation 7J)

Equation 7J contains a nonlinearity (sin Z), but it does not have chaotic solutions. The
solution (for positive b) is a limit cycle with frequency ω. The limit cycle is largest when
the damping is small (b positive but much less than 1) and ω is 1, corresponding to
resonance.

To obtain interesting chaotic solutions, we need additional nonlinear terms.
We will restrict these nonlinearities to odd polynomials (X, X3, X2Y, and so forth) in the
Y’ equation to preserve the symmetry of the oscillation. A general form with odd
polynomials up to third order is as follows:

448

X’ = a1Y

Y’ = a2X + a3X3 + a4X2Y + a5XY2 + a6Y + a7Y3 + a8sin Z

Z’ = a9 + 1.3 (Equation 7K)

If the product a1a2 is negative, these equations represent the motion of a mass
oscillating on a nonlinear spring or a pendulum swinging through a large angle (but
not going over the top). If a3/a2 is positive, the spring gets stiffer when stretched or
compressed (hard spring). If a3/a2 is negative, the spring gets weaker when
stretched or compressed (soft spring). If a3/a2 is -1/6, the solution approximates a
vigorously swinging pendulum. If the product a1a2 is positive and a3/a2 is negative,
the system models a buckled beam and is called the Duffing two-well oscillator. The
final combination (a1a2 and a3/a2 both positive) is unstable and has an un-
bounded solution.

In Equation 7K, we can exploit the fact that Z enters only through the term sin
Z; thus it is periodic with period 2π. Whenever Z exceeds 2π, we can subtract 2π from
it without changing the result. This trick keeps Z bounded in the range 0 to 2π rather
than letting it march off to infinity as it would otherwise do. The Z-coordinate then
becomes the phase angle of the drive function. Note that the MOD function in most
versions of BASIC works correctly only on integer variables, so it should not be used
for the above purpose. The +1.3 term in the Z equation ensures that the phase angle
always increases in time for -1.2 ≤ a9 ≤ 1.2. The fourth variable (W) is proportional to
time as in the previous examples.

The program modifications required to extend the computer search to such
cases are shown in PROG27. These cases are coded with the circumflex (^), which
is ASCII 94.

PROG27. Changes required in PROG26 to search for special functions of the ^ type

1000 REM SPECIAL FUNCTION SEARCH (Swings and Springs)

1090 ODE% = 7 'System is special function ^

3050 IF ODE% = 1 OR ODE% = 7 THEN L = L / EPS

449

3680 IF Q$ = "D" THEN D% = 1 + (D% MOD 12): T% = 1

6450 IF ODE% <> 7 THEN GOTO 6500

6460 M% = 9

6470 XNEW = X + EPS * A(1) * Y

6480 YNEW = Y + EPS * (A(2) * X + A(3) * X * X * X + A(4) * X * X * Y + A(5)
* X * Y * Y + A(6) * Y + A(7) * Y * Y * Y + A(8) * SIN(Z))

6490 ZNEW = Z + EPS * (A(9) + 1.3): IF ZNEW > TWOPI THEN ZNEW = ZNEW - TWOPI

6500 RETURN

Examples of attractors produced by PROG27 are shown in Figures 7-41
through 7-48. These cases are displayed as slices that show the orbit at 16 different
drive phases. As you scan across them left to right and top to bottom, you can see
the stretching and folding that are characteristics of strange attractors and that
account for their fractal microstructure and for the sensitivity to initial conditions.

450

Figure 7-41. Slices of a four-dimensional special map ^

451

Figure 7-42. Slices of a four-dimensional special map ^

452

Figure 7-43. Slices of a four-dimensional special map ^

453

Figure 7-44. Slices of a four-dimensional special map ^

454

Figure 7-45. Slices of a four-dimensional special map ^

455

Figure 7-46. Slices of a four-dimensional special map ^

456

Figure 7-47. Slices of a four-dimensional special map ^

457

Figure 7-48. Slices of a four-dimensional special map ^

These cases provide an ideal opportunity to animate the third dimension
(drive phase). If you have not fanned through the figures in the upper-right-hand
corner of the odd pages of the book, do so now. Be sure to fan in the forward
direction (low to high page numbers). These figures were produced using 64 phase
slices of the attractor ^VYGJBPIJN with 10 million iterations.

You can see several cycles of stretching and folding. Note that there are
three diagonal bands that run from the lower left to the upper right of the attractor.
The three bands are stretched and compressed into a single band, while two
additional bands enter first from the upper left and then from the lower right. Thus
one of the three bands consists of three smaller bands, one of which consists of three
even smaller bands, and so forth. Such an infinitely layered band is called a thick
line or a Cantor one-manifold. Viewed in three dimensions, the thick line would
appear as a thick surface or a Cantor two-manifold. There is perhaps no clearer

458

illustration anywhere in this book of the way strange attractors are formed and
acquire their fractal microstructure.

7.7 Roll Your Own

Perhaps this is a good place to leave you with this brief taste of the immense
variety of nonlinear functions and equations, nearly all of which admit strange
attractors that can be identified and examined using the technique described in
this book. The possibilities are limited only by your imagination, and you can be
assured that nearly every strange attractor that you discover has never been seen
before. There surely exist classes of objects yet to be discovered that are of
mathematical and artistic interest.

If you decide to pursue such an exploration, you might start with some of the
other nonlinear functions and operators that are built into the BASIC language.
Table 7-1 lists a number of interesting possibilities. They are divided into mathemati-
cal functions, which should be independent of the machine or programming
language; machine functions, which are dependent on the machine or language;
nonlinear operators, which are supported by nearly all versions of BASIC; and
advanced functions, which are supported by VisualBASIC for MS-DOS. You may use
them in combinations to invent complicated forms that belong to you alone!

Table 7-1. Nonlinear functions and operators supported by most versions of BASIC

Mathematical Machine Nonlinear Advanced
Functions Functions Operators Functions

ABS FRE ^ DAY
ATN INP * HOUR
CINT PEEK / MINUTE
COS PLAY \ MONTH
EXP POINT MOD NOW
FIX RND NOT QBCOLOR
INT TIMER AND RGB
LOG OR SECOND
SGN XOR WEEKDAY
SIN EQV YEAR
SQR IMP
TAN

459

Chapter 8
Epilogue

It would be an injustice to leave you with the impression that the main use of
the ideas in this book is to make pretty pictures. This final chapter describes some of
the scientific applications of the method used to generate this large collection of
strange attractors. It also suggests some additional explorations you might want to
undertake as an extension of both the scientific and artistic aspects of the work
described in this book.

8.1 How Common is Chaos?

For hundreds of years, scientists have used equations like those in the previous
chapters to describe nature. It is remarkable that almost no one recognized the
chaotic solutions to those equations until the last few decades of the 20th century.
Now researchers in many disciplines are beginning to see chaos under every rock.
It is reasonable to wonder whether chaos is the rule or the exception.

Suppose we had a system of equations of sufficient complexity and with
sufficiently many coefficients that it could be used to model most natural processes.
We could then attempt to quantify the occurrence of chaos in these equations and
draw an inference about the occurrence of chaos in nature. The equations in the
previous chapters, especially those involving polynomials of high dimension and
high order, might approximate such a system.

As a simple but very unrealistic example, suppose that all of nature could be
modeled by the logistic equation (Equation 1C). This equation has a single param-
eter R that controls the character of the solution. If R is greater than 4 or less than -
2, the solutions are unbounded, which means that this equation cannot model a
physical process under those conditions. Essentially all physical processes are
bounded, except perhaps the trajectory of a spacecraft launched with sufficient
velocity to escape the galaxy. In the physically realistic range of R, there is a band
of chaos between about 3.5 and 4, as shown in Figure 1-2 and another identical
band between about -1.5 and -2. Careful analysis shows that chaos occurs over
about 13% of the range of R from -2 to 4.

Since the logistic equation is too simple a model for almost everything, we
should examine more complicated models. The Hénon map (Equation 3A) is a two-

460

dimensional generalization of the logistic map. It has two control parameters, which
normally are a = -1.4 and b = 0.3. With b = 0, the Hénon map reduces to the logistic
map.

As with the logistic map, the Hénon map has unbounded solutions, chaotic
solutions, and bounded nonchaotic solutions, depending on the values of a and b.
The bounded nonchaotic solutions may be either fixed points or periodic limit
cycles. Figure 8-1 shows a region of the ab plane with the four classes of solutions
indicated by different shades of gray. The bounded solutions constitute an island
in the ab plane. On the northwest shore of this island is a chaotic beach, which
occupies about 6% of the area of the island. The chaotic beach has many small
embedded periodic ponds. The boundary between the chaotic and the periodic
regions is itself a fractal.

Figure 8-1. Regions of solutions for the Hénon map in the ab plane

461

The logistic map is chaotic over 13% of its bounded range, and the Hénon
map is chaotic over 6% of its bounded range. This result is counterintuitive because
it suggests that more complicated (two-dimensional) systems are in some sense less
chaotic than simpler (one-dimensional) systems. Is this a general result, or is it
peculiar to these two maps? One way to decide is to examine a wider selection of
equations, such as the ones used to produce the attractors exhibited throughout
this book.

In collecting attractors, we have been discarding interesting information—
the number of bounded nonchaotic solutions for each chaotic case that the
program finds. Discarding data is offensive to scientists, since experiments are often
performed with great effort and at considerable expense. The annals of science
are ripe with examples of important discoveries that could have been made sooner
or by others if only the right data had been recorded and analyzed.

Table 8-1 shows the results from 30,000 chaotic cases (1000 for each of the 30
types) as identified by the program. This table includes over 400 million cases, of
which about 1 million are bounded. Of all the bounded solutions, 2.8% were chaotic
according to the criterion described in Section 2.4. The polynomial maps all exhibit
a similar occurrence of chaotic solutions. The same is true of ordinary differential
equations (ODEs), but the percentage is smaller. The reason for this behavior is not
understood.

Table 8-1. Summary of data from 30,000 chaotic cases

Code D O Type Chaotic Average F Average L

A 1 2 Map 3.34% 0.81±0.15 0.53±0.42

B 1 3 Map 5.09% 0.80±0.14 0.50±0.40

C 1 4 Map 8.09% 0.82±0.12 0.52±0.20

D 1 5 Map 7.94% 0.80±0.14 0.51±0.21

E 2 2 Map 7.58% 1.20±0.32 0.27±0.16

F 2 3 Map 7.08% 1.19±0.33 0.27±0.15

G 2 4 Map 6.40% 1.16±0.32 0.27±0.15

H 2 5 Map 5.79% 1.19±0.30 0.28±0.16

I 3 2 Map 6.68% 1.50±0.40 0.16±0.10

J 3 3 Map 5.89% 1.45±0.39 0.15±0.09

K 3 4 Map 5.08% 1.45±0.41 0.15±0.09

462

Code D O Type Chaotic Average F Average L

L 3 5 Map 4.68% 1.43±0.39 0.14±0.09

M 4 2 Map 4.99% 1.64±0.47 0.10±0.06

N 4 3 Map 4.78% 1.59±0.46 0.09±0.06

O 4 4 Map 5.32% 1.61±0.45 0.09±0.06

P 4 5 Map 5.04% 1.62±0.47 0.10±0.06

Q 3 2 ODE 0.55% 1.28±0.41 0.21±0.33

R 3 3 ODE 1.33% 1.31±0.40 0.73±0.76

S 3 4 ODE 1.23% 1.35±0.40 1.05±0.98

T 3 5 ODE 1.63% 1.38±0.41 1.23±1.16

U 4 2 ODE 1.34% 1.43±0.43 0.16±0.23

V 4 3 ODE 1.84% 1.43±0.43 0.40±0.48

W 4 4 ODE 1.84% 1.46±0.45 0.54±0.62

X 4 5 ODE 1.96% 1.44±0.44 0.66±0.76

Y 4 Special 16.28% 1.37±0.56 0.26±0.26

Z 4 Special 23.19% 1.03±0.44 0.28±0.44

[4 Special 16.00% 0.63±0.65 0.42±0.23

\ 4 Special 1.61% 1.10±0.28 0.16±0.10

] 4 Special 19.80% 1.02±0.16 0.06±0.04

^ 4 Special 1.91% 1.80±0.49 0.39±1.03

These results should not be taken too literally because the coefficients have
been limited to the range -1.2 to 1.2, the ODEs have not been solved very
accurately, and many cases are ambiguous. Chaotic solutions tend to occur at
large values of the coefficients where most of the solutions are unbounded. A more
careful evaluation, which corrects these difficulties and includes about 35,000
strange attractors but limited to fewer types, shows that the probability that a
bounded solution is chaotic for an iterated polynomial map of dimension D and
order O is given approximately by

P = 0.349 D-1.69 O-0.28 (Equation 8A)

Similarly, the probability that a bounded solution is chaotic for a polynomial ODE of

463

dimension D and order O is given approximately by

P = 0.0003 D2 O0.5 (Equation 8B)

Maps appear to become less chaotic as they become more complicated (larger
D and O), whereas ODEs become more chaotic.

To assess how common chaos is in nature, we must address the more
complicated and subjective issue of whether the equations we have examined are
a representative sample of the equations that describe natural processes. Further-
more, we cannot assume a priori that nature selects the coefficients of the
equations uniformly over the bounded region of control space. It is possible that
other constraints mitigate either against or in favor of chaotic behavior.

Another interesting question is how the fractal dimension and the Lyapunov
exponent vary with the dimension and order of the system. Table 8-1 includes the
average values of these quantities plus or minus (±) the standard deviation for each
type of chaotic system. For polynomial maps and ODEs, the fractal dimension varies
approximately as the square root of the system dimension. For polynomial maps,
the Lyapunov exponent varies inversely with the system dimension. For polynomial
ODEs, the Lyapunov exponent increases with the system dimension. The Lyapunov
exponent appears to be independent of order for maps, but there is a tendency
for the Lyapunov exponent of ODEs to increase with order.

These results are summarized in Figures 8-2 and 8-3. Figure 8-2 shows the
relative probability that a strange attractor from a polynomial map or ODE will have
a fractal dimension F plotted versus F/D0.5. The curve is sharply peaked at a value
of about 0.8. Almost no attractors have a fractal dimension greater than about
1.3D0.5. The Lorenz and Rössler attractors (with fractal dimensions slightly above 2.0
in a three-dimensional space) are close to this maximum value. Figure 8-3 shows the
relative probability that a strange attractor from a polynomial map will have a
Lyapunov exponent L plotted versus LD. This curve shows a much broader peak at
about 0.5. These results hold when the calculations are done more carefully. The
reason for this behavior is not understood, but it is potentially important because it
gives an indication of the complexity of the system of equations responsible for a
strange attractor that one observes in nature.

464

Figure 8-2. Probability distribution of fractal dimension

465

Figure 8-3. Probability distribution of Lyapunov exponent

The similarity of the fractal dimension for attractors produced by polynomials
of the same dimensionality raises the concern that they might in some sense all be
the same attractor, viewed from different angles and distorted in various ways.
There may be a simple mapping that converts one attractor into the others. In such
a case, a statistical analysis of the collection would be misleading and meaningless.
However, since the Lyapunov exponents are spread over a broad range, it seems
likely that the attractors are distinct. In any case, they are visually very different, and
thus the technique has artistic if not scientific value.

It is interesting to ask whether the above results are peculiar to polynomials.
Table 8-1 includes data for the special functions that were described in Chapter 7.
Some of these cases tend to be more chaotic than the polynomials, but the
differences are not enormous. Thus is would appear, insofar as nature can be
represented by systems of equations of the type described in this book, that chaos

466

is not the most common behavior, but neither is it particularly rare.

8.2 But Is It Art?

A very different question is whether pictures generated by solving determin-
istic equations with a computer can legitimately qualify as art. Some people would
say that if it was done by a computer without human intervention, it cannot be art.
On the other hand, humans chose the equations, built and programmed the
computer, decided how the solution would be displayed, and selected from the
large number of cases that the computer generated. In this view, the computer is
just another tool in the hands of the artist.

At the core of the issue is what we mean by art. There are at least two, not
necessarily mutually incompatible, views. One is that art is the expression of ideas
and emotions—a form of communication between the artist and the observer. The
other emphasizes formal design, in which the viewer admires the skill with which the
artist manipulated the materials, without reading any particular meaning into it.

Strange attractors qualify by either definition. They are expressions of ideas
embodied in the equations, whether it be the dynamics of population growth or a
swinging pendulum. These ideas are often abstract and are most apparent to the
trained mathematician or scientist, but anyone can see in the patterns the surreal
images of plants, animals, clouds, and swirling fluids. The appearance of such
familiar images in the solutions of mathematical equations is probably more than
coincidental.

Strange attractors also necessarily embody concepts of design. The interplay
of determinism and unpredictability ensures that they are neither formless nor
excessively repetitious. Furthermore, the skills of an artisan (if not an artist) are
required to translate the abstract equations into aesthetically desirable visual forms.
These skills are different from (but not inferior to) those possessed by more conven-
tional artists. Renaissance artists, such as Leonardo da Vinci, were often also
scientists. We may now be entering a new Renaissance in which art and science are
again being drawn together through the visual images produced by computers.

Some artists view art as a creative process whose primary goal is to provide
the artist with a sense of satisfaction. The resulting work is merely an inevitable by-
product. This view seems especially appropriate for the production of strange
attractors, where the programmer’s satisfaction is derived from causing the com-
puter to generate the patterns, even if they are never seen by anyone else. Indeed,
the computer offers the ideal medium for such conceptual artists, since there need
be no material product whatsoever.

467

Note that visual art need not be beautiful to be good, just as a play need not
be humorous. It may be intellectually or emotionally satisfying, or even disturbing.
It should capture and hold the interest of the viewer, however. The span of the
viewer’s attention is one measure of its quality. Art may mix the familiar and the
unfamiliar to produce both comfort and dissonance. Furthermore, beauty is at least
partially in the eye of the beholder, although recent research indicates that there
are absolute universal measures of beauty that form very early in life and may even
be genetic.

8.3 Can Computers Critique Art?

The idea that a computer can make aesthetic judgments seems absurd and
even offensive to many people. Yet the program developed in this book is already
doing this to some degree. For every object (strange attractor) that it identifies, it
has discarded many dozens as being uninteresting (nonchaotic). Perhaps the
computer could be programmed to be even more discriminating and to select
those strange attractors that are likely to appeal to humans. To the extent that
aesthetic judgment involves objective as well as subjective criteria, such a propo-
sition is not unreasonable.

A computer lacks emotion, but it can be taught in much the same way that
people can be taught. With the help of a human to point out which attractors are
visually interesting, the computer can correlate human opinion with various quan-
titative measures of the attractor. It can then test each new case and assign a
probability that it would appeal to a human.

One of the reasons we have been calculating and saving the fractal
dimension and Lyapunov exponent for each strange attractor is in anticipation of
developing such criteria. You can think of the dimension as a measure of the
strangeness of an attractor and the Lyapunov exponent as a measure of its
chaoticity. These are just two of infinitely many independent quantities we can use
to describe each attractor. If we find encouragement from them, it suggests that
more can be done.

The first step is to search for a relation between the aesthetic quality and the
fractal dimension or Lyapunov exponent. For this purpose, 7500 strange attractors
from two-dimensional quadratic maps were evaluated by the author and seven
volunteers, including two graduate art students, a former art history major, three
physics graduate students, and a former mathematics major. All evaluators were
born and raised in the United States. The evaluations were done by choosing
attractors randomly and displaying them sequentially on the computer screen
without any indication of the quantities that characterize them. The volunteers
were asked to evaluate each case on a scale of one to five according to its

468

aesthetic appeal. It only took a few seconds for each evaluation.

Figure 8-4 displays a summary of all the evaluations as a function of fractal
dimension (F) and Lyapunov exponent (L), using a gray scale in which the darker
regions are the most highly rated. The cases examined by particular individuals
show a similar trend. All evaluators tended to prefer attractors with dimensions
between about 1.1 and 1.5 and Lyapunov exponents between zero and about 0.3.
Some of the most interesting cases have Lyapunov exponents below about 0.1. You
saw many such examples earlier in this book.

Figure 8-4. Regions of highest aesthetic quality in the FL plane

469

The dimension preference is not surprising, since many natural objects have
dimensions in this range. Nature is strange, but usually not totally bizarre. Some of the
attractors that are most universally liked resemble well-known and easily recogniz-
able objects. You can find many such examples in this book.

The Lyapunov exponent preference is harder to understand, but it suggests
that strongly chaotic systems are too unpredictable to be appealing. For the 443
cases that were rated 5 (best) by the evaluators, the average dimension was F =
1.30 ± 0.20, and the average Lyapunov exponent was L = 0.21 ± 0.13 bits per
iterations, where the errors represent plus or minus one standard deviation. About
28% of the cases evaluated fall within both error bars. Thus this simple criterion would
allow the computer to discard nearly three-quarters of the cases that are least likely
to be visually appealing. This technique works in practice and was used in some
cases to help select attractors to display in this book.

8.4 What’s Left to Do?

This book has described a new technique for generating strange attractors
in unlimited numbers. A large collection of such objects offers many interesting
possibilities to the artist and scientist alike. Some of these uses have already been
mentioned. Others may have occurred to you as you read this book. This section
leaves you with a few additional suggestions of things you might want to explore on
your own.

If your main interest is art, you probably want to produce attractors with
improved spatial resolution and more colors. You can experiment with printing on
different types of paper or other media. The simple linear correspondence of X, Y,
Z, and W to position or color is not essential. Other mappings between the
mathematical variables and the points displayed on the screen are possible. You
have already seen how to project the attractors onto a sphere. You can project
them onto other objects such as cylinders, tori, or even other strange attractors.

When you have generated an attractor that appeals to you, it is natural to
want to make small changes to make it even better. The coefficients in the
equations are controls that you can adjust. Like knobs on your television set, they
allow you to tune the attractor to get just what you want. You can change the colors
without replotting the data using the PALETTE command in BASIC. You also can
rotate the image to find the best angle from which to view it.

You can produce animated strange attractors with a video camera viewing
a monitor connected to the camera, or even more simply, with a photodiode
connected to an oscilloscope whose screen illuminates the photodiode. This video-

470

feedback technique has much in common with iterated maps. Each illuminated
dot on the screen is mapped back to a different location after a delay determined
by the propagation of the electrical and optical signals. The main control param-
eters are the distance, rotation, focusing, intensity, color, and hue. Some settings
produce unbounded solutions—the screen goes solid black or solid white. Other
settings produce a fixed-point solution with a stationary pattern. Under other
conditions, periodic behavior occurs. The most interesting situation occurs when
the pattern constantly changes but is not periodic, corresponding to a chaotic
strange attractor. Sometimes you can perturb the system with a flash of light or by
moving your hand across the field of view, causing the system to switch from one
attractor to another.

Some of the most interesting examples of computer fractals come from
plotting the basin boundaries of various attractors. The basin is the set of all initial
conditions that are drawn to the attractor. Sometimes these boundaries are
smooth; other times they are fractals. By coloring the points just outside the basin
according to the number of iterations required for them to leave some (usually
large) region surrounding the attractor, beautiful escape-time fractal patterns can
be produced.

All of our attractors have such basins, and it’s not hard to program the
computer to display them, but the calculations are very slow. As an example, Figure
8-5 shows in black the basin for the Hénon map. It is relatively smooth and not
particularly interesting. It resembles a thick version of the attractor, but rotated by
90 degrees. Figure 8-6 shows the basin of another two-dimensional quadratic map
called the Tinkerbell map. Its boundary has obvious fractal structure. In each case,
the basin boundary appears to touch the attractor, suggesting that this surprising
feature may be common.

471

Figure 8-5. Basin of attraction for the Hénon map

472

Figure 8-6. Basin of attraction for the Tinkerbell map

Notice that we have now plotted the Hénon map in three different spaces.
Figure 3-1 is the usual plot of the orbit in the space of the dynamical variables X and
Y. Figure 8-1 is a plot in the space of the control parameters a and b. Figure 8-5 is a
plot in the space of the initial conditions X0 and Y0. All of these plots are necessary
to characterize the attractor completely.

The well-known and much-studied Mandelbrot set is the set of bounded
solutions in the ab plane of the mapping

Xn+1 = Xn
2 - Yn

2 + a

Yn+1 = 2XnYn + b (Equation 8C)

473

The variables X and Y usually are thought of as the real and imaginary parts of a
complex number Z. Each point in the ab plane has associated with it a Julia set,
which is the set of all initial conditions X0 and Y0 whose solutions are bounded. The
Mandelbrot set is the set of Julia sets every point of which is connected to every
other point. The Julia set is named after Gaston Julia, a French mathematician who,
along with Pierre Fatou, studied iterated maps in the complex plane at about the
time of the first world war. Combinations of a and b at the boundary of the
Mandelbrot set produce chaotic solutions, but values inside the set lead to fixed
points or limit cycles. For b = 0 and Y0 = 0 (the real axis), Equation 8C reduces to a
simple one-dimensional quadratic map equivalent to the logistic map.

The Mandelbrot set has been described as the most complicated math-
ematical object ever seen. It may also be the ultimate computer virus, in that it takes
over not only the machine (because of the large computational requirements) but
also the mind of the programmer, who often becomes addicted to the beauty and
variety of the patterns that it produces.

Like the Mandelbrot set, most of the attractors produced by the programs in
this book have intricate structure near the basin boundaries. You can zoom in on
these regions to produce patterns that rival those produced by the Mandelbrot set.
Calculation times increase markedly as you zoom in ever more closely, however.

Much more can be done to correlate the aesthetic appeal of the attractors
with the various numerical quantities that characterize them. Besides the fractal
dimension and Lyapunov exponent, the system that produced them has dimension
and order. Other measures of an attractor’s dimension include the capacity
dimension, the information dimension, and the Lyapunov dimension. Related to the
Lyapunov exponent is the entropy, which is a measure of the disorder of the system.
As with the dimension, the entropy can be defined in many ways. These quantities
and others are described in many of the books on fractals in the bibliography. Maps
and differential equations can also be compared.

You can test for differences between the aesthetic preferences of artists and
scientists. Preliminary indications suggest that complexity might appeal more to
artists than to scientists, who tend to see beauty in simplicity. There may also be
discernible cultural differences. You can see how the various display techniques
alter one’s preferences. For example, the use of color seems to increase the
tolerance for attractors of high fractal dimension.

Many scientific studies can be performed on a sufficiently large collection of
strange attractors. The results of Table 8-1, which are merely suggestive and limited
to particular types of equations, can be refined with more cases and more
examples of each case. For low dimensions, maps are more chaotic than the
equivalent ODEs. As the system dimension increases, however, maps become less
chaotic, while ODEs become more chaotic. Equation 8A and 8B suggest that for a

474

system dimension of about six, maps and ODEs will be equally chaotic. Will their roles
reverse at higher dimension, or will the chaotic fractions asymptotically approach
a universal value of about 2%?

You can ask the same type of questions about bounded, nonchaotic
solutions (fixed points, limit cycles, and tori). It is especially interesting to see how
common 3-tori are in light of Peixoto’s theorem (see Section 6.6), but their produc-
tion probably requires system dimensions of about 10 according to Figure 8-2, which
may or may not apply to tori. Almost nothing is known about such issues.

We have considered the fraction of the bounded, hyperdimensional control
space over which chaos occurs. It is also interesting to examine the shape, location,
and dimension of this chaotic region, as we did for the two-parameter Hénon map
in Figure 8-1. It is likely that this region is a fractal. How does its fractal dimension
depend on the system dimension and other characteristics of the system of
equations? It appears that the dimension of the chaotic region is about half the
dimension of the control space for the cases in this book.

The scaling of the average fractal dimension and the Lyapunov exponent
with the system dimension is intriguing and should be studied with more cases,
better statistics, and more accurate calculations of the fractal dimension. You can
examine statistically how the various measures of dimension compare and how
these dimensions are related to the spectrum of Lyapunov exponents.

You can look for relations between the geometrical properties of attractors
and their respective power spectra. The technique can be used to explore and to
quantify the various routes by which a stable solution becomes chaotic. Many such
routes have been identified, such as the period-doubling exhibited by the logistic
equation, but there are probably others yet to be discovered. Your role resembles
that of a biologist confronted with a large variety of species, trying to classify,
quantify, and study their similarities, differences, and patterns of behavior.

Another interesting study is to search for previously unknown simple examples
of chaos. Variations of the logistic equation are the simplest chaotic polynomial
maps. The Lorenz and Rössler attractors are often cited as the simplest examples of
chaotic polynomial ODEs. The Lorenz equations (Equation 6D) have seven terms
and two quadratic nonlinearities, and the Rössler equations (Equation 6E) have
seven terms and one quadratic nonlinearity.

There are at least five different systems of chaotic, three-dimensional qua-
dratic ODEs with five terms and two nonlinearities, and six systems with six terms and
one nonlinearity. It will be left as a challenge for you to find them. There does not
seem to be any chaotic system of quadratic ODEs with as few as four terms. To whet
your appetite, here’s a simple chaotic system resembling the Lorenz attractor that
has two fewer terms and all its coefficients equal to one:

475

X' = YZ

Y' = X -Y

Z' = 1 - XY (Equation 8D)

You can examine this case using the code QM7NM3NM3LM4NM2LM6.

Here’s another case with five terms and all unity coefficients that’s volume-
preserving and thus does not have an attractor, but its solution is either a 2-torus or
chaotic depending upon the initial conditions:

X' = Y

Y' = X + YZ

Z" = 1 - Y2 (Equation 8E)

It can be produced with the code QM5NM5LM5NM2NM5LM3.

8.5 What Good Is It?

It is rare that a mathematical concept captivates the interest not only of
scientists in diverse fields but of the general public. Chaos has done this, and it has
been heralded by some as the next great revolution in science. It has ushered in a
new field of experimental mathematics, sometimes pejoratively called recre-
ational mathematics by the more traditional and often cynical older breed of
mathematicians. The use of computers to produce exotic visual patterns has made
difficult mathematical ideas accessible to those without extensive formal training.

Yet it is fair to ask what it has done other than to make pretty pictures. One
response is to claim that the same things were probably said about the discovery
of the atomic nucleus, or electricity, or fire. We must have faith that intellectual
advances will eventually yield useful applications.

At the deepest level, an understanding of chaos alters our view of the world.
Having seen the complexity that can arise from simple equations, we have reason
to hope that simple equations may suffice to describe much of the complexity of
the world. Difficult and long-standing problems such as fluid turbulence may
eventually be understood using the ideas of chaos. Turbulence is difficult because
it involves both temporal and spatial chaos and because its dimension is high.

476

Chaos may also provide tools for making better predictions of complicated and
apparently random systems, such as the weather, the stock market, earthquakes,
epidemics, and population growth. It may also have applications in communica-
tions and in cryptography for devising secure codes and breaking them.

Since chaotic systems exhibit extreme sensitivity to initial conditions, you
might conclude that prediction is hopeless, but this is not the case. Prediction is
hopeless for a random system or for an extremely complicated deterministic
system. As the physicist Neils Bohr remarked, "Prediction is difficult, especially of the
future." However, if the system is simple and chaotic, then the determinism can be
exploited to improve short-term predictions.

Furthermore, if the equations produce a strange attractor, as most chaotic
systems do, we know that the solution lies somewhere on the attractor. Remember
that an attractor occupies a negligible volume of the space in which it is embed-
ded. Although we can’t predict where on the attractor the system will be at any
particular time in the distant future, we can exclude the vast number of possible
states that lie off the attractor. In meteorological terms, this might lead to eliminat-
ing the possibility of certain weather conditions with near absolute certainty.

When we see a system in nature that behaves erratically, we are now led to
wonder whether it is an example of chaos. Is simple determinism hidden in
seemingly random data? This problem is opposite to the one addressed in this book.
Here we have started with simple equations and produced complicated patterns.
Nature presents us with complicated patterns that may or may not come from
simple equations.

Often we are given only a single fluctuating quantity sampled at discrete
times—a so-called time series. The average daily temperature in New York and the
daily closing Dow Jones Industrial Average are two examples of a time series.
Sometimes a complicated-looking time series is simply a sum of several sine waves
of different unrelated frequencies. In such a case, accurate predictions are
possible using linear methods. A good example is the tides, whose behavior is not
simply periodic but nevertheless can be predicted with considerable accuracy
because it is governed by periodic notions of the earth and moon. More often, the
time series has no such simple representation. In such a case, we would like to
determine whether the behavior is random or chaotic. Chaotic systems often
produce strange attractors.

We usually don’t have data for all the variables that describe the system, nor
do we even know how many there are, so we don’t know the dimension of the
space in which an attractor might be embedded. Furthermore, the data record is
likely to be corrupted by random noise and measurement errors. The number of
data points may be small, and the system may not have reached a steady state.
Finally, we usually don’t have control over the system, so we cannot directly test its

477

sensitivity to initial conditions.

Such a situation sounds hopeless, but progress has recently been made in
testing for chaos in natural systems. For example, one can plot each data point
versus its predecessor, as we did with the one-dimensional maps in Chapter 2. In
some cases, this procedure is enough to reveal the determinism. More often, it is
necessary to plot each data point versus several of its predecessors in a high-
dimensional space. If the system is described by a strange attractor, the result is a
version of the attractor called a diffeomorphism that is distorted but has the same
fractal dimension. Similarly, the Lyapunov exponent can be estimated by selecting
nearby points in this space and determining how rapidly they diverge from one
another.

The fractal dimension is important because the number of variables and
equations is at least as large as the next higher integer, since the attractor has to be
embedded in a space with dimension higher than its fractal dimension. These
equations are not unique, however. Extracting equations from the data is a difficult
if not impossible task, but one whose rewards justify the effort. The equations provide
insight into the underlying dynamics and a means for making predictions.

Perhaps the ultimate test for chaos is the accuracy of short-term predictions.
With truly random data, prediction is impossible. Conversely, with chaotic data,
there is absolute determinism, and prediction is possible in principle, at least on
short-time scales dictated by the Lyapunov exponent and the precision of the
data. Predictability thus precludes complete randomness and signifies determin-
ism, although randomness and determinism often coexist. For example, the busi-
ness cycle is mostly random but includes deterministic seasonal changes. The
deterministic part is not necessarily chaotic, however.

Dynamical systems are everywhere. Your body contains several. Your heart
is a dynamical system whose solution normally approaches a limit cycle, but which
can become chaotic when in fibrillation or a fixed point upon death. Recent
research suggests that even a healthy heart beats chaotically, and a nearly
periodic pattern sometimes precedes cardiac arrest.

Other oscillations occur in your lungs, brain, and muscles. Electrocardio-
grams and electroencephalograms are time-series records used by doctors to
deduce information about the dynamics of the corresponding organ. Some chaos
in the brain may be necessary for creativity because it prevents us from repeatedly
approaching the same problems in the same way. The fractal dimension of
electroencephalograms has been observed to increase when a subject is en-
gaged in mental activity. In psychology, manic depression resembles a limit cycle,
and certain types of erratic behavior might be strange attractors.

Evidence for low-dimensional strange attractors has been found in systems

478

as diverse as the weather and climate, the business cycle, childhood epidemics,
sunspots, plasma fluctuations, and even in computer models of the arms race.
Some of these results should be viewed skeptically because there are many ways
to be misled. The number of data points needed for an accurate determination of
the dimension has been variously estimated from a pessimistic and probably overly
conservative 42F to a more optimistic but still large 102 + 0.4F. If the interval between
data points is too small, a fictitiously low dimension can result. Certain types of
colored noise (also called fractional Brownian motion) have a degree of determin-
ism and produce time-series records with an apparently low dimension. Many tests
have been devised, such as comparing the results with those from a surrogate data
set obtained by randomly shuffling the numbers in the time series.

Chaos has a deep philosophical significance. If determinism implied perfect
predictability, there would be no room for free will. We would be just small cogs in
a large machine over which we have no control. It’s easy to feel insignificant in a
vast and complicated universe dominated by forces too powerful to resist.

However, chaos illustrates that determinism does not imply predictability.
What is bad news for those who want to predict the weather or the stock market is
good news for those who want to control them. Recall the hypothetical butterfly
flapping its wings in Brazil, which sets off tornadoes in Texas. If the world is really
governed by deterministic chaos, we are drastically changing the future with
everything we do. We need never feel unimportant or insignificant. Who would
have thought that a concept from mathematics could give meaning and purpose
to our lives?

479

Appendix A
Annotated Bibliography

Books and articles on chaos and fractals have proliferated enormously in recent
years. A selection of the most useful and readable of these is listed here, along with
comments on the content and level of each.

Abbott, E. A. Flatland: A Romance of Many Dimensions (New York: Barnes & Noble,
1983). An entertaining classic written in 1884 by a Victorian schoolmaster and
minister, this book explains the fourth and higher dimensions by considering the
impact of a visit by a three-dimensional creature (A Sphere) to a world inhabited
by two-dimensional creatures (A Square and others).

Abraham, F. D. A Visual Introduction to Dynamical Systems Theory for Psychology
(Santa Cruz, CA: Aerial Press, 1990). This book shows how attractors in dynamical
systems have application to a field as unlikely as psychology. It contains numerous
sketches of attractors and an explanation of the technical terms used to describe
them.

Abraham, R. H. and C. D. Shaw. Dynamics—The Geometry of Behavior (Santa Cruz,
CA: Aerial Press, 1982). A four-part series that attempts to explain the fundamentals
of dynamical behavior without equations using cartoonlike drawings with ex-
tended captions.

Barnsley, M. F. Fractals Everywhere (San Diego, CA: Academic Press, 1988). This
classic text by an expert mathematician describes the mathematics underlying
fractals and provides a good source of new fractal types.

Barnsley, M. F., R. L. Devaney, B. B. Mandelbrot, H. O. Peitgen, D. Saupe, and R. F.
Voss. The Science of Fractal Images (New York: Springer-Verlag, 1988). A readable

480

collection of articles describing the mathematics that underlies the computer
generation of fractals.

Briggs, J. Fractals: The Patterns of Chaos (New York: Touchstone, 1992). A non-
mathematical but detailed explanation of fractals and chaos with many high-
quality drawings and photographs.

Briggs, J. and F. Peat. The Turbulent Mirror: An Illustrated Guide to Chaos Theory and
the Science of Wholeness (New York: Harper and Row, 1989). This unusual book
combines a simple mathematical description of chaos with loosely related philo-
sophical and psychological ramblings.

Burger, D. Sphereland (New York: Barnes & Noble, 1983). An entertaining book
written in the style of the one by Abbott, it picks up where Flatland stops in describing
the properties of high-dimensional spaces.

Chernikov, A. A., R. Z. Sagdeev, and G. M. Zaslavsky. "Chaos: How Regular Can it
Be?" Physics Today, page 27 (November 1988). Written by a group of active Russian
nonlinear dynamicists, this review article provides a good background for under-
standing stochastic webs.

Crutchfield, J. P., J. D. Farmer, N. H. Packard, and R. S. Shaw. "Chaos." Scientific
American Vol. 255, page 46 (December 1986). This easily readable article presents
the fundamentals of chaos theory in a compact form.

Devaney, R. L. An Introduction to Chaotic Dynamical Systems (Reading, MA:
Addison-Wesley, 1989). This advanced undergraduate text summarizes the math-
ematics that underlies chaotic systems of equations.

481

Devaney, R. L. Chaos, Fractals, and Dynamics: Computer Experiments in Math-
ematics (Reading, MA: Addison-Wesley, 1990). This book introduces chaos, fractals,
and nonlinear dynamics with numerous beautiful images using computer exercises
in BASIC and simple mathematics.

Devaney, R. L. A First Course in Chaotic Dynamical Systems: Theory and Experiment
(Reading, MA: Addison Wesley, 1992). Written at the undergraduate college level,
this book provides an excellent introduction to chaos and fractals.

Dewdney, A. K. "Probing the Strange Attractors of Chaos." Scientific American, Vol.
257, page 108 (July 1987). This typical Scientific American presentation provides a
readable though abbreviated introduction to the mathematics underlying strange
attractors.

Falconer, K. Fractal Geometry: Mathematical Foundations and Applications (New
York: Wiley, 1990). In somewhat technical terms this book explains the mathematics
underlying fractals and describes the various methods of defining and calculating
their dimensions.

Feder, J. Fractals (New York: Plenum Press, 1988). This introductory technical book
describes fractals using geometrical ideas and explains time-series analysis and
other related topics from a physical viewpoint.

Feigenbaum, M. J. "Qualitative Universality for a Class of Nonlinear Transformations."
Journal of Statistical Physics Vol. 19, page 25 (1978). Highly technical but historically
important, this paper lays the foundation for many of the principles of chaos by
reference to the logistic equation and similar one-dimensional nonlinear maps.

Field, M. and M. Golubitsky. Symmetry in Chaos: A Search for Pattern in Mathemat-
ics, Art, and Nature (Oxford: Oxford University Press, 1992). A spectacularly illus-

482

trated book that includes computer-generated images of flowers, graphic logos,
motifs, and other artistic mathematical patterns.

Gleick, J. Chaos: Making a New Science (New York: Viking Penguin, 1987). This best-
selling, historical, and nontechnical account is the starting point for anyone who
wants to understand why chaos has excited the imagination of the scientist and
nonscientist alike.

Grassberger, P. and I. Procaccia. "Characterization of Strange Attractors." Physical
Review Letters, Vol. 50, page 346 (1983). A somewhat mathematical paper that was
the first to propose the correlation dimension as a convenient method for quanti-
fying strange attractors.

Gulick, D. Encounters with Chaos (New York: McGraw Hill, 1992). A rigorous upper-
undergraduate-level introduction to the mathematics of chaos.

Hao, B. L. Chaos II (Singapore: World Scientific, 1990). This book reprints many
introductory and influential papers on chaos and includes a bibliography of 117
books and 2244 technical papers.

Hénon, M. "A Two-Dimensional Mapping with a Strange Attractor." Communica-
tions in Mathematical Physics, Vol. 50, page 69 (1976). Although somewhat techni-
cal, this article describes one of the first thoroughly studied examples of a chaotic,
two-dimensional quadratic map.

Hofstadter, D. R. Godel, Escher, Bach: An Eternal Golden Braid (New York: Vintage,
1980). Dealing with, among other things, self-similarity and recursion in music, art,
and science, this largely nonmathematical but deeply philosophical book is highly
recommended.

483

Hofstadter, D. R. "Strange Attractors: Mathematical Patterns Delicately Poised
Between Order and Chaos." Scientific American, Vol. 245, page 22 (November
1981). This article provides an introduction to the mathematics of strange attractors
and their significance.

Hofstadter, D. R. Metamagical Themas (New York: Basic Books, 1985). A recre-
ational mathematics book that contains many interesting topics, including a
chapter on mathematical chaos and strange attractors.

Jackson, E.A. Perspectives of Nonlinear Dynamics (Cambridge: Cambridge Univer-
sity Press, 1991). A two-volume graduate-level text that covers all the essentials of
chaos and nonlinear dynamics and includes many nice drawings.

Knuth, D. E. Seminumerical Algorithms, 2nd ed., Vol. 2 of The Art of Computer
Programming (Reading, MA: Addison-Wesley, 1981), chap. 3. This serious math-
ematical book is the classic reference for describing, among other things, the
methods by which computers are used to generate pseudorandom numbers and
the pitfalls inherent in their misuse.

Krasner, S., ed. The Ubiquity of Chaos (Washington, D. C.: American Association for
the Advancement of Science, 1990). A collection of 19 scientific papers that
illustrates the wide range of fields in which chaotic processes have been discovered
and studied.

Levy, S. Artificial Life: The Quest for a New Creation (New York: Pantheon Books,
1992). This book takes up where Gleick left off and covers much of the recent history
of chaos and its developers.

Li, T. Y. and J. A. Yorke. "Period Three Implies Chaos." American Mathematical
Monthly, Vol. 82, page 985 (1975). This historical paper contains the first published

484

reference to the term chaos.

Lorenz, E. N. "Deterministic Nonperiodic Flow." Journal of the Atmospheric Sciences,
Vol. 20, page 130 (1963). Although slow to be appreciated, this historically impor-
tant paper is now regarded as the first modern example of a strange attractor
resulting from the solution of a simple set of ordinary differential equations originally
proposed to model atmospheric convection.

Mandelbrot, B. B. The Fractal Geometry of Nature (San Francisco: W. H. Freeman,
1982). An extended essay by the father of fractals, this was the seminal work that
brought to the attention of the nonspecialist the ubiquity of fractals in nature.

May, R. M. "Simple Mathematical Models with Very Complicated Dynamics."
Nature, Vol. 261, page 459 (1976). A thought-provoking and mathematically
straightforward paper that initiated the widespread interest in the logistic equation
and other one-dimensional maps as models for natural processes.

McGuire, M. An Eye for Fractals (Reading, MA: Addison-Wesley, 1991). This graphic
and photographic essay by a physicist and amateur photographer contains
beautiful black and white photographs of natural fractals in the style of Ansel
Adams, with a simple mathematical description of fractals.

Moon, F. C. Chaotic Vibrations (New York: Wiley-Interscience, 1987). An advanced
undergraduate text that emphasizes the applications of chaos theory to real-world
engineering problems.

Moon, F. C. Chaotic and Fractal Dynamics: An Introduction for Applied Scientists
and Engineers (New York: Wiley, 1992). An update of Moon’s previous book with
many practical engineering applications of chaos theory.

485

Peitgen, H. O. and P. H. Richter. The Beauty of Fractals: Images of Complex
Dynamical Systems (New York: Springer-Verlag, 1986). This beautiful, colorful exhibit
of computer art emphasizes the Mandelbrot and Julia sets.

Peitgen, H. O., H. Jurgens, and D. Saupe. Fractals for the Classroom (New York:
Springer-Verlag, 1992). A two-book set that explains the mathematical basis of
fractals at a relatively elementary level and contains many BASIC program listings
for the production of fractals.

Pickover, C. A. Computers, Pattern, Chaos and Beauty: Graphics from an Unseen
World (New York: St. Martin’s Press, 1990). A how-to book by the master of computer
graphic art and visualization filled with original ideas for the computer generation
of fractals and other artistic patterns.

Pickover, C. A. Computers and the Imagination: Visual Adventures Beyond the
Edge (New York: St. Martin’s Press, 1991). This extension of Pickover’s earlier book by
the same publisher takes up where the other stopped and provides additional
spectacular examples of computer art and philosophical insight.

Pickover, C. A. Mazes for the Mind: Computers and the Unexpected (New York: St.
Martin’s Press, 1992). The third book in the series that includes puzzles, games, and
mazes appealing to computer enthusiasts, artists, and puzzle-solvers, along with
incisive commentary and additional dazzling computer images.

Porter, E. and J. Gleick. Nature’s Chaos (New York: Viking Penguin, 1990). This book
of art combines photographs of natural fractals by Porter with a simple, almost
poetic, explanation of chaos and fractals by Gleick.

Pritchard, J. The Chaos Cookbook: A Practical Programming Guide (Oxford:
Butterworth-Heinemann, 1992). A practical and elementary tutorial that includes

486

programs in BASIC and Pascal to ease the reader into the mathematics of chaos
and fractals.

Rössler, O. E. "An Equation for Continuous Chaos." Physics Letters, Vol. 57A, page 397
(1976). This short, classic paper by a nonpracticing medical doctor includes
stereoscopic views of the Lorenz and Rössler attractors.

Rucker, R. The Fourth Dimension (New York: Houghton-Mifflin, 1984). The book to
read if you want to understand the philosophical, geometrical, and physical
meaning of space-time.

Ruelle, D. "Strange Attractors." (Mathematical Intelligencer, Vol. 2, page 126 (1980).
This mathematical article includes some of the history of the discovery and
understanding of strange attractors and related chaotic phenomena.

Ruelle, D. Chance and Chaos (Princeton, NJ: Princeton Univ. Press, 1991). A
charming little book by a pioneer in chaos, describing with minimal mathematics
the philosophical implications of chaos and randomness.

Schroeder, M. Fractals, Chaos, and Power Laws: Minutes from an Infinite Paradise
(New York: W. H. Freeman, 1991). A slightly mathematical but highly readable book
packed with examples of temporal and spatial chaos in enormously diverse
contexts and a wealth of puns.

Schuster, H. G. Deterministic Chaos (New York: Springer-Verlag, 1984). This work is
aimed at the more mathematically inclined reader who wants to understand
chaos and related topics in greater detail, and it includes a good mathematical
description of the Lyapunov exponent.

487

Shaw, R. The Dripping Faucet as a Model Chaotic System (Santa Cruz, CA: Aerial
Press, 1984). A short but detailed book that describes in nontechnical language
how the ideas of chaos and strange attractors can be used to understand a
phenomenon as simple as a dripping faucet.

Sparrow, C. T. The Lorenz Equations, Bifurcations, Chaos, and Strange Attractors
(New York: Springer-Verlag, 1982). This somewhat technical book demonstrates the
depth to which a single example of a strange attractor can be studied.

Sprott, J. C. "Simple Programs Create 3-D Images." Computers in Physics, Vol. 6,
page 132 (1992). This article by the author describes in detail how computers can
be programmed to produce anaglyphic images of 3-D objects.

Sprott, J. C. "How Common is Chaos?" Physics Letters, Vol. 173A, page 21 (1993). An
abbreviated technical paper quantifying the occurrence of chaos in polynomial
maps and ODEs that was the inspiration for this book.

Sprott, J.C. "Automatic Generation of Strange Attractors." Computers &Graphics,
Vol. 17, page 325 (1993). An abbreviated description of the technique that forms
the basis of the present book.

Sprott, J. C. and G. Rowlands. Chaos Demonstrations (North Carolina State Univer-
sity, Raleigh, NC: Physics Academic Software, 27695-8202). An IBM PC program by
the author and a colleague that provides a simple way to learn about chaos,
fractals, and related phenomena. It comes with an 84-page user’s manual and 3-
D glasses.

Stevens, R. T. Fractal Programming in C (New York: M&T Books, 1989). Also available
in a TurboPascal version, this book provides programs and detailed descriptions for
producing most of the standard fractal forms.

488

Stevens, R. T. Advanced Fractal Programming in C (New York: M&T Books, 1990).
Picking up where Stevens’ previous one left off, this book emphasizes Mandelbrot
and Julia sets but also discusses other fractal types, such as L-systems and iterated
function systems.

Stewart, I. Does God Play Dice?: The Mathematics of Chaos (Oxford: Blackwell,
1989). A charming, light-hearted, but serious book that provides a good introduc-
tion to chaos using simple mathematics.

Stewart, I. and M. Golubitsky. Fearful Symmetry: Is God a Geometer? (Oxford:
Blackwell, 1992). This sequel to the earlier book by Stewart deals with symmetry in
nature, art, and science and provides computer programs for producing symmetri-
cal patterns of considerable beauty.

Theiler, J. "Estimating Fractal Dimension." Journal of the Optical Society of America,
Vol. 7A, page 1055 (1990). A slightly technical paper containing an excellent review
of the various ways of calculating fractal dimensions.

Thompson, J. M. T. and H. B. Stewart. Nonlinear Dynamics and Chaos (New York:
Wiley, 1986). This advanced undergraduate text aimed at physical science stu-
dents explains the mathematical basis for chaos.

Tsonis, A. A. Chaos: From Theory to Applications (New York: Plenum Press, 1992). An
advanced undergraduate text that includes recent developments in the applica-
tions of chaos theory to real-world problems, such as improved methods of
forecasting and distinguishing chaos from noise.

Weeks, J. R. The Shape of Space: How to Visualize Surfaces and Three-Dimensional
Manifolds (New York: Marcel Dekker, Incorporated, 1985). This book explains in
simple language and with clear illustrations the elements of topology that are

489

fundamental to a deep understanding of strange attractors and other geometrical
objects.

Wegner, T. and M. Peterson. Fractal Creations (Mill Valley, CA: Waite Group Press,
1991). This book is really a user’s manual for the incredible freeware program
FRACTINT, which is constantly updated by a dedicated group of volunteer fractal
programming enthusiasts.

Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano. "Determining Lyapunov
Exponents from a Time Series." Physica, Vol. 16D, page 285 (1985). A technical but
surprisingly readable article that contains an excellent description of the practical
considerations that go into the calculation of Lyapunov exponents.

Zhang, S. Y. Bibliography on Chaos (Singapore: World Scientific, 1991). With over
7000 references, this is the most extensive compilation available, and it serves to
underscore the popularity of the subject.

490

Appendix B
BASIC Program Listing

This appendix contains the complete BASIC program that you should have devel-
oped if you followed the exercises in this book, along with a few additions. It should
run without modification on DOS-based IBM personal computers or compatibles
under Microsoft BASICA, GW-BASIC, QBASIC, QuickBASIC, or VisualBASIC for MS-
DOS; Borland International Turbo BASIC; and Spectra Publishing PowerBASIC. A disk
containing the source program and a version of the program complied with
PowerBASIC (SA.EXE) and ready to run is included with the book. This is a relatively
no-frills program in that it lacks extensive error trapping, fancy menus, and mouse
support, but it is fully functional and relatively robust.

The additions to the program are as follows:

1. The program contains a version number (2.0) and a copyright notice. Your
purchase of this book and the accompanying disk entitles you to personal use of
the program. It is not legal for you to make a copy of the program for someone else,
to place it in the public domain, or to incorporate it in whole or in part into programs
that are distributed to others. The idea of programming a computer to search
automatically for strange attractors based on calculation of the Lyapunov expo-
nent is believed to be original, and proper scientific etiquette requires that you
acknowledge the author in any further dissemination of work based on this
technique.

2. The program includes a somewhat inelegant but effective test for the graphics
capability of the computer on which it is used. It causes the program to run
automatically in the highest graphics mode supported by the hardware and by the
BASIC version under which it is compiled

 or run. The program prints a message and stops if the computer does not have
a graphics monitor. Colors are adjusted for CGA MODE 1, and text is properly
formatted for screens with 40 columns of text.

3. The program allows you to change the number of iterations that are plotted while
in the search mode using the N key. Values of a thousand (10^3) to a billion (10^9)
are allowed. Note that this value excludes the thousand iterations that are always
performed to allow the initial transient to decay.

491

4. In addition to the planar and spherical projections, the P command allows you
to project the attractors onto a cylinder with a horizontal or vertical axis or a torus.
The toroidal projection is shown looking along the major axis with the doughnut hole
at the center of the screen and of negligible size.

5. A C command has been added to allow you to clear the screen and restart the
calculation with the current values of the variables. This feature allows you to
remove the transient in cases when the orbit requires more than a thousand
iterations to reach the attractor or to reduce the density of points on the screen,
which is sometimes useful, for example, with the 3-D anaglyphic displays.

6. The program allows you to press V to save a record of up to 16,000 consecutive
iterates of X, Y, Z, or W in a disk file that can be analyzed in more detail by other
programs. To conserve disk space, each new attractor overwrites the data from the
previous case. The data files can be read by the companion program Chaos Data
Analyzer, which allows the data to be displayed in many ways, including phase-
space plots, return maps, and Poincaré movies; calculates probability distributions,
power spectra, Lyapunov exponents, correlation functions, and capacity and
correlation dimensions; and makes predictions based on a novel technique
involving singular value decomposition. Chaos Data Analyzer is available from The
Academic Software Library, Box 8202, North Carolina State University, Raleigh, NC
27695-8202, telephone (800) 955-TASL or (919) 515-7447.

If you have been working systematically through the programs in this book,
you will find useful the following list of program lines that require changes to produce
the final program PROG28.BAS:

1000, 1070, 1090, 1140, 1310, 1330, 1340, 1360, 2270-2290, 2500, 3060, 3360, 3400-
3420, 3630, 3670, 3740, 3750, 3780, 4000, 4240, 4250, 4280, 4380, 4390, 4430-4450,

4570-4590, 5650-5710, 5840, 6600-7070

PROG28.BAS. Complete BASIC program for producing all the examples in this book and endless
variations

1000 REM STRANGE ATTRACTOR PROGRAM BASIC Ver 2.0 (c) 1993 by J. C. Sprott

1010 DEFDBL A-Z 'Use double precision

1020 DIM XS(499), YS(499), ZS(499), WS(499), A(504), V(99), XY(4), XN(4), COLR%(15)

492

1030 SM% = 12 'Assume VGA graphics

1040 PREV% = 5 'Plot versus fifth previous iterate

1050 NMAX = 11000 'Maximum number of iterations

1060 OMAX% = 5 'Maximum order of polynomial

1070 D% = 2 'Dimension of system

1080 EPS = .1 'Step size for ODE

1090 ODE% = 0 'System is map

1100 SND% = 0 'Turn sound off

1110 PJT% = 0 'Projection is planar

1120 TRD% = 1 'Display third dimension as shadow

1130 FTH% = 2 'Display fourth dimension as colors

1140 SAV% = 0 'Don't save any data

1150 TWOPI = 6.28318530717959# 'A useful constant (2 pi)

1160 RANDOMIZE TIMER 'Reseed random-number generator

1170 GOSUB 4200 'Display menu screen

1180 IF Q$ = "X" THEN GOTO 1250 'Exit immediately on command

1190 GOSUB 1300 'Initialize

1200 GOSUB 1500 'Set parameters

1210 GOSUB 1700 'Iterate equations

1220 GOSUB 2100 'Display results

1230 GOSUB 2400 'Test results

1240 ON T% GOTO 1190, 1200, 1210

1250 CLS

493

1260 END

1300 REM Initialize

1310 ON ERROR GOTO 6600 'Find legal graphics mode

1320 SCREEN SM% 'Set graphics mode

1330 ON ERROR GOTO 0 'Resume default error trapping

1340 DEF SEG = 64: WID% = PEEK(74) 'Number of text columns

1350 WINDOW (-.1, -.1)-(1.1, 1.1)

1360 CLS : LOCATE 13, WID% / 2 - 6: PRINT "Searching..."

1370 GOSUB 5600 'Set colors

1380 IF QM% <> 2 THEN GOTO 1420

1390 NE = 0: CLOSE

1400 OPEN "SA.DIC" FOR APPEND AS #1: CLOSE

1410 OPEN "SA.DIC" FOR INPUT AS #1

1420 RETURN

1500 REM Set parameters

1510 X = .05 'Initial condition

1520 Y = .05

1530 Z = .05

1540 W = .05

1550 XE = X + .000001: YE = Y: ZE = Z: WE = W

1560 GOSUB 2600 'Get coefficients

494

1570 T% = 3

1580 P% = 0: LSUM = 0: N = 0: NL = 0: N1 = 0: N2 = 0

1590 XMIN = 1000000!: XMAX = -XMIN: YMIN = XMIN: YMAX = XMAX

1600 ZMIN = XMIN: ZMAX = XMAX

1610 WMIN = XMIN: WMAX = XMAX

1620 TWOD% = 2 ^ D%

1630 RETURN

1700 REM Iterate equations

1710 IF ODE% > 1 THEN GOSUB 6200: GOTO 2020 'Special function

1720 M% = 1: XY(1) = X: XY(2) = Y: XY(3) = Z: XY(4) = W

1730 FOR I% = 1 TO D%

1740 XN(I%) = A(M%)

1750 M% = M% + 1

1760 FOR I1% = 1 TO D%

1770 XN(I%) = XN(I%) + A(M%) * XY(I1%)

1780 M% = M% + 1

1790 FOR I2% = I1% TO D%

1800 XN(I%) = XN(I%) + A(M%) * XY(I1%) * XY(I2%)

1810 M% = M% + 1

1820 IF O% = 2 THEN GOTO 1970

1830 FOR I3% = I2% TO D%

1840 XN(I%) = XN(I%) + A(M%) * XY(I1%) * XY(I2%) * XY(I3%)

495

1850 M% = M% + 1

1860 IF O% = 3 THEN GOTO 1960

1870 FOR I4% = I3% TO D%

1880 XN(I%) = XN(I%) + A(M%) * XY(I1%) * XY(I2%) * XY(I3%) * XY(I4%)

1890 M% = M% + 1

1900 IF O% = 4 THEN GOTO 1950

1910 FOR I5% = I4% TO D%

1920 XN(I%) = XN(I%) + A(M%) * XY(I1%) * XY(I2%) * XY(I3%) * XY(I4%) * XY(I5%)

1930 M% = M% + 1

1940 NEXT I5%

1950 NEXT I4%

1960 NEXT I3%

1970 NEXT I2%

1980 NEXT I1%

1990 IF ODE% = 1 THEN XN(I%) = XY(I%) + EPS * XN(I%)

2000 NEXT I%

2010 M% = M% - 1: XNEW = XN(1): YNEW = XN(2): ZNEW = XN(3): WNEW = XN(4)

2020 N = N + 1

2030 RETURN

2100 REM Display results

2110 IF N < 100 OR N > 1000 THEN GOTO 2200

2120 IF X < XMIN THEN XMIN = X

496

2130 IF X > XMAX THEN XMAX = X

2140 IF Y < YMIN THEN YMIN = Y

2150 IF Y > YMAX THEN YMAX = Y

2160 IF Z < ZMIN THEN ZMIN = Z

2170 IF Z > ZMAX THEN ZMAX = Z

2180 IF W < WMIN THEN WMIN = W

2190 IF W > WMAX THEN WMAX = W

2200 IF N = 1000 THEN GOSUB 3100 'Resize the screen

2210 XS(P%) = X: YS(P%) = Y: ZS(P%) = Z: WS(P%) = W

2220 P% = (P% + 1) MOD 500

2230 I% = (P% + 500 - PREV%) MOD 500

2240 IF D% = 1 THEN XP = XS(I%): YP = XNEW ELSE XP = X: YP = Y

2250 IF N < 1000 OR XP <= XL OR XP >= XH OR YP <= YL OR YP >= YH THEN GOTO 2320

2260 IF PJT% = 1 THEN GOSUB 4100 'Project onto a sphere

2270 IF PJT% = 2 THEN GOSUB 6700 'Project onto a horizontal cylinder

2280 IF PJT% = 3 THEN GOSUB 6800 'Project onto a vertical cylinder

2290 IF PJT% = 4 THEN GOSUB 6900 'Project onto a torus

2300 GOSUB 5000 'Plot point on screen

2310 IF SND% = 1 THEN GOSUB 3500 'Produce sound

2320 RETURN

2400 REM Test results

2410 IF ABS(XNEW) + ABS(YNEW) + ABS(ZNEW) + ABS(WNEW) > 1000000! THEN T% = 2

497

2420 IF QM% = 2 THEN GOTO 2490 'Speed up evaluation mode

2430 GOSUB 2900 'Calculate Lyapunov exponent

2440 GOSUB 3900 'Calculate fractal dimension

2450 IF QM% > 0 THEN GOTO 2490 'Skip tests when not in search mode

2460 IF N >= NMAX THEN T% = 2: GOSUB 4900 'Strange attractor found

2470 IF ABS(XNEW - X) + ABS(YNEW - Y) + ABS(ZNEW - Z) + ABS(WNEW - W) < .000001
THEN T% = 2

2480 IF N > 100 AND L < .005 THEN T% = 2 'Limit cycle

2490 Q$ = INKEY$: IF LEN(Q$) THEN GOSUB 3600 'Respond to user command

2500 IF SAV% > 0 THEN IF N > 1000 AND N < 17001 THEN GOSUB 7000 'Save data

2510 X = XNEW 'Update value of X

2520 Y = YNEW

2530 Z = ZNEW

2540 W = WNEW

2550 RETURN

2600 REM Get coefficients

2610 IF QM% <> 2 THEN GOTO 2640 'Not in evaluate mode

2620 IF EOF(1) THEN QM% = 0: GOSUB 6000: GOTO 2640

2630 IF EOF(1) = 0 THEN LINE INPUT #1, CODE$: GOSUB 4700: GOSUB 5600

2640 IF QM% > 0 THEN GOTO 2730 'Not in search mode

2650 O% = 2 + INT((OMAX% - 1) * RND)

2660 CODE$ = CHR$(59 + 4 * D% + O% + 8 * ODE%)

2670 IF ODE% > 1 THEN CODE$ = CHR$(87 + ODE%)

498

2680 GOSUB 4700 'Get value of M%

2690 FOR I% = 1 TO M% 'Construct CODE$

2700 GOSUB 2800 'Shuffle random numbers

2710 CODE$ = CODE$ + CHR$(65 + INT(25 * RAN))

2720 NEXT I%

2730 FOR I% = 1 TO M% 'Convert CODE$ to coefficient values

2740 A(I%) = (ASC(MID$(CODE$, I% + 1, 1)) - 77) / 10

2750 NEXT I%

2760 RETURN

2800 REM Shuffle random numbers

2810 IF V(0) = 0 THEN FOR J% = 0 TO 99: V(J%) = RND: NEXT J%

2820 J% = INT(100 * RAN)

2830 RAN = V(J%)

2840 V(J%) = RND

2850 RETURN

2900 REM Calculate Lyapunov exponent

2910 XSAVE = XNEW: YSAVE = YNEW: ZSAVE = ZNEW: WSAVE = WNEW

2920 X = XE: Y = YE: Z = ZE: W = WE: N = N - 1

2930 GOSUB 1700 'Reiterate equations

2940 DLX = XNEW - XSAVE: DLY = YNEW - YSAVE

2950 DLZ = ZNEW - ZSAVE: DLW = WNEW - WSAVE

499

2960 DL2 = DLX * DLX + DLY * DLY + DLZ * DLZ + DLW * DLW

2970 IF CSNG(DL2) <= 0 THEN GOTO 3070 'Don't divide by zero

2980 DF = 1000000000000# * DL2

2990 RS = 1 / SQR(DF)

3000 XE = XSAVE + RS * (XNEW - XSAVE): YE = YSAVE + RS * (YNEW - YSAVE)

3010 ZE = ZSAVE + RS * (ZNEW - ZSAVE): WE = WSAVE + RS * (WNEW - WSAVE)

3020 XNEW = XSAVE: YNEW = YSAVE: ZNEW = ZSAVE: WNEW = WSAVE

3030 LSUM = LSUM + LOG(DF): NL = NL + 1

3040 L = .721347 * LSUM / NL

3050 IF ODE% = 1 OR ODE% = 7 THEN L = L / EPS

3060 IF N > 1000 AND N MOD 10 = 0 THEN LOCATE 1, WID% - 4: PRINT USING "##.##";
L;

3070 RETURN

3100 REM Resize the screen

3110 IF D% = 1 THEN YMIN = XMIN: YMAX = XMAX

3120 IF XMAX - XMIN < .000001 THEN XMIN = XMIN - .0000005: XMAX = XMAX + .0000005

3130 IF YMAX - YMIN < .000001 THEN YMIN = YMIN - .0000005: YMAX = YMAX + .0000005

3140 IF ZMAX - ZMIN < .000001 THEN ZMIN = ZMIN - .0000005: ZMAX = ZMAX + .0000005

3150 IF WMAX - WMIN < .000001 THEN WMIN = WMIN - .0000005: WMAX = WMAX + .0000005

3160 MX = .1 * (XMAX - XMIN): MY = .1 * (YMAX - YMIN)

3170 XL = XMIN - MX: XH = XMAX + MX: YL = YMIN - MY: YH = YMAX + 1.5 * MY

3180 WINDOW (XL, YL)-(XH, YH): CLS

3190 YH = YH - .5 * MY

500

3200 XA = (XL + XH) / 2: YA = (YL + YH) / 2

3210 IF D% < 3 THEN GOTO 3310

3220 ZA = (ZMAX + ZMIN) / 2

3230 IF TRD% = 1 THEN LINE (XL, YL)-(XH, YH), COLR%(1), BF: GOSUB 5400

3240 IF TRD% = 4 THEN LINE (XL, YL)-(XH, YH), WH%, BF

3250 IF TRD% = 5 THEN LINE (XA, YL)-(XA, YH)

3260 IF TRD% <> 6 THEN GOTO 3310

3270 FOR I% = 1 TO 3

3280 XP = XL + I% * (XH - XL) / 4: LINE (XP, YL)-(XP, YH)

3290 YP = YL + I% * (YH - YL) / 4: LINE (XL, YP)-(XH, YP)

3300 NEXT I%

3310 IF PJT% <> 1 THEN LINE (XL, YL)-(XH, YH), , B

3320 IF PJT% = 1 AND TRD% < 5 THEN CIRCLE (XA, YA), .36 * (XH - XL)

3330 TT = 3.1416 / (XMAX - XMIN): PT = 3.1416 / (YMAX - YMIN)

3340 IF QM% <> 2 THEN GOTO 3400 'Not in evaluate mode

3350 LOCATE 1, 1: PRINT "<Space Bar>: Discard <Enter>: Save";

3360 IF WID% < 80 THEN GOTO 3390

3370 LOCATE 1, 49: PRINT "<Esc>: Exit";

3380 LOCATE 1, 69: PRINT CINT((LOF(1) - 128 * LOC(1)) / 1024); "K left";

3390 GOTO 3430

3400 LOCATE 1, 1: IF LEN(CODE$) < WID% - 18 THEN PRINT CODE$

3410 IF LEN(CODE$) >= WID% - 18 THEN PRINT LEFT$(CODE$, WID% - 23) + "..."

3420 LOCATE 1, WID% - 17: PRINT "F =": LOCATE 1, WID% - 7: PRINT "L ="

501

3430 TIA = .05 'Tangent of illumination angle

3440 XZ = -TIA * (XMAX - XMIN) / (ZMAX - ZMIN)

3450 YZ = TIA * (YMAX - YMIN) / (ZMAX - ZMIN)

3460 RETURN

3500 REM Produce sound

3510 FREQ% = 220 * 2 ^ (CINT(36 * (XNEW - XL) / (XH - XL)) / 12)

3520 DUR = 1

3530 IF D% > 1 THEN DUR = 2 ^ INT(.5 * (YH - YL) / (YNEW - 9 * YL / 8 + YH / 8))

3540 SOUND FREQ%, DUR: IF PLAY(0) THEN PLAY "MF"

3550 RETURN

3600 REM Respond to user command

3610 IF ASC(Q$) > 96 THEN Q$ = CHR$(ASC(Q$) - 32) 'Convert to upper case

3620 IF QM% = 2 THEN GOSUB 5800 'Process evaluation command

3630 IF INSTR("ACDEHINPRSVX", Q$) = 0 THEN GOSUB 4200 'Display menu screen

3640 IF Q$ = "A" THEN T% = 1: QM% = 0

3650 IF ODE% > 1 THEN D% = ODE% + 5

3660 IF ODE% = 1 THEN D% = D% + 2

3670 IF Q$ = "C" THEN IF N > 999 THEN N = 999

3680 IF Q$ = "D" THEN D% = 1 + (D% MOD 12): T% = 1

3690 IF D% > 6 THEN ODE% = D% - 5: D% = 4: GOTO 3710

3700 IF D% > 4 THEN ODE% = 1: D% = D% - 2 ELSE ODE% = 0

502

3710 IF Q$ = "E" THEN T% = 1: QM% = 2

3720 IF Q$ = "H" THEN FTH% = (FTH% + 1) MOD 3: T% = 3: IF N > 999 THEN N = 999:
GOSUB 5600

3730 IF Q$ = "I" THEN IF T% <> 1 THEN SCREEN 0: WIDTH 80: COLOR 15, 1: CLS : LINE
INPUT "Code? "; CODE$: IF CODE$ = "" THEN Q$ = " ": CLS : ELSE T% = 1: QM% = 1:
GOSUB 4700

3740 IF Q$ = "N" THEN NMAX = 10 * (NMAX - 1000) + 1000: IF NMAX > 10 ^ 10 THEN
NMAX = 2000

3750 IF Q$ = "P" THEN PJT% = (PJT% + 1) MOD 5: T% = 3: IF N > 999 THEN N = 999

3760 IF Q$ = "R" THEN TRD% = (TRD% + 1) MOD 7: T% = 3: IF N > 999 THEN N = 999:
GOSUB 5600

3770 IF Q$ = "S" THEN SND% = (SND% + 1) MOD 2: T% = 3

3780 IF Q$ = "V" THEN SAV% = (SAV% + 1) MOD 5: FAV$ = CHR$(87 + SAV% MOD 4): T%
= 3: IF N > 999 THEN N = 999

3790 IF Q$ = "X" THEN T% = 0

3800 RETURN

3900 REM Calculate fractal dimension

3910 IF N < 1000 THEN GOTO 4010 'Wait for transient to settle

3920 IF N = 1000 THEN D2MAX = (XMAX - XMIN) ̂ 2 + (YMAX - YMIN) ̂ 2 + (ZMAX - ZMIN)
^ 2 + (WMAX - WMIN) ^ 2

3930 J% = (P% + 1 + INT(480 * RND)) MOD 500

3940 DX = XNEW - XS(J%): DY = YNEW - YS(J%): DZ = ZNEW - ZS(J%): DW = WNEW - WS(J%)

3950 D2 = DX * DX + DY * DY + DZ * DZ + DW * DW

3960 IF D2 < .001 * TWOD% * D2MAX THEN N2 = N2 + 1

3970 IF D2 > .00001 * TWOD% * D2MAX THEN GOTO 4010

3980 N1 = N1 + 1

503

3990 F = .434294 * LOG(N2 / (N1 - .5))

4000 LOCATE 1, WID% - 14: PRINT USING "##.##"; F;

4010 RETURN

4100 REM Project onto a sphere

4110 TH = TT * (XMAX - XP)

4120 PH = PT * (YMAX - YP)

4130 XP = XA + .36 * (XH - XL) * COS(TH) * SIN(PH)

4140 YP = YA + .5 * (YH - YL) * COS(PH)

4150 RETURN

4200 REM Display menu screen

4210 SCREEN 0: WIDTH 80: COLOR 15, 1: CLS

4220 WHILE Q$ = "" OR INSTR("AEIX", Q$) = 0

4230 LOCATE 1, 27: PRINT "STRANGE ATTRACTOR PROGRAM"

4240 PRINT TAB(27); "IBM PC BASIC Version 2.0"

4250 PRINT TAB(27); "(c) 1993 by J. C. Sprott"

4260 PRINT : PRINT

4270 PRINT TAB(27); "A: Search for attractors"

4280 PRINT TAB(27); "C: Clear screen and restart"

4290 IF ODE% > 1 THEN PRINT TAB(27); "D: System is 4-D special map "; CHR$(87
+ ODE%); " ": GOTO 4320

4300 PRINT TAB(27); "D: System is"; STR$(D%); "-D polynomial ";

4310 IF ODE% = 1 THEN PRINT "ODE" ELSE PRINT "map"

504

4320 PRINT TAB(27); "E: Evaluate attractors"

4330 PRINT TAB(27); "H: Fourth dimension is ";

4340 IF FTH% = 0 THEN PRINT "projection"

4350 IF FTH% = 1 THEN PRINT "bands "

4360 IF FTH% = 2 THEN PRINT "colors "

4370 PRINT TAB(27); "I: Input code from keyboard"

4380 PRINT TAB(27); "N: Number of iterations is 10^";

4390 PRINT USING "#"; CINT(LOG(NMAX - 1000) / LOG(10))

4400 PRINT TAB(27); "P: Projection is ";

4410 IF PJT% = 0 THEN PRINT "planar "

4420 IF PJT% = 1 THEN PRINT "spherical"

4430 IF PJT% = 2 THEN PRINT "horiz cyl"

4440 IF PJT% = 3 THEN PRINT "vert cyl "

4450 IF PJT% = 4 THEN PRINT "toroidal "

4460 PRINT TAB(27); "R: Third dimension is ";

4470 IF TRD% = 0 THEN PRINT "projection"

4480 IF TRD% = 1 THEN PRINT "shadow "

4490 IF TRD% = 2 THEN PRINT "bands "

4500 IF TRD% = 3 THEN PRINT "colors "

4510 IF TRD% = 4 THEN PRINT "anaglyph "

4520 IF TRD% = 5 THEN PRINT "stereogram"

4530 IF TRD% = 6 THEN PRINT "slices "

4540 PRINT TAB(27); "S: Sound is ";

505

4550 IF SND% = 0 THEN PRINT "off"

4560 IF SND% = 1 THEN PRINT "on "

4570 PRINT TAB(27); "V: ";

4580 IF SAV% = 0 THEN PRINT "No data will be saved "

4590 IF SAV% > 0 THEN PRINT FAV$; " will be saved in "; FAV$; "DATA.DAT"

4600 PRINT TAB(27); "X: Exit program"

4610 Q$ = INKEY$

4620 IF Q$ <> "" THEN GOSUB 3600 'Respond to user command

4630 WEND

4640 RETURN

4700 REM Get dimension and order

4710 D% = 1 + INT((ASC(LEFT$(CODE$, 1)) - 65) / 4)

4720 IF D% > 6 THEN ODE% = ASC(LEFT$(CODE$, 1)) - 87: D% = 4: GOSUB 6200: GOTO
4770

4730 IF D% > 4 THEN D% = D% - 2: ODE% = 1 ELSE ODE% = 0

4740 O% = 2 + (ASC(LEFT$(CODE$, 1)) - 65) MOD 4

4750 M% = 1: FOR I% = 1 TO D%: M% = M% * (O% + I%): NEXT I%

4760 IF D% > 2 THEN FOR I% = 3 TO D%: M% = M% / (I% - 1): NEXT I%

4770 IF LEN(CODE$) = M% + 1 OR QM% <> 1 THEN GOTO 4810

4780 BEEP 'Illegal code warning

4790 WHILE LEN(CODE$) < M% + 1: CODE$ = CODE$ + "M": WEND

4800 IF LEN(CODE$) > M% + 1 THEN CODE$ = LEFT$(CODE$, M% + 1)

4810 RETURN

506

4900 REM Save attractor to disk file SA.DIC

4910 OPEN "SA.DIC" FOR APPEND AS #1

4920 PRINT #1, CODE$; : PRINT #1, USING "##.##"; F; L

4930 CLOSE #1

4940 RETURN

5000 REM Plot point on screen

5010 C4% = WH%

5020 IF D% < 4 THEN GOTO 5050

5030 IF FTH% = 1 THEN IF INT(30 * (W - WMIN) / (WMAX - WMIN)) MOD 2 THEN GOTO
5330

5040 IF FTH% = 2 THEN C4% = 1 + INT(NC% * (W - WMIN) / (WMAX - WMIN) + NC%)
MOD NC%

5050 IF D% < 3 THEN PSET (XP, YP): GOTO 5330 'Skip 3-D stuff

5060 IF TRD% = 0 THEN PSET (XP, YP), C4%

5070 IF TRD% <> 1 THEN GOTO 5130

5080 IF D% > 3 AND FTH% = 2 THEN PSET (XP, YP), C4%: GOTO 5110

5090 C% = POINT(XP, YP)

5100 IF C% = COLR%(2) THEN PSET (XP, YP), COLR%(3) ELSE IF C% <> COLR%(3) THEN
PSET (XP, YP), COLR%(2)

5110 XP = XP - XZ * (Z - ZMIN): YP = YP - YZ * (Z - ZMIN)

5120 IF POINT(XP, YP) = COLR%(1) THEN PSET (XP, YP), 0

5130 IF TRD% <> 2 THEN GOTO 5160

5140 IF D% > 3 AND FTH% = 2 AND (INT(15 * (Z - ZMIN) / (ZMAX - ZMIN) + 2) MOD

507

2) = 1 THEN PSET (XP, YP), C4%

5150 IF D% < 4 OR FTH% <> 2 THEN C% = COLR%(INT(60 * (Z - ZMIN) / (ZMAX - ZMIN)
+ 4) MOD 4): PSET (XP, YP), C%

5160 IF TRD% = 3 THEN PSET (XP, YP), COLR%(INT(NC% * (Z - ZMIN) / (ZMAX - ZMIN)
+ NC%) MOD NC%)

5170 IF TRD% <> 4 THEN GOTO 5240

5180 XRT = XP + XZ * (Z - ZA): C% = POINT(XRT, YP)

5190 IF C% = WH% THEN PSET (XRT, YP), RD%

5200 IF C% = CY% THEN PSET (XRT, YP), BK%

5210 XLT = XP - XZ * (Z - ZA): C% = POINT(XLT, YP)

5220 IF C% = WH% THEN PSET (XLT, YP), CY%

5230 IF C% = RD% THEN PSET (XLT, YP), BK%

5240 IF TRD% <> 5 THEN GOTO 5280

5250 HSF = 2 'Horizontal scale factor

5260 XRT = XA + (XP + XZ * (Z - ZA) - XL) / HSF: PSET (XRT, YP), C4%

5270 XLT = XA + (XP - XZ * (Z - ZA) - XH) / HSF: PSET (XLT, YP), C4%

5280 IF TRD% <> 6 THEN GOTO 5330

5290 DZ = (15 * (Z - ZMIN) / (ZMAX - ZMIN) + .5) / 16

5300 XP = (XP - XL + (INT(16 * DZ) MOD 4) * (XH - XL)) / 4 + XL

5310 YP = (YP - YL + (3 - INT(4 * DZ) MOD 4) * (YH - YL)) / 4 + YL

5320 PSET (XP, YP), C4%

5330 RETURN

5400 REM Plot background grid

508

5410 FOR I% = 0 TO 15 'Draw 15 vertical grid lines

5420 XP = XMIN + I% * (XMAX - XMIN) / 15

5430 LINE (XP, YMIN)-(XP, YMAX), 0

5440 NEXT I%

5450 FOR I% = 0 TO 10 'Draw 10 horizontal grid lines

5460 YP = YMIN + I% * (YMAX - YMIN) / 10

5470 LINE (XMIN, YP)-(XMAX, YP), 0

5480 NEXT I%

5490 RETURN

5600 REM Set colors

5610 NC% = 15 'Number of colors

5620 COLR%(0) = 0: COLR%(1) = 8: COLR%(2) = 7: COLR%(3) = 15

5630 IF TRD% = 3 OR (D% > 3 AND FTH% = 2 AND TRD% <> 1) THEN FOR I% = 0 TO NC%:
COLR%(I%) = I% + 1: NEXT I%

5640 WH% = 15: BK% = 8: RD% = 12: CY% = 11

5650 IF SM% > 2 THEN GOTO 5720 'Not in CGA mode

5660 WID% = 80: IF D% < 3 THEN SCREEN 2: GOTO 5720

5670 IF (TRD% = 0 OR TRD% > 4) AND (D% = 3 OR FTH% <> 2) THEN SCREEN 2: GOTO
5720

5680 WID% = 40: SCREEN 1

5690 COLR%(0) = 0: COLR%(1) = 2: COLR%(2) = 1: COLR%(3) = 3

5700 WH% = 3: BK% = 0: RD% = 2: CY% = 1

5710 FOR I% = 4 TO NC%: COLR%(I%) = COLR%(I% MOD 4 + 1): NEXT I%

509

5720 RETURN

5800 REM Process evaluation command

5810 IF Q$ = " " THEN T% = 2: NE = NE + 1: CLS

5820 IF Q$ = CHR$(13) THEN T% = 2: NE = NE + 1: CLS : GOSUB 5900

5830 IF Q$ = CHR$(27) THEN CLS : GOSUB 6000: Q$ = " ": QM% = 0: GOTO 5850

5840 IF Q$ <> CHR$(27) AND INSTR("CHNPRVS", Q$) = 0 THEN Q$ = ""

5850 RETURN

5900 REM Save favorite attractors to disk file FAVORITE.DIC

5910 OPEN "FAVORITE.DIC" FOR APPEND AS #2

5920 PRINT #2, CODE$

5930 CLOSE #2

5940 RETURN

6000 REM Update SA.DIC file

6010 LOCATE 11, 9: PRINT "Evaluation complete"

6020 LOCATE 12, 8: PRINT NE; "cases evaluated"

6030 OPEN "SATEMP.DIC" FOR OUTPUT AS #2

6040 IF QM% = 2 THEN PRINT #2, CODE$

6050 WHILE NOT EOF(1): LINE INPUT #1, CODE$: PRINT #2, CODE$: WEND

6060 CLOSE

6070 KILL "SA.DIC"

510

6080 NAME "SATEMP.DIC" AS "SA.DIC"

6090 RETURN

6200 REM Special function definitions

6210 ZNEW = X * X + Y * Y 'Default 3rd and 4th dimension

6220 WNEW = (N - 100) / 900: IF N > 1000 THEN WNEW = (N - 1000) / (NMAX - 1000)

6230 IF ODE% <> 2 THEN GOTO 6270

6240 M% = 10

6250 XNEW = A(1) + A(2) * X + A(3) * Y + A(4) * ABS(X) + A(5) * ABS(Y)

6260 YNEW = A(6) + A(7) * X + A(8) * Y + A(9) * ABS(X) + A(10) * ABS(Y)

6270 IF ODE% <> 3 THEN GOTO 6310

6280 M% = 14

6290 XNEW = A(1) + A(2) * X + A(3) * Y + (CINT(A(4) * X) AND CINT(A(5) * Y))
+ (CINT(A(6) * X) OR CINT(A(7) * Y))

6300 YNEW = A(8) + A(9) * X + A(10) * Y + (CINT(A(11) * X) AND CINT(A(12) *
Y)) + (CINT(A(13) * X) OR CINT(A(14) * Y))

6310 IF ODE% <> 4 THEN GOTO 6350

6320 M% = 14

6330 XNEW = A(1) + A(2) * X + A(3) * Y + A(4) * ABS(X) ^ A(5) + A(6) * ABS(Y)
^ A(7)

6340 YNEW = A(8) + A(9) * X + A(10) * Y + A(11) * ABS(X) ̂ A(12) + A(13) * ABS(Y)
^ A(14)

6350 IF ODE% <> 5 THEN GOTO 6390

6360 M% = 18

6370 XNEW = A(1) + A(2) * X + A(3) * Y + A(4) * SIN(A(5) * X + A(6)) + A(7)
* SIN(A(8) * Y + A(9))

511

6380 YNEW = A(10) + A(11) * X + A(12) * Y + A(13) * SIN(A(14) * X + A(15)) +
A(16) * SIN(A(17) * Y + A(18))

6390 IF ODE% <> 6 THEN GOTO 6450

6400 M% = 6

6410 IF N < 2 THEN AL = TWOPI / (13 + 10 * A(6)): SINAL = SIN(AL): COSAL = COS(AL)

6420 DUM = X + A(2) * SIN(A(3) * Y + A(4))

6430 XNEW = 10 * A(1) + DUM * COSAL + Y * SINAL

6440 YNEW = 10 * A(5) - DUM * SINAL + Y * COSAL

6450 IF ODE% <> 7 THEN GOTO 6500

6460 M% = 9

6470 XNEW = X + EPS * A(1) * Y

6480 YNEW = Y + EPS * (A(2) * X + A(3) * X * X * X + A(4) * X * X * Y + A(5)
* X * Y * Y + A(6) * Y + A(7) * Y * Y * Y + A(8) * SIN(Z))

6490 ZNEW = Z + EPS * (A(9) + 1.3): IF ZNEW > TWOPI THEN ZNEW = ZNEW - TWOPI

6500 RETURN

6600 REM Find legal graphics mode

6610 SM% = SM% - 1

6620 IF SM% = 0 THEN PRINT "This program requires a graphics monitor": STOP

6630 RESUME

6700 REM Project onto a horizontal cylinder

6710 PH = PT * (YMAX - YP)

6720 YP = YA + .5 * (YH - YL) * COS(PH)

512

6730 RETURN

6800 REM Project onto a vertical cylinder

6810 TH = TT * (XMAX - XP)

6820 XP = XA + .5 * (XH - XL) * COS(TH)

6830 RETURN

6900 REM Project onto a torus (unity aspect ratio)

6910 TH = TT * (XMAX - XP)

6920 PH = 2 * PT * (YMAX - YP)

6930 XP = XA + .18 * (XH - XL) * (1 + COS(TH)) * SIN(PH)

6940 YP = YA + .25 * (YH - YL) * (1 + COS(TH)) * COS(PH)

6950 RETURN

7000 REM Save data

7010 IF N = 1001 THEN CLOSE #3: OPEN FAV$ + "DATA.DAT" FOR OUTPUT AS #3

7020 IF SAV% = 1 THEN DUM = XNEW

7030 IF SAV% = 2 THEN DUM = YNEW

7040 IF SAV% = 3 THEN DUM = ZNEW

7050 IF SAV% = 4 THEN DUM = WNEW

7060 PRINT #3, CSNG(DUM)

7070 RETURN

513

Appendix C
Other Computers and BASIC Versions

Here are some considerations for using the programs with non-IBM-compatible
computers and with different dialects of BASIC.

BASICA and GW-BASIC

These old versions of BASIC are mostly compatible with the program listings
in this book. They do not support VGA graphics, and the older versions don’t even
support EGA. Thus you may have to change SM% = 12 in line 1030 to a lower number.
PROG28.BAS automatically selects an appropriate graphics mode.

These versions of BASIC do not support strings longer than 255 characters. The
easiest way to circumvent this problem is to limit the four-dimensional searches to
cubic polynomials. Adding the following line to the program after line 2680
accomplishes this:

2685 IF M% > 253 THEN GOTO 2650

Turbo BASIC and PowerBASIC

The program listings in this book are compatible with Turbo BASIC and
PowerBASIC, except for a quirk with the CIRCLE command with VGA graphics that
requires the following change in line 3320:

3320 IF PJT% = 1 AND TRD% < 5 THEN IF SM% < 11 THEN CIRCLE (XA, YA), .36 * (XH
- XL) ELSE CIRCLE (XA, YA), .5 * (YH - YL)

514

VisualBASIC for MS-DOS

The programs as listed compile and run directly under VisualBASIC for MS-
DOS. This version of BASIC makes it easy for you to add pull-down menus, dialog
boxes, and mouse support to give the user interface a more modern look and feel.

VisualBASIC for Windows

One way to convert the programs to run as Microsoft Windows applications
is to use the utility TRNSLATE.EXE supplied with VisualBASIC for MS-DOS to translate
the programs into VisualBASIC for Windows. Many program differences must be
resolved, however.

A VisualBASIC for Windows version of the listing PROG06 but without the
keyboard strobe and sound capabilities is given in PROG06VB.BAS. VisualBASIC for
Windows 2.0 does not support the SOUND statement or INKEY$ function, although
these capabilities and many others are available through internal Windows drivers.
You can use this listing as a starting point for converting the other programs in this
book for use with Microsoft Windows. The accompanying disk contains a compiled
version of this program in the file SAWIN.EXE. To run this program under Windows 3.0
or later, the VBRUN200.DLL run-time dynamic link library that comes with VisualBASIC
version 2.00, which is included on the accompanying disk, must be in a directory in
your search path.

PROG06VB.BAS. VisualBASIC for Windows version of PROG06

VERSION 2.00

Begin Form PROG06VB

 Caption = "Strange Attractors"

 Height = 4620

 Left = 828

 LinkTopic = "Form1"

 ScaleHeight = 4200

515

 ScaleWidth = 6420

 Top = 1128

 Width = 6516

End

DefDbl A-Z

Sub Form_Activate ()

1000 Rem TWO-D MAP SEARCH VisualBASIC Ver 1.0 (c) 1993 by J. C. Sprott

1020 ReDim XS(499), A(504), V(99)

1040 PREV% = 5 ‘Plot versus fifth previous iterate

1050 NMAX = 11000 ‘Maximum number of iterations

1060 OMAX% = 2 ‘Maximum order of polynomial

1070 D% = 2 ‘Dimension of system

1160 Randomize Timer ‘Reseed random-number generator

1190 GoSub 1300 ‘Initialize

1200 GoSub 1500 ‘Set parameters

1210 GoSub 1700 ‘Iterate equations

1220 GoSub 2100 ‘Display results

1230 GoSub 2400 ‘Test results

1240 On T% GoTo 1190, 1200, 1210

1250 Cls

1260 End

516

1300 Rem Initialize

1320 Cls: Msg$ = "Searching..."

1350 CurrentX = (ScaleWidth - TextWidth(Msg$)) / 2

1360 CurrentY = (ScaleHeight - TextHeight(Msg$)) / 2

1370 Print Msg$

1420 Return

1500 Rem Set parameters

1510 X = .05 ‘Initial condition

1520 Y = .05

1550 XE = X + .000001: YE = Y

1560 GoSub 2600 ‘Get coefficients

1570 T% = 3

1580 P% = 0: LSUM = 0: N = 0: NL = 0

1590 XMIN = 1000000!: XMAX = -XMIN: YMIN = XMIN: YMAX = XMAX

1630 Return

1700 Rem Iterate equations

1720 XNEW = A(1) + X * (A(2) + A(3) * X + A(4) * Y)

1730 XNEW = XNEW + Y * (A(5) + A(6) * Y)

1830 YNEW = A(7) + X * (A(8) + A(9) * X + A(10) * Y)

1930 YNEW = YNEW + Y * (A(11) + A(12) * Y)

517

2020 N = N + 1

2030 Return

2100 Rem Display results

2110 If N < 100 Or N > 1000 Then GoTo 2200

2120 If X < XMIN Then XMIN = X

2130 If X > XMAX Then XMAX = X

2140 If Y < YMIN Then YMIN = Y

2150 If Y > YMAX Then YMAX = Y

2200 If N = 1000 Then GoSub 3100 ‘Resize the screen

2210 XS(P%) = X

2220 P% = (P% + 1) Mod 500

2230 I% = (P% + 500 - PREV%) Mod 500

2240 If D% = 1 Then XP = XS(I%): YP = XNEW Else XP = X: YP = Y

2250 If N < 1000 Or XP <= XL Or XP >= XH Or YP <= YL Or YP >= YH Then GoTo 2320

2300 PSet (XP, YP) ‘Plot point on screen

2320 Return

2400 Rem Test results

2410 If Abs(XNEW) + Abs(YNEW) > 1000000! Then T% = 2 ‘Unbounded

2430 GoSub 2900 ‘Calculate Lyapunov exponent

2460 If N >= NMAX Then T% = 2 ‘Strange attractor found

2470 If Abs(XNEW - X) + Abs(YNEW - Y) < .000001 Then T% = 2

518

2480 If N > 100 And L < .005 Then T% = 2 ‘Limit cycle

2490 DoEvents ‘Respond to user command

2510 X = XNEW ‘Update value of X

2520 Y = YNEW

2550 Return

2600 Rem Get coefficients

2650 O% = 2 + Int((OMAX% - 1) * Rnd)

2660 CODE$ = Chr$(59 + 4 * D% + O%)

2680 M% = 1: For I% = 1 To D%: M% = M% * (O% + I%): Next I%

2690 For I% = 1 To M% ‘Construct CODE$

2700 GoSub 2800 ‘Shuffle random numbers

2710 CODE$ = CODE$ + Chr$(65 + Int(25 * RAN))

2720 Next I%

2730 For I% = 1 To M% ‘Convert CODE$ to coefficient values

2740 A(I%) = (Asc(Mid$(CODE$, I% + 1, 1)) - 77) / 10

2750 Next I%

2760 Return

2800 Rem Shuffle random numbers

2810 If V(0) = 0 Then For J% = 0 To 99: V(J%) = Rnd: Next J%

2820 J% = Int(100 * RAN)

2830 RAN = V(J%)

519

2840 V(J%) = Rnd

2850 Return

2900 Rem Calculate Lyapunov exponent

2910 XSAVE = XNEW: YSAVE = YNEW: X = XE: Y = YE: N = N - 1

2930 GoSub 1700 ‘Reiterate equations

2940 DLX = XNEW - XSAVE: DLY = YNEW - YSAVE

2960 DL2 = DLX * DLX + DLY * DLY

2970 If CSng(DL2) <= 0 Then GoTo 3070 ‘Don’t divide by zero

2980 DF = 1000000000000# * DL2

2990 RS = 1 / Sqr(DF)

3000 XE = XSAVE + RS * (XNEW - XSAVE): YE = YSAVE + RS * (YNEW - YSAVE)

3020 XNEW = XSAVE: YNEW = YSAVE

3030 If DF > 0 Then LSUM = LSUM + Log(DF): NL = NL + 1

3040 L = .721347 * LSUM / NL

3070 Return

3100 Rem Resize the screen

3110 If D% = 1 Then YMIN = XMIN: YMAX = XMAX

3120 If XMAX - XMIN < .000001 Then XMIN = XMIN - .0000005: XMAX = XMAX + .0000005

3130 If YMAX - YMIN < .000001 Then YMIN = YMIN - .0000005: YMAX = YMAX + .0000005

3160 MX = .1 * (XMAX - XMIN): MY = .1 * (YMAX - YMIN)

3170 XL = XMIN - MX: XH = XMAX + MX: YL = YMIN - MY: YH = YMAX + MY

520

3180 Scale (XL, YL)-(XH, YH): Cls

3460 Return

End Sub

QuickBASIC for Apple Macintosh Systems

If you want to run the programs on an Apple Macintosh, the easiest way is to
use the Macintosh version of QuickBASIC. Unfortunately, this BASIC (at least in
version 1.0) is not very compatible with any of the IBM BASICs. Also, it lacks many
important and useful commands, although most of the missing features (such as
color) are available through BASIC calls to the Macintosh Toolbox. An alternate
though probably equally difficult approach is to convert the C source listing in
Appendix D for use with one of the C compilers available for the Macintosh.

The QuickBASIC for Macintosh version of the programs typically executes
more slowly than those compiled with the IBM version of QuickBASIC. For example,
the program used to produce the data in Table 2-2 finds about 106 attractors per
hour when compiled with the Macintosh version of QuickBASIC and run on a 25 MHz
Macintosh IIci with a floating-point coprocessor and only 14 per hour when using the
QuickBASIC interpreter on the same computer.

To get you started, the listing PROG06QB.MAC is a QuickBASIC for Macintosh
version of PROG06. You can use it as a starting point for converting the other
programs in this book for use on the Macintosh. You can use the Apple File
Exchange utility to transfer PROG06QB.MAC on the accompanying disk to a
Macintosh with a high density (1.4-MB) disk drive.

PROG06QB.MAC. Macintosh QuickBASIC version of PROG06

1000 REM TWO-D MAP SEARCH Macintosh QuickBASIC Ver 1.0 (c) 1993 by J. C. Sprott

1010 DEFDBL A-Z ‘Use double precision

1020 DIM XS(499), A(504), V(99)

521

1040 PREV% = 5 ‘Plot versus fifth previous iterate

1050 NMAX = 11000 ‘Maximum number of iterations

1060 OMAX% = 2 ‘Maximum order of polynomial

1070 D% = 2 ‘Dimension of system

1100 SND% = 0 ‘Turn sound off

1160 RANDOMIZE TIMER ‘Reseed random-number generator

1190 GOSUB 1300 ‘Initialize

1200 GOSUB 1500 ‘Set parameters

1210 GOSUB 1700 ‘Iterate equations

1220 GOSUB 2100 ‘Display results

1230 GOSUB 2400 ‘Test results

1240 ON T% GOTO 1190, 1200, 1210

1250 CLS

1260 END

1300 REM Initialize

1320 WINDOW 1, "Strange Attractors", (0, 36)-(SYSTEM(5), SYSTEM(6)), 1

1350 MENU 2, 0, 1, "Options": MENU 2, 1, SND% + 1, "Sound"

1360 WW = WINDOW(2) / 2: WH = WINDOW(3) / 2: CLS

1370 BUTTON 1, 1, "Searching...", (WW - 45, WH - 10) - (WW + 45, WH + 10)

1420 RETURN

1500 REM Set parameters

522

1510 X = .05 ‘Initial condition

1520 Y = .05

1550 XE = X + .000001: YE = Y

1560 GOSUB 2600 ‘Get coefficients

1570 T% = 3

1580 P% = 0: LSUM = 0: N = 0: NL = 0

1590 XMIN = 1000000!: XMAX = -XMIN: YMIN = XMIN: YMAX = XMAX

1630 RETURN

1700 REM Iterate equations

1720 XNEW = A(1) + X * (A(2) + A(3) * X + A(4) * Y)

1730 XNEW = XNEW + Y * (A(5) + A(6) * Y)

1830 YNEW = A(7) + X * (A(8) + A(9) * X + A(10) * Y)

1930 YNEW = YNEW + Y * (A(11) + A(12) * Y)

2020 N = N + 1

2030 RETURN

2100 REM Display results

2110 IF N < 100 OR N > 1000 THEN GOTO 2200

2120 IF X < XMIN THEN XMIN = X

2130 IF X > XMAX THEN XMAX = X

2140 IF Y < YMIN THEN YMIN = Y

2150 IF Y > YMAX THEN YMAX = Y

523

2200 IF N = 1000 THEN GOSUB 3100 ‘Resize the screen

2210 XS(P%) = X

2220 P% = (P% + 1) MOD 500

2230 I% = (P% + 500 - PREV%) MOD 500

2240 IF D% = 1 THEN XP = XS(I%): YP = XNEW ELSE XP = X: YP = Y

2250 IF N < 1000 OR XP <= XL OR XP >= XH OR YP <= YL OR YP >= YH THEN GOTO 2320

2300 PSET (WW * (XP - XL) / (XH - XL), WH * (YH - YP) / (YH - YL))

2310 IF SND% = 1 THEN GOSUB 3500 ‘Produce sound

2320 RETURN

2400 REM Test results

2410 IF ABS(XNEW) + ABS(YNEW) > 1000000! THEN T% = 2 ‘Unbounded

2430 GOSUB 2900 ‘Calculate Lyapunov exponent

2460 IF N >= NMAX THEN T% = 2 ‘Strange attractor found

2470 IF ABS(XNEW - X) + ABS(YNEW - Y) < .000001 THEN T% = 2

2480 IF N > 100 AND L < .005 THEN T% = 2 ‘Limit cycle

2490 Q$ = INKEY$: IF LEN(Q$) THEN GOSUB 3600 ‘Respond to user command

2500 IF MENU(0) = 2 AND MENU(1) = 1 THEN Q$ = "S": GOSUB 3600

2510 X = XNEW ‘Update value of X

2520 Y = YNEW

2550 RETURN

2600 REM Get coefficients

524

2650 O% = 2 + INT((OMAX% - 1) * RND)

2660 CODE$ = CHR$(59 + 4 * D% + O%)

2680 M% = 1: FOR I% = 1 TO D%: M% = M% * (O% + I%): NEXT I%

2690 FOR I% = 1 TO M% ‘Construct CODE$

2700 GOSUB 2800 ‘Shuffle random numbers

2710 CODE$ = CODE$ + CHR$(65 + INT(25 * RAN))

2720 NEXT I%

2730 FOR I% = 1 TO M% ‘Convert CODE$ to coefficient values

2740 A(I%) = (ASC(MID$(CODE$, I% + 1, 1)) - 77) / 10

2750 NEXT I%

2760 RETURN

2800 REM Shuffle random numbers

2810 IF V(0) = 0 THEN FOR J% = 0 TO 99: V(J%) = RND: NEXT J%

2820 J% = INT(100 * RAN)

2830 RAN = V(J%)

2840 V(J%) = RND

2850 RETURN

2900 REM Calculate Lyapunov exponent

2910 XSAVE = XNEW: YSAVE = YNEW: X = XE: Y = YE: N = N - 1

2930 GOSUB 1700 ‘Reiterate equations

2940 DLX = XNEW - XSAVE: DLY = YNEW - YSAVE

525

2960 DL2 = DLX * DLX + DLY * DLY

2970 IF CSNG(DL2) <= 0 THEN GOTO 3070 ‘Don’t divide by zero

2980 DF = 1000000000000# * DL2

2990 RS = 1 / SQR(DF)

3000 XE = XSAVE + RS * (XNEW - XSAVE): YE = YSAVE + RS * (YNEW - YSAVE)

3020 XNEW = XSAVE: YNEW = YSAVE

3030 IF DF > 0 THEN LSUM = LSUM + LOG(DF): NL = NL + 1

3040 L = .721347 * LSUM / NL

3070 RETURN

3100 REM Resize the screen

3110 IF D% = 1 THEN YMIN = XMIN: YMAX = XMAX

3120 IF XMAX - XMIN < .000001 THEN XMIN = XMIN - .0000005: XMAX = XMAX + .0000005

3130 IF YMAX - YMIN < .000001 THEN YMIN = YMIN - .0000005: YMAX = YMAX + .0000005

3160 MX = .1 * (XMAX - XMIN): MY = .1 * (YMAX - YMIN)

3170 XL = XMIN - MX: XH = XMAX + MX: YL = YMIN - MY: YH = YMAX + MY

3180 WW = WINDOW(2): WH = WINDOW(3): BUTTON CLOSE 0: CLS

3460 RETURN

3500 REM Produce sound

3510 FREQ% = 220 * 2 ^ (CINT(36 * (XNEW - XL) / (XH - XL)) / 12)

3520 DUR = 1

3540 SOUND FREQ%, DUR: IF PLAY(0) THEN PLAY "MF"

526

3550 RETURN

3600 REM Respond to user command

3610 T% = 0

3630 IF ASC(Q$) > 96 THEN Q$ = CHR$(ASC(Q$) - 32)

3770 IF Q$ = "S" THEN SND% = (SND% + 1) MOD 2: T% = 3: MENU 2, 1, SND% + 1, "Sound"

3800 RETURN

527

Appenix D
C Program Listing

This appendix contains a translation of the BASIC program PROG28.BAS (Appendix
B) into the C language. The C language is preferred by many programmers
because of its efficiency, economy, and portability. However, the language is
relatively sparse and relies on machine-specific, run-time libraries for most input and
output. Although there is a C standard (ANSI C), many necessary extensions are
incorporated into various C compilers. These extensions also differ from one
platform to another.

The listing here should compile and run without modification under Microsoft
QuickC version 2.5 on the IBM PC-compatible platform. Some changes are re-
quired to run under other versions of C. The disk included with this book contains the
Microsoft QuickC source listing in a file named PROG28QC.C and a version
PROG28TC.CPP that should compile and run with Borland Turbo C++ version 3.0. The
programs compile using the small memory model with either compiler. However,
you will probably find that the C versions run at about the same speed as the
Microsoft QuickBASIC or VisualBASIC for MS-DOS version, and somewhat slower
than the PowerBASIC version.

The C versions of the program are fairly literal translations of the BASIC version.
All variables are global and retain the same names as in the BASIC version. The
BASIC subroutines have been converted into C functions whose names correspond
to the BASIC line numbers. No variables are passed to or from any of the functions.
The level of indentation is minimal. The program assumes the computer has VGA
color graphics. PROG28QC.C should compile to a fully functional program, except
for the fact that QuickC lacks a sound function.

 PROG28QC.C. Microsoft QuickC version of PROG28.BAS

/* STRANGE ATTRACTOR PROGRAM QuickC Ver 2.0 (c) 1993 by J. C. Sprott */

#include <dos.h>

#include <stdio.h>

528

#include <graph.h>

#include <math.h>

int PREV, OMAX, D, ODE, SND, PJT, TRD, FTH, SAV, T, WID, QM, P, TWOD;

int M, I, I1, I2, O, I3, I4, I5, J, WH, FREQ, C4, NC, C, RD, CY, BK;

int COLR[16];

char CODE[515], Q;

char FAV[9] = "XDATA.DAT";

double NMAX, EPS, TWOPI, SEG, NE, X, Y, Z, W, XE, YE, ZE, WE, LSUM, N, NL;

double N1, N2, XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX, WMIN, WMAX, XNEW, YNEW;

double ZNEW, WNEW, XP, YP, RAN, XSAVE, YSAVE, ZSAVE, WSAVE, DLX, DLY, DLZ;

double DLW, DL2, DF, RS, L, MX, MY, XL, XH, YL, YH, XA, YA, ZA, TT, PT, TIA;

double XZ, YZ, DUR, D2MAX, DX, DY, DZ, DW, D2, F, TH, PH, XRT, XLT, HSF, AL;

double SINAL, COSAL, DUM, SW, SH;

double XS[500], YS[500], ZS[500], WS[500], A[505], V[100], XY[5], XN[5];

union REGS regs;

FILE *F1, *F2, *F3;

main()

529

{

PREV = 5; /* Plot versus fifth previous iterate */

NMAX = 11000; /* Maximum number of iterations */

OMAX = 5; /* Maximum order of polynomial */

D = 2; /* Dimension of system */

EPS = .1; /* Step size for ODE */

ODE = 0; /* System is map */

SND = 0; /* Turn sound off */

PJT = 0; /* Projection is planar */

TRD = 1; /* Display third dimension as shadow */

FTH = 2; /* Display fourth dimension as colors */

SAV = 0; /* Don’t save any data */

TWOPI = 6.28318530717959; /* A useful constant (2 pi) */

srand(time()); /* Reseed random-number generator */

fun4200(); /* Display menu screen */

T = 1;

if (Q == ‘X’) T = 0; /* Exit immediately on command */

while (T) {

 switch (T) {

 case 1: fun1300(); /* Initialize */

 case 2: fun1500(); /* Set parameters */

 case 3: fun1700(); /* Iterate equations */

 case 4: fun2100(); /* Display results */

530

 case 5: fun2400(); /* Test results */

 }

}

_clearscreen(_GCLEARSCREEN); /* Erase screen */

_setvideomode(_DEFAULTMODE); /* and restore video mode */

}

fun1300() /* Initialize */

{

_setvideomode(_VRES16COLOR); /* Assume VGA graphics */

WID = 80; /* Number of text columns */

_clearscreen(_GCLEARSCREEN);

_settextposition(13, WID / 2 - 6);

printf("Searching...");

fun5600(); /* Set colors */

if (QM == 2) {

 NE = 0;

 fclose(F1);

 F1 = fopen("SA.DIC", "a");

 fclose(F1);

 F1 = fopen("SA.DIC", "r");

}

}

531

fun1500() /* Set parameters */

{

X = .05; /* Initial condition */

Y = .05;

Z = .05;

W = .05;

XE = X + .000001;

YE = Y;

ZE = Z;

WE = W;

fun2600(); /* Get coefficients */

T = 3;

P = 0;

LSUM = 0;

N = 0;

NL = 0;

N1 = 0;

N2 = 0;

XMIN = 1000000;

XMAX = -XMIN;

YMIN = XMIN;

YMAX = XMAX;

532

ZMIN = XMIN;

ZMAX = XMAX;

WMIN = XMIN;

WMAX = XMAX;

TWOD = _rotl(1, D);

}

fun1700() /* Iterate equations */

{

if (ODE > 1)

 fun6200(); /* Special function */

else {

 M = 1;

 XY[1] = X;

 XY[2] = Y;

 XY[3] = Z;

 XY[4] = W;

 for (I = 1; I <= D; I++) {

 XN[I] = A[M];

 M = M + 1;

 for (I1 = 1; I1 <= D; I1++) {

 XN[I] = XN[I] + A[M] * XY[I1];

 M = M + 1;

533

 for (I2 = I1; I2 <= D; I2++) {

 XN[I] = XN[I] + A[M] * XY[I1] * XY[I2];

 M = M + 1;

 for (I3 = I2; O > 2 && I3 <= D; I3++) {

 XN[I] = XN[I] + A[M] * XY[I1] * XY[I2] * XY[I3];

 M = M + 1;

 for (I4 = I3; O > 3 && I4 <= D; I4++) {

 XN[I] = XN[I] + A[M] * XY[I1] * XY[I2] * XY[I3] * XY[I4];

 M = M + 1;

 for (I5 = I4; O > 4 && I5 <= D; I5++) {

 XN[I] = XN[I] + A[M] * XY[I1] * XY[I2] * XY[I3] * XY[I4] * XY[I5];

 M = M + 1;

 }}}}}

 if (ODE == 1) XN[I] = XY[I] + EPS * XN[I];

 }

 XNEW = XN[1];

 YNEW = XN[2];

 ZNEW = XN[3];

 WNEW = XN[4];

}

N = N + 1;

M = M - 1;

}

534

fun2100() /* Display results */

{

if (N >= 100 && N <= 1000) {

 if (X < XMIN) XMIN = X;

 if (X > XMAX) XMAX = X;

 if (Y < YMIN) YMIN = Y;

 if (Y > YMAX) YMAX = Y;

 if (Z < ZMIN) ZMIN = Z;

 if (Z > ZMAX) ZMAX = Z;

 if (W < WMIN) WMIN = W;

 if (W > WMAX) WMAX = W;

}

if ((int)N == 1000) fun3100(); /* Resize the screen */

XS[P] = X;

YS[P] = Y;

ZS[P] = Z;

WS[P] = W;

P = (P + 1) % 500;

I = (P + 500 - PREV) % 500;

if (D == 1) {

 XP = XS[I];

 YP = XNEW;

535

}

else {

XP = X;

YP = Y;

}

if (N >= 1000 && XP > XL && XP < XH && YP > YL && YP < YH) {

 if (PJT == 1) fun4100(); /* Project onto a sphere */

 if (PJT == 2) fun6700(); /* Project onto a horizontal cylinder */

 if (PJT == 3) fun6800(); /* Project onto a vertical cylinder */

 if (PJT == 4) fun6900(); /* Project onto a torus */

 fun5000(); /* Plot point on screen */

 if (SND == 1) fun3500(); /* Produce sound */

}

}

fun2400() /* Test results */

{

if (fabs(XNEW) + fabs(YNEW) + fabs(ZNEW) + fabs(WNEW) > 1000000) T = 2;

if (QM != 2) { /* Speed up evaluation mode */

 fun2900(); /* Calculate Lyapunov exponent */

 fun3900(); /* Calculate fractal dimension */

 if (QM == 0) { /* Skip tests unless in search mode */

 if (N >= NMAX) { /* Strange attractor found */

536

 T = 2;

 fun4900(); /* Save attractor to disk file SA.DIC */

 }

 if (fabs(XNEW - X) + fabs(YNEW - Y) + fabs(ZNEW - Z) + fabs(WNEW - W) <
.000001) T = 2;

 if (N > 100 && L < .005) T = 2; /* Limit cycle */

 }

}

if (kbhit()) Q = getch(); else Q = 0;

if (Q) fun3600(); /* Respond to user command */

if (SAV > 0) if (N > 1000 && N < 17001) fun7000(); /* Save data */

X = XNEW; /* Update value of X */

Y = YNEW;

Z = ZNEW;

W = WNEW;

}

fun2600() /* Get coefficients */

{

if (QM == 2) { /* In evaluate mode */

 fgets(CODE, 515, F1);

 if (feof(F1)) {

 QM = 0;

 fun6000(); /* Update SA.DIC file */

537

 }

 else {

 fun4700(); /* Get dimension and order */

 fun5600(); /* Set colors */

 }

}

if (QM == 0) { /* In search mode */

 O = 2 + (int)floor((OMAX - 1) * (float)rand() / 32768.0);

 CODE[0] = 59 + 4 * D + O + 8 * ODE;

 if (ODE > 1) CODE[0] = 87 + ODE;

 fun4700(); /* Get value of M */

 for (I = 1; I <= M; I++) { /* Construct CODE */

 fun2800(); /* Shuffle random numbers */

 CODE[I] = 65 + (int)floor(25 * RAN);

 }

 CODE[M + 1] = 0;

}

for (I = 1; I <= M; I++) { /* Convert CODE to coefficient values */

 A[I] = (CODE[I] - 77) / 10.0;

}

}

fun2800() /* Shuffle random numbers */

538

{

if (V[0] == 0) for (J = 0; J <= 99; J++) {V[J] = (float)rand() / 32768.0;}

J = (int)floor(100 * RAN);

RAN = V[J];

V[J] = (float)rand() / 32768.0;

}

fun2900() /* Calculate Lyapunov exponent */

{

XSAVE = XNEW;

YSAVE = YNEW;

ZSAVE = ZNEW;

WSAVE = WNEW;

X = XE;

Y = YE;

Z = ZE;

W = WE;

N = N - 1;

fun1700(); /* Reiterate equations */

DLX = XNEW - XSAVE;

DLY = YNEW - YSAVE;

DLZ = ZNEW - ZSAVE;

DLW = WNEW - WSAVE;

539

DL2 = DLX * DLX + DLY * DLY + DLZ * DLZ + DLW * DLW;

if (DL2 > 0) { /* Check for division by zero */

 DF = 1E12 * DL2;

 RS = 1 / sqrt(DF);

 XE = XSAVE + RS * (XNEW - XSAVE);

 YE = YSAVE + RS * (YNEW - YSAVE);

 ZE = ZSAVE + RS * (ZNEW - ZSAVE);

 WE = WSAVE + RS * (WNEW - WSAVE);

 XNEW = XSAVE;

 YNEW = YSAVE;

 ZNEW = ZSAVE;

 WNEW = WSAVE;

 LSUM = LSUM + log(DF);

 NL = NL + 1;

 L = .721347 * LSUM / NL;

 if (ODE == 1 || ODE == 7) L = L / EPS;

 if (N > 1000 && (int)N % 10 == 0) {

 _settextposition(1, WID - 4);

 printf("%5.2f", L);

 }

}

}

540

fun3100() /* Resize the screen */

{

_setcolor(WH);

if (D == 1) {

 YMIN = XMIN;

 YMAX = XMAX;

}

if (XMAX - XMIN < .000001) {

 XMIN = XMIN - .0000005;

 XMAX = XMAX + .0000005;

}

if (YMAX - YMIN < .000001) {

 YMIN = YMIN - .0000005;

 YMAX = YMAX + .0000005;

}

if (ZMAX - ZMIN < .000001) {

 ZMIN = ZMIN - .0000005;

 ZMAX = ZMAX + .0000005;

}

if (WMAX - WMIN < .000001) {

 WMIN = WMIN - .0000005;

 WMAX = WMAX + .0000005;

}

541

MX = .1 * (XMAX - XMIN);

MY = .1 * (YMAX - YMIN);

XL = XMIN - MX;

XH = XMAX + MX;

YL = YMIN - MY;

YH = YMAX + 1.5 * MY;

SW = 640 / (XH - XL);

SH = 480 / (YL - YH);

_setvieworg((short)(-SW * XL), (short)(-SH * YH));

_clearscreen(_GCLEARSCREEN);

YH = YH - .5 * MY;

XA = (XL + XH) / 2;

YA = (YL + YH) / 2;

if (D > 2) {

 ZA = (ZMAX + ZMIN) / 2;

 if (TRD == 1) {

 _setcolor(COLR[1]);

 _rectangle_w(_GFILLINTERIOR, SW * XL, SH * YL, SW * XH, SH * YH);

 fun5400(); /* Plot background grid */

 }

 if (TRD == 4) {

 _setcolor(WH);

 _rectangle_w(_GFILLINTERIOR, SW * XL, SH * YL, SW * XH, SH * YH);

542

 }

 if (TRD == 5) {

 _moveto_w(SW * XA, SH * YL);

 _lineto_w(SW * XA, SH * YH);

 }

 if (TRD == 6) {

 for (I = 1; I <= 3; I++) {

 XP = XL + I * (XH - XL) / 4;

 _moveto_w(SW * XP, SH * YL);

 _lineto_w(SW * XP, SH * YH);

 YP = YL + I * (YH - YL) / 4;

 _moveto_w(SW * XL, SH * YP);

 _lineto_w(SW * XH, SH * YP);

 }

 }

}

if (PJT != 1) _rectangle_w(_GBORDER, SW * XL + 1, SH * YL - 1, SW * XH - 1, SH
* YH + 1);

if (PJT == 1 && TRD < 5) _ellipse_w(_GBORDER, SW * XL - SH * (YH - YL) / 6, SH
* YH, SW * XH + SH * (YH - YL) / 6, SH * YL);

TT = 3.1416 / (XMAX - XMIN);

PT = 3.1416 / (YMAX - YMIN);

if (QM == 2) { /* In evaluate mode */

 _settextposition(1, 1);

543

 printf("<Space Bar>: Discard <Enter>: Save");

 if (WID >= 80) {

 _settextposition(1, 49);

 printf("<Esc>: Exit");

 _settextposition(1, 69);

 printf("%d K left", (int)((filelength(fileno(F1)) - ftell(F1)) /
1024.0));

 }}

else {

 _settextposition(1, 1);

 if (strlen(CODE) < WID - 18)

 _outtext(CODE);

 else {

 printf("%*.*s...", WID - 23, WID - 23, CODE);

 }

 _settextposition(1, WID - 17);

 printf("F =");

 _settextposition(1, WID - 7);

 printf("L = ");

}

TIA = .05; /* Tangent of illumination angle */

XZ = -TIA * (XMAX - XMIN) / (ZMAX - ZMIN);

YZ = TIA * (YMAX - YMIN) / (ZMAX - ZMIN);

}

544

fun3500() /* Produce sound */

{

FREQ = 220 * pow(2, (int)(36 * (XNEW - XL) / (XH - XL)) / 12.0);

DUR = 1;

if (D > 1) DUR = pow(2, (int)floor(.5 * (YH - YL) / (YNEW - 9 * YL / 8 + YH / 8)));

/* A sound statement should be placed here */

}

fun3600() /* Respond to user command */

{

if (Q > 96) Q = Q - 32; /* Convert to uppercase */

if (QM == 2) fun5800(); /* Process evaluation command */

if (strchr("ACDEHINPRSVX", Q) == 0) fun4200(); /* Display menu screen */

if (Q == ‘A’) {

 T = 1;

 QM = 0;

}

if (ODE > 1) D = ODE + 5;

if (ODE == 1) D = D + 2;

if (Q == ‘C’) if (N > 999) N = 999;

if (Q == ‘D’) {

 D = 1 + D % 12;

545

 T = 1;

}

if (D > 6) {

 ODE = D - 5;

 D = 4;

}

else {

 if (D > 4) {

 ODE = 1;

 D = D - 2;

 }

 else ODE = 0;

}

if (Q == ‘E’) {

 T = 1;

 QM = 2;

}

if (Q == ‘H’) {

 FTH = (FTH + 1) % 3;

 T = 3;

 if (N > 999) {

 N = 999;

 fun5600(); /* Set colors */

546

 }

}

if (Q == ‘I’) {

 if (T != 1) {

 _setvideomode(_TEXTC80);

 _settextcolor(15);

 _setbkcolor(1L);

 _clearscreen(_GCLEARSCREEN);

 printf("Code? ");

 I = 0;

 CODE[0] = 0;

 do {

 CODE[I] = getche();

 if (CODE[I] == 8 && I >= 0) I = I - 2;

 if (CODE[I] == 27) {

 I = 0;

 CODE[I] = 13;

 }

 }

 while (CODE[I++] != 13 && I < 506);

 CODE[I - 1] = 0;

 if (CODE[0] == 0) {

 Q = ‘ ‘;

547

 _clearscreen(_GCLEARSCREEN);}

 else {

 T = 1;

 QM = 1;

 fun4700();

 }

 }

}

if (Q == ‘N’) {

 NMAX = 10 * (NMAX - 1000) + 1000;

 if (NMAX > 1E10) NMAX = 2000;

}

if (Q == ‘P’) {

 PJT = (PJT + 1) % 5;

 T = 3;

 if (N > 999) N = 999;

}

if (Q == ‘R’) {

 TRD = (TRD + 1) % 7;

 T = 3;

 if (N > 999) {

 N = 999;

 fun5600(); /* Get dimension and order */

548

 }

}

if (Q == ‘S’) {

 SND = (SND + 1) % 2;

 T = 3;

}

if (Q == ‘V’) {

 SAV = (SAV + 1) % 5;

 FAV[0] = 87 + SAV % 4;

 T = 3;

 if (N > 999) N = 999;

}

if (Q == ‘X’) T = 0;

}

fun3900() /* Calculate fractal dimension */

{

if (N >= 1000) { /* Wait for transient to settle */

 if ((int)N == 1000) {

 D2MAX = pow(XMAX - XMIN, 2);

 D2MAX = D2MAX + pow(YMAX - YMIN, 2);

 D2MAX = D2MAX + pow(ZMAX - ZMIN, 2);

 D2MAX = D2MAX + pow(WMAX - WMIN, 2);

549

 }

 J = (P + 1 + (int)floor(480 * (float)rand() / 32768.0)) % 500;

 DX = XNEW - XS[J];

 DY = YNEW - YS[J];

 DZ = ZNEW - ZS[J];

 DW = WNEW - WS[J];

 D2 = DX * DX + DY * DY + DZ * DZ + DW * DW;

 if (D2 < .001 * TWOD * D2MAX) N2 = N2 + 1;

 if (D2 <= .00001 * TWOD * D2MAX) {

 N1 = N1 + 1;

 F = .434294 * log(N2 / (N1 - .5));

 _settextposition(1, WID - 14);

 printf("%5.2f", F);

 }

}

}

fun4100() /* Project onto a sphere */

{

TH = TT * (XMAX - XP);

PH = PT * (YMAX - YP);

XP = XA + .36 * (XH - XL) * cos(TH) * sin(PH);

YP = YA + .5 * (YH - YL) * cos(PH);

550

}

fun4200() /* Display menu screen */

{

_setvideomode(_TEXTC80);

_settextcolor(15);

_setbkcolor(1L);

regs.h.ah = 1;

regs.h.ch = 1;

regs.h.cl = 0;

int86(16, ®s, ®s); /* Turn cursor off */

_clearscreen(_GCLEARSCREEN);

while (Q == 0 || strchr("AEIX", Q) == 0) {

 _settextposition(1, 27);

 printf("STRANGE ATTRACTOR PROGRAM\n");

 printf("%26cIBM PC QuickC Version 2.0\n", ‘ ‘);

 printf("%26c(c) 1993 by J. C. Sprott\n", ‘ ‘);

 printf("\n");

 printf("\n");

 printf("%26cA: Search for attractors\n", ‘ ‘);

 printf("%26cC: Clear screen and restart\n", ‘ ‘);

 if (ODE > 1) {

 printf("%26cD: System is 4-D special map %c \n", ‘ ‘, 87 + ODE);}

551

 else {

 printf("%26cD: System is %d-D polynomial ", ‘ ‘, D);

 if (ODE == 1) printf("ODE\n"); else printf("map\n");

 }

 printf("%26cE: Evaluate attractors\n", ‘ ‘);

 printf("%26cH: Fourth dimension is ", ‘ ‘);

 if (FTH == 0) printf("projection\n");

 if (FTH == 1) printf("bands \n");

 if (FTH == 2) printf("colors \n");

 printf("%26cI: Input code from keyboard\n", ‘ ‘);

 printf("%26cN: Number of iterations is 10^%1.0f\n", ‘ ‘, log10(NMAX - 1000));

 printf("%26cP: Projection is ", ‘ ‘);

 if (PJT == 0) printf("planar \n");

 if (PJT == 1) printf("spherical\n");

 if (PJT == 2) printf("horiz cyl\n");

 if (PJT == 3) printf("vert cyl \n");

 if (PJT == 4) printf("toroidal \n");

 printf("%26cR: Third dimension is ", ‘ ‘);

 if (TRD == 0) printf("projection\n");

 if (TRD == 1) printf("shadow \n");

 if (TRD == 2) printf("bands \n");

 if (TRD == 3) printf("colors \n");

 if (TRD == 4) printf("anaglyph \n");

552

 if (TRD == 5) printf("stereogram\n");

 if (TRD == 6) printf("slices \n");

 printf("%26cS: Sound is ", ‘ ‘);

 if (SND == 0) printf("off\n");

 if (SND == 1) printf("on \n");

 printf("%26cV: ", ‘ ‘);

 if (SAV == 0) printf("No data will be saved \n");

 if (SAV > 0) printf("%c will be saved in %cDATA.DAT\n", FAV[0], FAV[0]);

 printf("%26cX: Exit program", ‘ ‘);

 if (kbhit()) Q = getch(); else Q = 0;

 if (Q) fun3600(); /* Respond to user command */

}

}

fun4700() /* Get dimension and order */

{

D = 1 + (int)floor((CODE[0] - 65) / 4);

if (D > 6) {

 ODE = CODE[0] - 87;

 D = 4;

 fun6200(); /* Special function */

}

else {

553

 if (D > 4) {

 D = D - 2;

 ODE = 1;

 }

 else ODE = 0;

 O = 2 + (CODE[0] - 65) % 4;

 M = 1;

 for (I = 1; I <= D; I++) {M = M * (O + I);}

 if (D > 2) for (I = 3; I <= D; I++) {M = M / (I - 1);}

}

if (strlen(CODE) != M + 1 && QM == 1) {

 printf("\a"); /* Illegal code warning */

 while (strlen(CODE) < M + 1) strcat(CODE, "M");

 if (strlen(CODE) > M + 1) CODE[M + 1] = 0;

}

}

fun4900() /* Save attractor to disk file SA.DIC */

{

F1 = fopen("SA.DIC", "a");

fprintf(F1, "%s%5.2f%5.2f\n", CODE, F, L);

fclose(F1);

}

554

fun5000() /* Plot point on screen */

{

C4 = WH;

if (D > 3) {

 if (FTH == 1) if ((int)floor(30 * (W - WMIN) / (WMAX - WMIN)) % 2) return(0);

 if (FTH == 2) C4 = 1 + (int)floor(NC * (W - WMIN) / (WMAX - WMIN) + NC) % NC;

}

if (D < 3) { /* Skip 3-D stuff */

 _setpixel_w(SW * XP, SH * YP);

 return(0);

}

if (TRD == 0) {

 _setcolor(C4);

 _setpixel_w(SW * XP, SH * YP);

}

if (TRD == 1) {

 if (D > 3 && FTH == 2) {

 _setcolor(C4);

 _setpixel_w(SW * XP, SH * YP);

 }

 else {

 C = _getpixel_w(SW * XP, SH * YP);

555

 if (C == COLR[2]) {

 _setcolor(COLR[3]);

 _setpixel_w(SW * XP, SH * YP);}

 else {

 if (C != COLR[3]) {

 _setcolor(COLR[2]);

 _setpixel_w(SW * XP, SH * YP);

 }

 }

 }

 XP = XP - XZ * (Z - ZMIN);

 YP = YP - YZ * (Z - ZMIN);

 if (_getpixel_w(SW * XP, SH * YP) == COLR[1]) {

 _setcolor(0);

 _setpixel_w(SW * XP, SH * YP);

 }

}

if (TRD == 2) {

 if (D > 3 && FTH == 2 && ((int)floor(15 * (Z - ZMIN) / (ZMAX - ZMIN) + 2) %
2) == 1) {

 _setcolor(C4);}

 else {

 C = COLR[(int)floor(60 * (Z - ZMIN) / (ZMAX - ZMIN) + 4) % 4];

 _setcolor(C);

556

 }

 _setpixel_w(SW * XP, SH * YP);

}

if (TRD == 3) {

 _setcolor(COLR[(int)floor(NC * (Z - ZMIN) / (ZMAX - ZMIN) + NC) % NC]);

 _setpixel_w(SW * XP, SH * YP);

}

if (TRD == 4) {

 XRT = XP + XZ * (Z - ZA);

 C = _getpixel_w(SW * XRT, SH * YP);

 if (C == WH) {

 _setcolor(RD);

 _setpixel_w(SW * XRT, SH * YP);

 }

 if (C == CY) {

 _setcolor(BK);

 _setpixel_w(SW * XRT, SH * YP);

 }

 XLT = XP - XZ * (Z - ZA);

 C = _getpixel_w(SW * XLT, SH * YP);

 if (C == WH) {

 _setcolor(CY);

 _setpixel_w(SW * XLT, SH * YP);

557

 }

 if (C == RD) {

 _setcolor(BK);

 _setpixel_w(SW * XLT, SH * YP);

 }

}

if (TRD == 5) {

 HSF = 2; /* Horizontal scale factor */

 XRT = XA + (XP + XZ * (Z - ZA) - XL) / HSF;

 _setcolor(C4);

 _setpixel_w(SW * XRT, SH * YP);

 XLT = XA + (XP - XZ * (Z - ZA) - XH) / HSF;

 _setcolor(C4);

 _setpixel_w(SW * XLT, SH * YP);

}

if (TRD == 6) {

 DZ = (15 * (Z - ZMIN) / (ZMAX - ZMIN) + .5) / 16;

 XP = (XP - XL + ((int)floor(16 * DZ) % 4) * (XH - XL)) / 4 + XL;

 YP = (YP - YL + (3 - (int)floor(4 * DZ) % 4) * (YH - YL)) / 4 + YL;

 _setcolor(C4);

 _setpixel_w(SW * XP, SH * YP);

}

}

558

fun5400() /* Plot background grid */

{

_setcolor(0);

for (I = 0; I <= 15; I++) { /* Draw 15 vertical grid lines */

 XP = XMIN + I * (XMAX - XMIN) / 15;

 _moveto_w(SW * XP, SH * YMIN);

 _lineto_w(SW * XP, SH * YMAX);

}

for (I = 0; I <= 10; I++) { /* Draw 10 horizontal grid lines */

 YP = YMIN + I * (YMAX - YMIN) / 10;

 _moveto_w(SW * XMIN, SH * YP);

 _lineto_w(SW * XMAX, SH * YP);

}

}

fun5600() /* Set colors */

{

NC = 15; /* Number of colors */

COLR[0] = 0;

COLR[1] = 8;

COLR[2] = 7;

COLR[3] = 15;

559

if (TRD == 3 || (D > 3 && FTH == 2 && TRD != 1)) {

 for (I = 0; I <= NC; I++) COLR[I] = I + 1;

}

WH = 15;

BK = 8;

RD = 12;

CY = 11;

}

fun5800() /* Process evaluation command */

{

if (Q == ‘ ‘) {

 T = 2;

 NE = NE + 1;

 _clearscreen(_GCLEARSCREEN);

}

if (Q == 13) {

 T = 2;

 NE = NE + 1;

 _clearscreen(_GCLEARSCREEN);

 fun5900(); /* Save favorite attractors to disk */

}

if (Q == 27) {

560

 _clearscreen(_GCLEARSCREEN);

 fun6000(); /* Update SA.DIC file */

 Q = ‘ ‘;

 QM = 0;

}

else {

 if (strchr("CHNPRVS", Q) == 0) Q = 0;

}

}

fun5900() /* Save favorite attractors to disk file FAVORITE.DIC */

{

F2 = fopen("FAVORITE.DIC", "a");

fprintf(F2, CODE);

fclose(F2);

}

fun6000() /* Update SA.DIC file */

{

_settextposition(11, 9);

printf("Evaluation complete\n");

_settextposition(12, 8);

printf(" %d cases evaluated", (int)NE);

561

F2 = fopen("SATEMP.DIC", "w");

if (QM == 2) fprintf(F2, CODE);

while (feof(F1) == 0) {

 fgets(CODE, 515, F1);

 if (feof(F1) == 0) fprintf(F2, CODE);

}

fcloseall();

remove("SA.DIC");

rename("SATEMP.DIC", "SA.DIC");

}

fun6200() /* Special function definitions */

{

ZNEW = X * X + Y * Y; /* Default 3rd and 4th dimension */

WNEW = (N - 100) / 900;

if (N > 1000) WNEW = (N - 1000) / (NMAX - 1000);

if (ODE == 2) {

 M = 10;

 XNEW = A[1] + A[2] * X + A[3] * Y + A[4] * fabs(X) + A[5] * fabs(Y);

 YNEW = A[6] + A[7] * X + A[8] * Y + A[9] * fabs(X) + A[10] * fabs(Y);

}

if (ODE == 3) {

 M = 14;

562

 XNEW = A[1] + A[2] * X + A[3] * Y + ((int)(A[4] * X + .5) & (int)(A[5] * Y
+ .5)) + ((int)(A[6] * X + .5) | (int)(A[7] * Y + .5));

 YNEW = A[8] + A[9] * X + A[10] * Y + ((int)(A[11] * X + .5) & (int)(A[12] *
Y + .5)) + ((int)(A[13] * X + .5) | (int)(A[14] * Y + .5));

}

if (ODE == 4) {

 M = 14;

 XNEW = A[1] + A[2] * X + A[3] * Y + A[4] * pow(fabs(X), A[5]) + A[6] * pow(fabs(Y),
A[7]);

 YNEW = A[8] + A[9] * X + A[10] * Y + A[11] * pow(fabs(X), A[12]) + A[13] *
pow(fabs(Y), A[14]);

}

if (ODE == 5) {

 M = 18;

 XNEW = A[1] + A[2] * X + A[3] * Y + A[4] * sin(A[5] * X + A[6]) + A[7] * sin(A[8]
* Y + A[9]);

 YNEW = A[10] + A[11] * X + A[12] * Y + A[13] * sin(A[14] * X + A[15]) + A[16]
* sin(A[17] * Y + A[18]);

}

if (ODE == 6) {

 M = 6;

 if (N < 2) {

 AL = TWOPI / (13 + 10 * A[6]);

 SINAL = sin(AL);

 COSAL = cos(AL);

 }

 DUM = X + A[2] * sin(A[3] * Y + A[4]);

563

 XNEW = 10 * A[1] + DUM * COSAL + Y * SINAL;

 YNEW = 10 * A[5] - DUM * SINAL + Y * COSAL;

}

if (ODE == 7) {

 M = 9;

 XNEW = X + EPS * A[1] * Y;

 YNEW = Y + EPS * (A[2] * X + A[3] * X * X * X + A[4] * X * X * Y + A[5] * X
* Y * Y + A[6] * Y + A[7] * Y * Y * Y + A[8] * sin(Z));

 ZNEW = Z + EPS * (A[9] + 1.3);

 if (ZNEW > TWOPI) ZNEW = ZNEW - TWOPI;

}

}

fun6700() /* Project onto a horizontal cylinder */

{

PH = PT * (YMAX - YP);

YP = YA + .5 * (YH - YL) * cos(PH);

}

fun6800() /* Project onto a vertical cylinder */

{

TH = TT * (XMAX - XP);

XP = XA + .5 * (XH - XL) * cos(TH);

}

564

fun6900() /* Project onto a torus (unity aspect ratio) */

{

TH = TT * (XMAX - XP);

PH = 2 * PT * (YMAX - YP);

XP = XA + .18 * (XH - XL) * (1 + cos(TH)) * sin(PH);

YP = YA + .25 * (YH - YL) * (1 + cos(TH)) * cos(PH);

}

fun7000() /* Save data */

{

if ((int)N == 1000) {

 fclose(F3);

 F3 = fopen(FAV, "w");

}

if (SAV == 1) DUM = XNEW;

if (SAV == 2) DUM = YNEW;

if (SAV == 3) DUM = ZNEW;

if (SAV == 4) DUM = WNEW;

fprintf(F3, "%f\n", DUM);

}

565

Appendix E
Summary of Equations

This appendix contains a complete list, in all its gory detail, of the equations solved
by the program to produce the attractors in this book. For simplicity, the subscripts
n+1 and n have been omitted on the variables X, Y, Z, and W. If it serves no other
purpose, this appendix vividly illustrates the power of programming languages in
expressing and evaluating lengthy formulas! It is worth emphasizing that the
attractors that come from simple equations are every bit as interesting and
beautiful as those that come from complicated equations.

Case A: D = 1, O = 2, M = 3

X = a1 + a2X + a3X
2

Case B: D = 1, O = 3, M = 4

X = a1 + a2X + a3X
2 + a4X

3

Case C: D = 1, O = 4, M = 5

X = a1 + a2X + a3X
2 + a4X

3 + a5X
4

Case D: D = 1, O = 5, M = 6

X = a1 + a2X + a3X
2 + a4X

3 + a5X
4 + a6X

5

Case E: D = 2, O = 2, M = 12

X = a1 + a2X + a3X
2 + a4XY + a5Y + a6Y

2

Y = a7 + a8X + a9X
2 + a10XY + a11Y + a12Y

2

Case F: D = 2, O = 3, M = 20

X = a1 + a2X + a3X
2 + a4X

3 + a5X
2Y + a6XY + a7XY

2 + a8Y + a9Y
2 + a10Y

3

Y = a11 + a12X + a13X
2 + a14X

3 + a15X
2Y + a16XY + a17XY

2 + a18Y + a19Y
2 + a20Y

3

566

Case G: D = 2, O = 4, M = 30

X = a1 + a2X + a3X
2 + a4X

3 + a5X
4 + a6X

3Y + a7X
2Y + a8X

2Y2 + a9XY + a10XY
2 + a11XY

3 +
a12Y + a13Y

2 + a14Y
3 + a15Y

4

Y = a16 + a17X + a18X
2 + a19X

3 + a20X
4 + a21X

3Y + a22X
2Y + a23X

2Y2 + a24XY + a25XY
2 + a26XY

3

+ a27Y + a28Y
2 + a29Y

3 + a30Y
4

Case H: D = 2, O = 5, M = 42

X = a1 + a2X + a3X
2 + a4X

3 + a5X
4 + a6X

5 + a7X
4Y + a8X

3Y + a9X
3Y2 + a10X

2Y + a11X
2Y2 +

a12X
2Y3 + a13XY + a14XY

2 + a15XY
3 + a16XY

4 + a17Y + a18Y
2 + a19Y

3 + a20Y
4 + a21Y

5

Y = a22 + a23X + a24X
2 + a25X

3 + a26X
4 + a27X

5 + a28X
4Y + a29X

3Y + a30X
3Y2 + a31X

2Y + a32X
2Y2

+ a33X
2Y3 + a34XY + a35XY

2 + a36XY
3 + a37XY

4 + a38Y + a39Y
2 + a40Y

3 + a41Y
4 + a42Y

5

Case I: D = 3, O = 2, M = 30

X = a1 + a2X + a3X
2 + a4XY + a5XZ + a6Y + a7Y

2 + a8YZ + a9Z + a10Z
2

Y = a11 + a12X + a13X
2 + a14XY + a15XZ + a16Y + a17Y

2 + a18YZ + a19Z + a20Z
2

Z = a21 + a22X + a23X
2 + a24XY + a25XZ + a26Y + a27Y

2 + a28YZ + a29Z + a30Z
2

Case J: D = 3, O = 3, M = 60

X = a1 + a2X + a3X
2 + a4X

3 + a5X
2Y + a6X

2Z + a7XY + a8XY
2 + a9XYZ + a10XZ + a11XZ

2 +
a12Y + a13Y

2 + a14Y
3 + a15Y

2Z + a16YZ + a17YZ
2 + a18Z + a19Z

2 + a20Z
3

Y = a21 + a22X + a23X
2 + a24X

3 + a25X
2Y + a26X

2Z + a27XY + a28XY
2 + a29XYZ + a30XZ + a31XZ

2

+ a32Y + a33Y
2 + a34Y

3 + a35Y
2Z + a36YZ + a37YZ

2 + a38Z + a39Z
2 + a40Z

3

Z = a41 + a42X + a43X
2 + a44X

3 + a45X
2Y + a46X

2Z + a47XY + a48XY
2 + a49XYZ + a50XZ + a51XZ

2

+ a52Y + a53Y
2 + a54Y

3 + a55Y
2Z + a56YZ + a57YZ

2 + a58Z + a59Z
2 + a60Z

3

Case K: D = 3, O = 4, M = 105

X = a1 + a2X + a3X
2 + a4X

3 + a5X
4 + a6X

3Y + a7X
3Z + a8X

2Y + a9X
2Y2 + a10X

2YZ + a11X
2Z

+ a12X
2Z2 + a13XY + a14XY

2 + a15XY
3 + a16XY

2Z + a17XYZ + a18XYZ
2 + a19XZ + a20XZ

2 + a21XZ
3

+ a22Y + a23Y
2 + a24Y

3 + a25Y
4 + a26Y

3Z + a27Y
2Z + a28Y

2Z2 + a29YZ + a30YZ
2 + a31YZ

3 + a32Z
+ a33Z

2 + a34Z
3 + a35Z

4

567

Y = a36 + a37X + a38X
2 + a39X

3 + a40X
4 + a41X

3Y + a42X
3Z + a43X

2Y + a44X
2Y2 + a45X

2YZ +
a46X

2Z + a47X
2Z2 + a48XY + a49XY

2 + a50XY
3 + a51XY

2Z + a52XYZ + a53XYZ
2 + a54XZ + a55XZ

2

+ a56XZ
3 + a57Y + a58Y

2 + a59Y
3 + a60Y

4 + a61Y
3Z + a62Y

2Z + a63Y
2Z2 + a64YZ + a65YZ

2 + a66YZ
3

+ a67Z + a68Z
2 + a69Z

3 + a70Z
4

Z = a71 + a72X + a73X
2 + a74X

3 + a75X
4 + a76X

3Y + a77X
3Z + a78X

2Y + a79X
2Y2 + a80X

2YZ +
a81X

2Z + a82X
2Z2 + a83XY + a84XY

2 + a85XY
3 + a86XY2Z + a87XYZ + a88XYZ

2 + a89XZ + a90XZ
2

+ a91XZ
3 + a92Y + a93Y

2 + a94Y
3 + a95Y

4 + a96Y
3Z + a97Y

2Z + a98Y
2Z2 + a99YZ + a100YZ

2 +
a101YZ

3 + a102Z + a103Z
2 + a104Z

3 + a105Z
4

Case L: D = 3, O = 5, M = 168

X = a1 + a2X + a3X
2 + a4X

3 + a5X
4 + a6X

5 + a7X
4Y + a8X

4Z + a9X
3Y + a10X

3Y2 + a11X
3YZ +

a12X
3Z + a13X

3Z2 + a14X
2Y + a15X

2Y2 + a16X
2Y3 + a17X

2Y2Z + a18X
2YZ + a19X

2YZ2 + a20X
2Z +

a21X
2Z2 + a22X

2Z3 + a23XY + a24XY
2 + a25XY

3 + a26XY
4 + a27XY

3Z + a28XY
2Z + a29XY

2Z2 + a30XYZ
+ a31XYZ

2 + a32XYZ
3 + a33XZ + a34XZ

2 + a35XZ
3 + a36XZ

4 + a37Y + a38Y
2 + a39Y

3 + a40Y
4 +

a41Y
5 + a42Y

4Z + a43Y
3Z + a44Y

3Z2 + a45Y
2Z + a46Y

2Z2 + a47Y
2Z3 + a48YZ + a49YZ

2 + a50YZ
3

+ a51YZ
4 + a52Z + a53Z

2 + a54Z
3 + a55Z

4 + a56Z
5

Y = a57 + a58X + a59X
2 + a60X

3 + a61X
4 + a62X

5 + a63X
4Y + a64X

4Z + a65X
3Y + a66X

3Y2 + a67X
3YZ

+ a68X
3Z + a69X

3Z2 + a70X
2Y + a71X

2Y2 + a72X
2Y3 + a73X

2Y2Z + a74X
2YZ + a75X

2YZ2 + a76X
2Z

+ a77X
2Z2 + a78X

2Z3 + a79XY + a80XY
2 + a81XY

3 + a82XY
4 + a83XY

3Z + a84XY
2Z + a85XY

2Z2 +
a86XYZ + a87XYZ

2 + a88XYZ
3 + a89XZ + a90XZ

2 + a91XZ
3 + a92XZ

4 + a93Y + a94Y
2 + a95Y

3 + a96Y
4

+ a97Y
5 + a98Y

4Z + a99Y
3Z + a100Y

3Z2 + a101Y
2Z + a102Y

2Z2 + a103Y
2Z3 + a104YZ + a105YZ

2 +
a106YZ

3 + a107YZ
4 + a108Z + a109Z

2 + a110Z
3 + a111Z

4 + a112Z
5

Z = a113 + a114X + a115X
2 + a116X

3 + a117X
4 + a118X

5 + a119X
4Y + a120X

4Z + a121X
3Y + a122X

3Y2

+ a123X
3YZ + a124X

3Z + a125X
3Z2 + a126X

2Y + a127X
2Y2 + a128X

2Y3 + a129X
2Y2Z + a130X

2YZ + a131X
2YZ2

+ a132X
2Z + a133X

2Z2 + a134X
2Z3 + a135XY + a136XY

2 + a137XY
3 + a138XY

4 + a139XY
3Z + a140XY

2Z
+ a141XY

2Z2 + a142XYZ + a143XYZ
2 + a144XYZ

3 + a145XZ + a146XZ
2 + a147XZ

3 + a148XZ
4 + a149Y

+ a150Y
2 + a151Y

3 + a152Y
4 + a153Y

5 + a154Y
4Z + a155Y

3Z + a156Y
3Z2 + a157Y

2Z + a158Y
2Z2 + a159Y

2Z3

+ a160YZ + a161YZ
2 + a162YZ

3 + a163YZ
4 + a164Z + a165Z

2 + a166Z
3 + a167Z

4 + a168Z
5

Case M: D = 4, O = 2, M = 60

X = a1 + a2X + a3X
2 + a4XY + a5XZ + a6XW + a7Y + a8Y

2 + a9YZ + a10YW + a11Z + a12Z
2 +

a13ZW + a14W + a15W
2

Y = a16 + a17X + a18X
2 + a19XY + a20XZ + a21XW + a22Y + a23Y

2 + a24YZ + a25YW + a26Z +
a27Z

2 + a28ZW + a29W + a30W
2

568

Z = a31 + a32X + a33X
2 + a34XY + a35XZ + a36XW + a37Y + a38Y

2 + a39YZ + a40YW + a41Z +
a42Z

2 + a43ZW + a44W + a45W
2

W = a46 + a47X + a48X
2 + a49XY + a50XZ + a51XW + a52Y + a53Y

2 + a54YZ + a55YW + a56Z +
a57Z

2 + a58ZW + a59W + a60W
2

Case N: D = 4, O = 3, M = 140

X = a1 + a2X + a3X
2 + a4X

3 + a5X
2Y + a6X

2Z + a7X
2W + a8XY + a9XY

2 + a10XYZ + a11XYW +
a12XZ + a13XZ

2 + a14XZW + a15XW + a16XW
2 + a17Y + a18Y

2 + a19Y
3 + a20Y

2Z + a21Y
2W + a22YZ

+ a23YZ
2 + a24YZW + a25YW + a26YW

2 + a27Z + a28Z
2 + a29Z

3 + a30Z
2W + a31ZW + a32ZW

2 + a33W
+ a34W

2 + a35W
3

Y = a36 + a37X + a38X
2 + a39X

3 + a40X
2Y + a41X

2Z + a42X
2W + a43XY + a44XY

2 + a45XYZ + a46XYW
+ a47XZ + a48XZ

2 + a49XZW + a50XW + a51XW
2 + a52Y + a53Y

2 + a54Y
3 + a55Y

2Z + a56Y
2W + a57YZ

+ a58YZ
2 + a59YZW + a60YW + a61YW

2 + a62Z + a63Z
2 + a64Z

3 + a65Z
2W + a66ZW + a67ZW

2 + a68W
+ a69W

2 + a70W
3

Z = a71 + a72X + a73X
2 + a74X

3 + a75X
2Y + a76X

2Z + a77X
2W + a78XY + a79XY

2 + a80XYZ + a81XYW
+ a82XZ + a83XZ

2 + a84XZW + a85XW + a86XW
2 + a87Y + a88Y

2 + a89Y
3 + a90Y

2Z + a91Y
2W + a92YZ

+ a93YZ
2 + a94YZW + a95YW + a96YW

2 + a97Z + a98Z
2 + a99Z

3 + a100Z
2W + a101ZW + a102ZW

2 +
a103W + a104W

2 + a105W
3

W = a106 + a107X + a108X
2 + a109X

3 + a110X
2Y + a111X

2Z + a112X
2W + a113XY + a114XY

2 + a115XYZ
+ a116XYW + a117XZ + a118XZ

2 + a119XZW + a120XW + a121XW
2 + a122Y + a123Y

2 + a124Y
3 + a125Y

2Z
+ a126Y

2W + a127YZ + a128YZ
2 + a129YZW + a130YW + a131YW

2 + a132Z + a133Z
2 + a134Z

3 + a135Z
2W

+ a136ZW + a137ZW
2 + a138W + a139W

2 + a140W
3

Case O: D = 4, O = 4, M = 280

X = a1 + a2X + a3X
2 + a4X

3 + a5X
4 + a6X

3Y + a7X
3Z + a8X

3W + a9X
2Y + a10X

2Y2 + a11X
2YZ

+ a12X
2YW + a13X

2Z + a14X
2Z2 + a15X

2ZW + a16X
2W + a17X

2W2 + a18XY + a19XY
2 + a20XY

3 + a21XY
2Z

+ a22XY
2W + a23XYZ + a24XYZ

2 + a25XYZW + a26XYW + a27XYW
2 + a28XZ + a29XZ

2 + a30XZ
3 + a31XZ

2W
+ a32XZW + a33XZW

2 + a34XW + a35XW
2 + a36XW

3 + a37Y + a38Y
2 + a39Y

3 + a40Y
4 + a41Y

3Z + a42Y
3W

+ a43Y
2Z + a44Y

2Z2 + a45Y
2ZW + a46Y

2W + a47Y
2W2 + a48YZ + a49YZ

2 + a50YZ
3 + a51YZ

2W + a52YZW
+ a53YZW

2 + a54YW + a55YW
2 + a56YW

3 + a57Z + a58Z
2 + a59Z

3 + a60Z
4 + a61Z

3W + a62Z
2W + a63Z

2W2

+ a64ZW + a65ZW
2 + a66ZW

3 + a67W + a68W
2 + a69W

3 + a70W
4

Y = a71 + a72X + a73X
2 + a74X

3 + a75X
4 + a76X

3Y + a77X
3Z + a78X

3W + a79X
2Y + a80X

2Y2 + a81X
2YZ

+ a82X
2YW + a83X

2Z + a84X
2Z2 + a85X

2ZW + a86X
2W + a87X

2W2 + a88XY + a89XY
2 + a90XY

3 + a91XY
2Z

+ a92XY
2W + a93XYZ + a94XYZ

2 + a95XYZW + a96XYW + a97XYW
2 + a98XZ + a99XZ

2 + a100XZ
3 +

a101XZ
2W + a102XZW + a103XZW

2 + a104XW + a105XW
2 + a106XW

3 + a107Y + a108Y
2 + a109Y

3 + a110Y
4

+ a111Y
3Z + a112Y3W + a113Y

2Z + a114Y
2Z2 + a115Y

2ZW + a116Y
2W + a117Y

2W2 + a118YZ + a119YZ
2

569

+ a120YZ
3 + a121YZ

2W + a122YZW + a123YZW
2 + a124YW + a125YW

2 + a126YW
3 + a127Z + a128Z

2 +
a129Z

3 + a130Z
4 + a131Z

3W + a132Z
2W + a133Z

2W2 + a134ZW + a135ZW
2 + a136ZW

3 + a137W + a138W
2

+ a139W
3 + a140W

4

Z = a141 + a142X + a143X
2 + a144X

3 + a145X
4 + a146X

3Y + a147X
3Z + a148X

3W + a149X
2Y + a150X

2Y2

+ a151X
2YZ + a152X

2YW + a153X
2Z + a154X

2Z2 + a155X
2ZW + a156X

2W + a157X
2W2 + a158XY + a159XY

2

+ a160XY
3 + a161XY

2Z + a162XY
2W + a163XYZ + a164XYZ

2 + a165XYZW + a166XYW + a167XYW
2 + a168XZ

+ a169XZ
2 + a170XZ

3 + a171XZ
2W + a172XZW + a173XZW

2 + a174XW + a175XW
2 + a176XW

3 + a177Y
+ a178Y

2 + a179Y
3 + a180Y

4 + a181Y
3Z + a182Y

3W + a183Y
2Z + a184Y

2Z2 + a185Y
2ZW + a186Y

2W +
a187Y

2W2 + a188YZ + a189YZ
2 + a190YZ

3 + a191YZ
2W + a192YZW + a193YZW

2 + a194YW + a195YW
2 +

a196YW
3 + a197Z + a198Z

2 + a199Z
3 + a200Z

4 + a201Z
3W + a202Z

2W + a203Z
2W2 + a204ZW + a205ZW

2

+ a206ZW
3 + a207W + a208W

2 + a209W
3 + a210W

4

W = a211 + a212X + a213X
2 + a214X

3 + a215X
4 + a216X

3Y + a217X
3Z + a218X

3W + a219X
2Y + a220X

2Y2

+ a221X
2YZ + a222X

2YW + a223X
2Z + a224X

2Z2 + a225X
2ZW + a226X

2W + a227X
2W2 + a228XY + a229XY

2

+ a230XY
3 + a231XY

2Z + a232XY
2W + a233XYZ + a234XYZ

2 + a235XYZW + a236XYW + a237XYW
2 + a238XZ

+ a239XZ
2 + a240XZ

3 + a241XZ
2W + a242XZW + a243XZW

2 + a244XW + a245XW
2 + a246XW

3 + a247Y
+ a248Y

2 + a249Y
3 + a250Y

4 + a251Y
3Z + a252Y

3W + a253Y
2Z + a254Y

2Z2 + a255Y
2ZW + a256Y

2W +
a257Y

2W2 + a258YZ + a259YZ
2 + a260YZ

3 + a261YZ
2W + a262YZW + a263YZW

2 + a264YW + a265YW
2 +

a266YW
3 + a267Z + a268Z

2 + a269Z
3 + a270Z

4 + a271Z
3W + a272Z

2W + a273Z
2W2 + a274ZW + a275ZW

2

+ a276ZW
3 + a277W + a278W

2 + a279W
3 + a280W

4

Case P: D = 4, O = 5, M = 504

X = a1 + a2X + a3X
2 + a4X

3 + a5X
4 + a6X

5 + a7X
4Y + a8X

4Z + a9X
4W + a10X

3Y + a11X
3Y2 +

a12X
3YZ + a13X

3YW + a14X
3Z + a15X

3Z2 + a16X
3ZW + a17X

3W + a18X
3W2 + a19X

2Y + a20X
2Y2 + a21X

2Y3

+ a22X
2Y2Z + a23X

2Y2W + a24X
2YZ + a25X

2YZ2 + a26X
2YZW + a27X

2YW + a28X
2YW2 + a29X

2Z + a30X
2Z2

+ a31X
2Z3 + a32X

2Z2W + a33X
2ZW + a34X

2ZW2 + a35X
2W + a36X

2W2 + a37X
2W3 + a38XY + a39XY

2 +
a40XY

3 + a41XY
4 + a42XY

3Z + a43XY
3W + a44XY

2Z + a45XY
2Z2 + a46XY

2ZW + a47XY
2W + a48XY

2W2

+ a49XYZ + a50XYZ
2 + a51XYZ

3 + a52XYZ
2W + a53XYZW + a54XYZW

2 + a55XYW + a56XYW
2 + a57XYW

3

+ a58XZ + a59XZ
2 + a60XZ

3 + a61XZ
4 + a62XZ

3W + a63XZ
2W + a64XZ

2W2 + a65XZW + a66XZW
2 +

a67XZW
3 + a68XW + a69XW

2 + a70XW
3 + a71XW

4 + a72Y + a73Y
2 + a74Y

3 + a75Y
4 + a76Y

5 + a77Y
4Z

+ a78Y
4W + a79Y

3Z + a80Y
3Z2 + a81Y

3ZW + a82Y
3W + a83Y

3W2 + a84Y
2Z + a85Y

2Z2 + a86Y
2Z3 + a87Y

2Z2W
+ a88Y

2ZW + a89Y
2ZW2 + a90Y

2W + a91Y
2W2 + a92Y

2W3 + a93YZ + a94YZ
2 + a95YZ

3 + a96YZ
4 + a97YZ

3W
+ a98YZ

2W + a99YZ
2W2 + a100YZW + a101YZW

2 + a102YZW
3 + a103YW + a104YW

2 + a105YW
3 + a106YW

4

+ a107Z + a108Z
2 + a109Z

3 + a110Z
4 + a111Z

5 + a112Z
4W + a113Z

3W + a114Z
3W2 + a115Z

2W + a116Z
2W2

+ a117Z
2W3 + a118ZW + a119ZW

2 + a120ZW
3 + a121ZW

4 + a122W + a123W
2 + a124W

3 + a125W
4 + a126W

5

Y = a127 + a128X + a129X
2 + a130X

3 + a131X
4 + a132X

5 + a133X
4Y + a134X

4Z + a135X
4W + a136X

3Y
+ a137X

3Y2 + a138X
3YZ + a139X

3YW + a140X
3Z + a141X

3Z2 + a142X
3ZW + a143X

3W + a144X
3W2 + a145X

2Y
+ a146X

2Y2 + a147X
2Y3 + a148X

2Y2Z + a149X
2Y2W + a150X

2YZ + a151X
2YZ2 + a152X

2YZW + a153X
2YW

+ a154X
2YW2 + a155X

2Z + a156X
2Z2 + a157X

2Z3 + a158X
2Z2W + a159X

2ZW + a160X
2ZW2 + a161X

2W +
a162X

2W2 + a163X
2W3 + a164XY + a165XY

2 + a166XY
3 + a167XY

4 + a168XY
3Z + a169XY

3W + a170XY
2Z

+ a171XY
2Z2 + a172XY

2ZW + a173XY
2W + a174XY

2W2 + a175XYZ + a176XYZ
2 + a177XYZ

3 + a178XYZ
2W

+ a179XYZW + a180XYZW
2 + a181XYW + a182XYW

2 + a183XYW
3 + a184XZ + a185XZ

2 + a186XZ
3 + a187XZ

4

+ a188XZ
3W + a189XZ

2W + a190XZ
2W2 + a191XZW + a192XZW

2 + a193XZW
3 + a194XW + a195XW

2 + a196XW
3

570

+ a197XW
4 + a198Y + a199Y

2 + a200Y
3 + a201Y

4 + a202Y
5 + a203Y

4Z + a204Y
4W + a205Y

3Z + a206Y
3Z2

+ a207Y
3ZW + a208Y

3W + a209Y
3W2 + a210Y

2Z + a211Y
2Z2 + a212Y

2Z3 + a213Y
2Z2W + a214Y

2ZW + a215Y
2ZW2

+ a216Y
2W + a217Y

2W2 + a218Y
2W3 + a219YZ + a220YZ

2 + a221YZ
3 + a222YZ

4 + a223YZ
3W + a224YZ

2W
+ a225YZ

2W2 + a226YZW + a227YZW
2 + a228YZW

3 + a229YW + a230YW
2 + a231YW

3 + a232YW
4 + a233Z

+ a234Z
2 + a235Z

3 + a236Z
4 + a237Z

5 + a238Z
4W + a239Z

3W + a240Z
3W2 + a241Z

2W + a242Z
2W2 + a243Z

2W3

+ a244ZW + a245ZW
2 + a246ZW

3 + a247ZW
4 + a248W + a249W

2 + a250W
3 + a251W

4 + a252W
5

Z = a253 + a254X + a255X
2 + a256X

3 + a257X
4 + a258X

5 + a259X
4Y + a260X

4Z + a261X
4W + a262X

3Y
+ a263X

3Y2 + a264X
3YZ + a265X

3YW + a266X
3Z + a267X

3Z2 + a268X
3ZW + a269X

3W + a270X
3W2 + a271X

2Y
+ a272X

2Y2 + a273X
2Y3 + a274X

2Y2Z + a275X
2Y2W + a276X

2YZ + a277X
2YZ2 + a278X

2YZW + a279X
2YW

+ a280X
2YW2 + a281X

2Z + a282X
2Z2 + a283X

2Z3 + a284X
2Z2W + a285X

2ZW + a286X
2ZW2 + a287X

2W +
a288X

2W2 + a289X
2W3 + a290XY + a291XY

2 + a292XY
3 + a293XY

4 + a294XY
3Z + a295XY

3W + a296XY
2Z

+ a297XY
2Z2 + a298XY

2ZW + a299XY
2W + a300XY

2W2 + a301XYZ + a302XYZ
2 + a303XYZ

3 + a304XYZ
2W

+ a305XYZW + a305XYZW
2 + a307XYW + a308XYW

2 + a309XYW
3 + a310XZ + a311XZ

2 + a312XZ
3 + a313XZ

4

+ a314XZ
3W + a315XZ

2W + a316XZ
2W2 + a317XZW + a318XZW

2 + a319XZW
3 + a320XW + a321XW

2 + a322XW
3

+ a323XW
4 + a324Y + a325Y

2 + a326Y
3 + a327Y

4 + a328Y
5 + a329Y

4Z + a330Y
4W + a331Y

3Z + a332Y
3Z2

+ a333Y
3ZW + a334Y

3W + a335Y
3W2 + a336Y

2Z + a337Y
2Z2 + a338Y

2Z3 + a339Y
2Z2W + a340Y

2ZW + a341Y
2ZW2

+ a342Y
2W + a343Y

2W2 + a344Y
2W3 + a345YZ + a346YZ

2 + a347YZ
3 + a348YZ

4 + a349YZ
3W + a350YZ

2W
+ a351YZ

2W2 + a352YZW + a353YZW
2 + a354YZW

3 + a355YW + a356YW
2 + a357YW

3 + a358YW
4 + a359Z

+ a360Z
2 + a361Z

3 + a362Z
4 + a363Z

5 + a364Z
4W + a365Z

3W + a366Z
3W2 + a367Z

2W + a368Z
2W2 + a369Z

2W3

+ a370ZW + a371ZW
2 + a372ZW

3 + a373ZW
4 + a374W + a375W

2 + a376W
3 + a377W

4 + a378W
5

W = a379 + a380X + a381X
2 + a382X

3 + a383X
4 + a384X

5 + a385X
4Y + a386X

4Z + a387X
4W + a388X

3Y
+ a389X

3Y2 + a390X
3YZ + a391X

3YW + a392X
3Z + a393X

3Z2 + a394X
3ZW + a395X

3W + a396X
3W2 + a397X

2Y
+ a398X

2Y2 + a399X
2Y3 + a400X

2Y2Z + a401X
2Y2W + a402X

2YZ + a403X
2YZ2 + a404X

2YZW + a405X
2YW

+ a406X
2YW2 + a407X

2Z + a408X
2Z2 + a409X

2Z3 + a410X
2Z2W + a411X

2ZW + a412X
2ZW2 + a413X

2W +
a414X

2W2 + a415X
2W3 + a416XY + a417XY

2 + a418XY
3 + a419XY

4 + a420XY
3Z + a421XY

3W + a422XY
2Z

+ a423XY
2Z2 + a424XY

2ZW + a425XY
2W + a426XY

2W2 + a427XYZ + a428XYZ
2 + a429XYZ

3 + a430XYZ
2W

+ a431XYZW + a432XYZW
2 + a433XYW + a434XYW

2 + a435XYW
3 + a436XZ + a437XZ

2 + a438XZ
3 + a439XZ

4

+ a440XZ
3W + a441XZ

2W + a442XZ
2W2 + a443XZW + a444XZW

2 + a445XZW
3 + a446XW + a447XW

2 + a448XW
3

+ a449XW
4 + a450Y + a451Y

2 + a452Y
3 + a453Y

4 + a454Y
5 + a455Y

4Z + a456Y
4W + a457Y

3Z + a458Y
3Z2

+ a459Y
3ZW + a460Y

3W + a461Y
3W2 + a462Y

2Z + a463Y
2Z2 + a464Y

2Z3 + a465Y
2Z2W + a466Y

2ZW + a467Y
2ZW2

+ a468Y
2W + a469Y

2W2 + a470Y
2W3 + a471YZ + a472YZ

2 + a473YZ
3 + a474YZ

4 + a475YZ
3W + a476YZ

2W
+ a477YZ

2W2 + a478YZW + a479YZW
2 + a480YZW

3 + a481YW + a482YW
2 + a483YW

3 + a484YW
4 + a485Z

+ a486Z
2 + a487Z

3 + a488Z
4 + a489Z

5 + a490Z
4W + a491Z

3W + a492Z
3W2 + a493Z

2W + a494Z
2W2 + a495Z

2W3

+ a496ZW + a497ZW
2 + a498ZW

3 + a499ZW
4 + a500W + a501W

2 + a502W
3 + a503W

4 + a504W
5

Case Q: D = 3, O = 2, M = 30

X = X + 0.1(same as for case I)

Y = Y + 0.1(same as for case I)

Z = Z + 0.1(same as for case I)

571

Case R: D = 3, O = 3, M = 60

X = X + 0.1(same as for case J)

Y = Y + 0.1(same as for case J)

Z = Z + 0.1(same as for case J)

Case S: D = 3, O = 4, M = 105

X = X + 0.1(same as for case K)

Y = Y + 0.1(same as for case K)

Z = Z + 0.1(same as for case K)

Case T: D = 3, O = 5, M = 168

X = X + 0.1(same as for case L)

Y = Y + 0.1(same as for case L)

Z = Z + 0.1(same as for case L)

Case U: D = 4, O = 2, M = 60

X = X + 0.1(same as for case M)

Y = Y + 0.1(same as for case M)

Z = Z + 0.1(same as for case M)

W = W + 0.1(same as for case M)

Case V: D = 4, O = 3, M = 140

572

X = X + 0.1(same as for case N)

Y = Y + 0.1(same as for case N)

Z = Z + 0.1(same as for case N)

W = W + 0.1(same as for case N)

Case W: D = 4, O = 4, M = 280

X = X + 0.1(same as for case O)

Y = Y + 0.1(same as for case O)

Z = Z + 0.1(same as for case O)

W = W + 0.1(same as for case O)

Case X: D = 4, O = 5, M = 504

X = X + 0.1(same as for case P)

Y = Y + 0.1(same as for case P)

Z = Z + 0.1(same as for case P)

W = W + 0.1(same as for case P)

Case Y: D = 4, M = 10

X = a1 + a2X + a3Y + a4|X| + a5|Y|

Y = a6 + a7X + a8Y + a9|X| + a10|Y|

Z = X2 + Y2

573

W = (N - 1000) / (NMAX - 1000)

Case Z: D = 4, M = 14

X = a1 + a2X + a3Y + a4X AND a5Y + a6X OR a7Y

Y = a8 + a9X + a10Y + a11X AND a12Y + a13X OR a14Y

Z = X2 + Y2

W = (N - 1000) / (NMAX - 1000)

Case [: D = 4, M = 14

X = a1 + a2X + a3Y + a4|X|
a
5 + a6|Y|

a
7

Y = a8 + a9X + a10Y + a11|X|
a
12 + a13|Y|

a
14

Z = X2 + Y2

W = (N - 1000) / (NMAX - 1000)

Case \: D = 4, M = 18

X = a1 + a2X + a3Y + a4sin(a5X + a6) + a7sin(a8Y + a9)

Y = a10 + a11X + a12Y + a13sin(a14X + a15) + a16sin(a17Y + a18)

Z = X2 + Y2

W = (N - 1000) / (NMAX - 1000)

Case]: D = 4, M = 6

X = 10a1 + [X + a2sin(a3Y+a4)]cos[2π/(13+10a6)] + Y sin[2π/(13+10a6)]

574

575

Y = 10a5 - [X + a2sin(a3Y + a4)]sin[2π/(13+10a6)] + Y cos[2π/(13+10a6)]

Z = X2 + Y2

W = (N - 1000) / (NMAX - 1000)

Case ^: D = 4, M = 9

X = X + 0.1a1Y

Y = Y + 0.1(a2X + a3X
3 + a4X

2Y + a5XY
2 + a6Y + a7Y

3 + a8sin Z

Z = [Z + 0.1(a9 + 1.3)] mod 2π

W = (N - 1000) / (NMAX - 1000)

Appendix F
Dictionaries of Strange Attractors

Included in this appendix are alphabetical listings of codes for those attractors
shown in this book whose figures lack the full codes, a selection of additional
interesting cases, and a list of special cases of historical or mathematical signifi-
cance. The numbers at the end of each code are the fractal dimension (F) and the
Lyapunov exponent (L), respectively.

The cases below represent the ones shown in the book. You should be able
to identify them by the first few characters of the code. The disk included with the
book contains the file BOOKFIGS.DIC, which includes the codes for all the cases
shown in the book. You can enter these cases into the program manually using the
I command, or copy the file BOOKFIGS.DIC on the accompanying disk to SA.DIC
and view them automatically using the E command. Note that the contents of any
existing SA.DIC file will be lost when you do this unless you use the DOS command
COPY SA.DIC + BOOKFIGS.DIC SA.DIC to append the new cases to the end of the
SA.DIC file.

BOOKFIGS.DIC. Codes for attractors in this book whose full codes were not given

JJICKAFXIOXFVGOCIDNIVRPSFYPFGABXKKONQWPAMJGKAGXDBBWFHGXBTPNVD 1.80 0.01

JNRVAPNYFVEDGIVLUUFLVKNVCGQFEHWUISYBJDFJCKLMKRSYVPPKTBFUUAFQQ 1.56 0.13

KIRCGTGYRFOSXCKFOIRNXFLPDLXPISDSOUTOITXGKWSQJGIMOLT
WJUPPCELGSLTRERRKTKJTRUCJQVMNREJTAYYAWJEJISIXDAEUOOIKMV 1.79 0.01

KJJUPXHPMACQRSPYGHTFLGCYTHUSKVNUTTYMMGIQFSKUJYJJHGCQ
YFHLVSCCXAEVHDUNJVNNBUWQRXJEPVLJLDAOBLIRTKJDDDIKQUCSVE 2.33 0.07

KKGKUQRWVRSUTWDGTQHMAYUXCJRDWBPHICJHHSTLBDXQOFFPMNUATX
RCYBMBSWHGBQPGRSOMRTLCYGRLQLTVQJIIVDLTXJEJOHAWUBVRNY 1.97 0.03

KKLXFIMKRYNPNSNVITIBHRMPYHHCNHWLUPKCQQTYNJAKGWVWLMBYFEP
MRUHRARLGHHTLGGYQHEQDHOQTFYRGVUHDCQGQHXYMNFGVGENSJI 1.79 0.02

KKSLVGUQTYKUFHNSDSWCSITGEFKVCTWKSIENMBOLBQQTGOYPHKGPFCYU
UHIOHXVMEFAMMCPRNDJRBQRQILCLELNWEMCYLUHIKCIFERQDBM 1.49 0.01

576

KLGFLNWTWETVNLHHPTLPMMDAJKBJBCCHTRIBKGUEDDDDITBJVIHB
UXIYGTSMGYXTQFASOOTOCDDSYAXGULLLOQCPOXSYVPXBOVOUHRNPQU 1.99 0.03

KLLRVFAKXNTCPWXWENDJVNGQAQEXTSKIDVOYMFMKNFWOFILMGRX
DMKJATLBGFUBOSWJHUDOPYLYWXQSORNXGNLNSWBEESQRTHUKAHBGKSO 1.24 0.04

KLRLPKPHLPXFQRGNCJHUTVSFPFTSIQMIFUSUTCOGFSMQIDJECRT
ATYGZQKDCRBBRTDXFWKHOBMHHIRHNLETJBWAPEUCNSERHFYDLLWNFUD 1.17 0.10

KNRRVWREMTOABPSKHMLDSDCISNDJQQUYKULFQILAWGNTHFSSYTUWH
YFRWHLUUSMCBARBCWHMGALNONSDKSXXBAPKVLXITVKFAFLIYXWBPS 1.25 0.06

KOCWVUCRHIBOOAKVSXHJOPGUQRBHRHNNOJPEMIJNYHVIGIOGPVBDQ
QNEASMCPJVHWGWFWTAKHYNTRBRJLCQTLMLIPJBTGHOWNGNOVOHOWQ 1.69 0.05

KPBMLWTCBCWATDWMVHDHWFKMDLJUERTMLBNNLKKRJAVHUTANQLULI
AYKQNXVBMHVGUEMWKAKECQJMETKFEQNVAVUXKQJRWBRRCSARKVMCT 2.40 0.06

KPGQHOXCGSSBMVWFQEKRLXEATUYYGEGIEIRKLJUYDJTNBRHWPCXGGU
VGFOWMSDXEDKXEJSHIHPPKQDZKMNJGMAFJLVLKWNKKLXPPVNKZEG 1.78 0.01

KQEDOFHXFPJEPRTQBLOOAVOOACBDTUTUPFDGMBVLGYDOFHYTORPWLEYL
NFTUEBOKBDXOPNWNNPKPCFAXEWRTDDLJXMVYHUPMMPPMWDEJDI 2.07 0.09

KQMPLCKLEWODOGMAWCIYBECAQLWEHASTRBPPOMOGEQKIVIEPRCWVEFSRHK
LQBVKCPPHWFVCVGJENSODIYBPYCLHVXOIQIODNHAWUUOFPCT 1.53 0.07

KVFLHQBHLNEGRWRHQKSDSHEIHKOGGUVTRHPIGUPLRHCWBSMKROEFXQMIR
IUYOLMRGUJLHMBNGUCTMOHQUEPPXETTQMNIOIJTTIAISQTBFC 2.08 0.13

KYECWCLFXSOYVGXRWWHJIAAJLNGWPELSLMMRUMTSGJISGDSKSNKTHNBCOG
HCYWLKXGLKBPOPNALOTJQNIMFOSOVGJEGQLILMTFUDYPWNSM 1.57 0.04

LLLRGRWWWLEAGRMETGIDGUKIFLPOPTJPEVSKTMAAWFPFLFTHGJBBFDAXTKKDTNFGALOAHSBYCBSGHKYYTKWP
MCGWDVYEVGBNVWYDJBRSADTVITQSMNIBADRXGKTSDKTAKFWGYOFHMSYYLKNXDMBKCLEWDHDWQVCVTFESSJUXY
1.74 0.06

LLOBPCENCHDFPDMGXGGHXYSNDRNQASITFDLIUXNOFJOMLHRBXQNSQYRPCRINOEBDSVFJAFNWQXMEURSBQKN
XCTOUCFRTVCQHUTYGJBHVKBFMDINQEMLFKHJNGBSRQBWLSLBWSIXOVFVPPYYHIWXDTWAMQDQGONQRNVWMTJGBI
1.31 0.11

LLQEHSEAVYRIDKPRPVPPGFHEQMBKCDXTAJQMWDKCAHPLBRJOFVRSLQPBPLSTXUVHUTXHVMBIKCYXFPXSOMPOEULORCI
HLXYHEFJOBDUTCPYPUCJWOUNDOWAMAMYVEMTHFDSDOFGKKDNNEFEFYUPEUFLRFWBCORHDRDOOGAUXK
1.49 0.05

LLVXALUXCGKASBOJHLPXGYTHEMVEPBGBFUGCPTAIEENWYURWOWJEGRYJFQETREOPQPXQEJDCBLTNTRORXWRCFGHYQK
UBRUAOOJAKHYAYNCCBBQUVJRBIFNWECRAJKXLREYDQUKFUITIMTEBRAUBTIQKABQSJNURTMJQCXADBS
2.01 0.18

LMLGOLTVJPFKQEMLHWIAQGEQNIQXFAQCVHEVKBCNVWNPYMNXKYIHOIDBMJGLOACXSKILBJAHYRPOJJLUYVSOVFUSPF
NMWOTPPXSTSKTOVNNGANGQHKVRBYVDGFCYWDYGJVYHBKLIBSMKBLENIPIPBNINHNOKPUIYQQGIHMXKY

577

2.07 0.04

LMLMBFUTNIMWITCVCNEFQTGGWNIPARFMGTDKXFMDYYFWVUKBQAFUMKGWXMASSQVIPQOELOBOUFRT
PQYAYQNCLYKCJQTSKLASOQTYTELDLKWQLQJPXLRNTVCVDYOTIFYUCEYAEROJSHYRTAVMLOXVJAHOYPUYJCQMIAKKMJNCQ
1.64 0.04

LNKNTCMVSUJKTQRDDTSHEAOXJHGWIWLOCFOWFRINXSKEDBXULGJFPOXYXLBCPEMRHIUADATTJBLEY
CKFVMPPLVNYVTWWKBNUOYGJPSPAHNTMFFWXFIMYORSYIKEKXYPKAWQAXROWMLDUSRMYQCAMPLLRTUQANETLKIQHBTVTU
2.13 0.16

LNMIWCGDRYTSUWCVPQSEWDLMLPPCCBUBOUWQFOOVRFYPJPEPIUCKHKMXINQPLAKRHBDPYDXCMGDGFXSVP
QNEFQXXJQKTCOQUBSDLVFIVWHCCKHYUDRVYHXATKBQBOMOYNPOUHDBIMCVJRXMEFLWHQCQHGRTHWSBCNWJUTHBDI
1.52 0.11

LOKEHGAFFWVBWLYJBUSENVJSYFTEIVNIQURQXLUTNGNKCPTHIMLDFEAULSHOKOSELHUMAQVBDTLLRINVH
CSQRWXJVPBTUCOWYIHIRUBFCRGOXFFMGKOPILDDMSBYSFJYFDUCXWFVSFFEKUMTKTEEMJGURWERXPJXIUOVFIDXL
1.58 0.04

LPJDQLOHBBPUULIYJLQKECLSLTRDDKLYDGSBCCBEEORIMIEBNVADGTCOEMHEMGDAMLTJVCBQUAFBGPVIKO
VHTIBUHVHQLKBMGVPKXRXNHMQRJWIKFMUDTHFTBGSPOIENGAPPKLMRNVTVTNFXQTFLLCPAANVBRFSIQQJONGSRY
1.59 0.10

LPSONLEWSHNHOGIYSDORACSUHFFRQORDFTEDARDCDUPFSCHCLEDWNEOFBNGVDAKIYNEBQQDHXHMMICDXT
PHLBFBCYOHGCLYOHQTEHXOTOBTJCFKMUNIJYRHTDLTRRWLNWJCPMGTDPWRRGUTUREPUNSSRPYRVINGECTLTCVTQR
2.02 0.16

LQGUEQNPDOHTJIIBLBAHSGBKUBOIOLLBKGLBXTECWGJKBMLXFDGNDVKFKLBRABDOATTFJNRNOLXSEOKFD
UXYHNQELGNGCGICJTNJIKGOLBNJORKRWNLKSWJTETVQFIRBCSYFRFWIPWCALLUQXKQRAQTTBJSQBHQWNIDVBFCXP
2.14 0.11

LTASNEPHQORGLRLCDNJMWHGYYSGHKLMAPHNPOMECDNTENEXDKCRPPWXTPMTBBXPSYSDKEFLBQEVDRNGJLY
FTOAUHVVUGUGONARNWMPCSNKDTYDVMGNUFGPJVOSXMCTFAYYGHXQAPUYIRVBDFRAOHWNALCSKAKPKOANEXNIOGP
1.46 0.06

MKAIUOAYHHCLXYSITCWUNWOLMMDCEQLNQCCMPPHAONXEFCHLXVGVPLRKOFNPS 1.41 0.01

MKWWFTQHWFFBKCFHMUSVFFFANCROGSSPPGOYTTCAONIULPGRITEAQVVQICBKK 1.59 0.05

MMDBTQODXOJLNOSVMTKEICYSWNSLPFNMVLKNSNYNLPFBPKMMYRUYSPDVSJDUH 1.45 0.03

MNGFOFMKCYIFGJSSOVQKUYKUHTITJWEMUHNPXMFABUWXGAMQNQOXMGQTVJQOA 2.05 0.02

NMCSOXFIDMFWROAJLWHYGGVMSKDJHUDLVTYJMPAXVIOQPLTQNLFLPEERFQTWQHSOYPJBI
VEMNBUEURXYUGHMQAIMVRLPNBBQENHGQUDJULMNNFXCKXRXFSGUCSIGLPUHLVXAXHIRTONKH 1.54
0.02

NMCYETOQNYDWARWHDVVLWOFIDJMTXNDKLKYHMKWOBIJFUFRJHVSSWNBMYELRRUIFJKLI
EIFMMHJGNUMKUPKFVTGBYQLRBNHIOJUQWQQWGIMATWYVFQQGPLVJLPOVSHQDRFNTCMFRKALNJ 1.46
0.02

NMGQIXCGPIRHOBACEPHYADFLIFPRLWKUAAOPMQHHBPGAJIXKNHOPRCCRGFXHBOWBEN

578

XLJLIMQBGEQLYPJREMTOGGSXVXPMADNFRJOVQIPXMRRVWLAIJVLPRQGHFOYEVOWELJOEGNVTSGW 1.70
0.02

NMHHSPLAXQSKPASBUMAEJFHNQGGFXFJASUJLMPGIPIHAUTXOHXCHOVDDKEKT
HDKLRIISWVEMLQWHVYSTIUWBVDGAAFRWKJHYRAEQTIWEDYMJHEWFHIOTUAKVDPLEUMBRODUBBFCDVNLUI
1.72 0.02

NMHYYGLNLOGHOXYIVNWQDVIMRNHORRRWWNKGMNYFMVVQRNRTMMTLOPCIQRNVNDUN
WMGFIBOMEFWGIKFSNPRRMCTCGRQCQJQECWDQVTOJEOMLIQJMHGJCJCTUSIVRCDNNSLRCEBUFRECXS 2.17
0.13

NMMQXNNYLNKRNTYJATXWDUVGPEQRRMQFOICLMDUEGKVRQKWMDXRNKWSIHDVBNGOXCP
FPDNPMFVBFKLOSDGWVJVXASWWRQDVCUCPEBAFXMFMGJALVQEKJXSGFIANFGBWSTLQKKFQTLQHIU 1.69
0.04

NMTICQDDQGFKKPIGLWJDRHOBVHFNIHNEQCYFMJMYASPNVWDECDEPTWEOTRWVQSOOWIPH
HFRMQCVGVEJDCSVFPVMEWMMGEOJQBWLJTWMLTLMNTMRILAQOQBAUYVHHJOVLDLVNYYJDFTENB 1.58
0.03

OKPMLHFLJLOIOOEUWKLFIADMWLEJEEKLCNOGRJKVJIMGQTRWUUILEPNLRJWOEQSMSKWN
LFKKSLLNALSTGWDDIIHMJIYJHIAVSNYUTDSOSJEPYDIWSMQXKBPNHOFPJRLPIISVADUTAHTPSJSSMMNKTEXHEJWRGGLIVOIHXIRKDJ
PMDKGGELUUSABCJJJDHBJOMSWXSFJLPNPMXFOWYKUKOHLUCYWYTNGJODDJKGGYAKFNEGKNDQKEYQR
AQWINBBMBQKTRNDBJBVJQEPXFMXTFOMDCO 1.55 0.05

OMMOXNKSAWSVADFBDLAERLYNSOBBXKHLXKHHVAUUERRTVOYMCUIBQFGJCNSOPJDCWSJBVUNMWSYJH
FAEMDENRIUJMAHYQTTPFIEBBAFEJGTNXLNLPYTBWGEFMPYXLDTPIQTJLOGSAWGTTMMFKDXHESYMDK
GCTDLNXDCVGXYJPBBFHAJGTKYHIWVHFCDHQIKQFQKPXIXRCLQTDMCRTBJMMGXQYRQWEKDWWCYSLFCUQUSFBC
BSMSXMXMQTFGVCNUVJAHCVJQDGMHYSOUUHTGGVPNIWT 1.95 0.02

OMOQRUJSLQIHLLAVGPORHXCLMMXSOOMGQWBEJLBCRJFIWLDFDNABPOUSJVXEIEXBYAHR
OFAMSPIJPMVPNJKDOSBUJKKQRGMMBNYVWQFEMEGSLQVFMUYUHLOQSPAPMIPOBHASJBTSTWEFKMKIJQTQFRVMTFAA
CQQFDBFWFGXSYMHPSVYYCJWEWVDOHXTPSNDJNFPGJUKRSEPQMRGNLPNMODUPOITTMGQNDXVYYBDFE
PHQAGCRJHJISYGPGYIIMASXURGSBLFAMVYUWTOSHOTCEGBKT 1.44 0.05

OMPRETYLSMVWNANPNRJDKCYFJXMPIUFGWTCYXELNGNRHDDPLWLJUMALFPIHTV
LKMFGJNPOCMSWWNMCJUVHBECHDOACRFNMSWNHCOQAVCIWCDPDDJCTJHUIOVRAMIPAOPDRQ
BVWSCLXRTXMEHALMLKEEBVDAVLJIWOHEWBTMWEQNJVLUYVOUTPPXKDOTODRFQWKTNOPVCOJNVWRKLJ
SCMGRKIAGRVHJYISDDECLROVLBWFWCLPYEMMEDJRHMHPNRQWFJUOSSAYFUCYIPPYVSCTSMDP 2.16
0.04

OMXLIBUDPLKNSYDVPOOVLCAIPMVSKGCOECHSOQEPSYBFTAWJHICAVYO
HYQLKRJHTTHOPXPMMAHCRGCWLGFJERQYINJNMKTIYOHIMUQVUNLLCAHHCLJEAGULJBKPJXTGRTSBWGOJ
RTQOIEMFTTJLRIUFITMQFCWWONTSTLDDPVSBJQRPTEYMYXDQUON
MKWALSJSLVCMCNQVNJYIAUOACMYVPCHKPAYFWYRJLKBMYRLGQYUKCD
UDENHRUBIGNFKSJPBABQSDYOXHLMSHKUIIXBUDYJH 1.39 0.02

PMRPHCDNPOKKTATVAYEPWXDJJSCWQNPYQYNJQABCSPUM
FBPDWDSINIEXPVHDSMMRKOOPLGKBEHXIYONCTHMTUJSUCCROEQKNEFDWWQSKUHXOHMKUGXMUJDXRIDDAT
AOMTEKQETBPYBWAWVCXSRVCALBQCVBQJAIVALCCMEWBQKUQVGPLAJLWERAKSUACWGRIEMYMJTKDHCKQRBFLDHIUCBFHRBEUP
WOCWNPCKIHNQORWYMADXLMUPVFMTXFIEMELXHAVEEOEHDOOGMICLEWBPQBGKMQ
HJOLBEMAXONWJYXETOBPOQCLTFFVRYVOVTAPJCXDVEHTQTOIOALNHVTFKVLRNK

579

MIYMCRCWKFTWLEIAVDPLLOHHIXHFJPMQSKMLXXPDGGMFKAHLCITVI
MOUPHSUSEQQQJEKNYMFPVNKUDITCUELEWP
WWPLPISPMQBYFSUEKQKXNTEVUMROVRAMMIVYAWMYKMDGILFWUCEOLTMBGERMWANBPXFWKREQF 1.93
0.14

RFEJMURNKYSKVHFJXVFDMBKSBJFFUUIBTEFUDKLRKSDLTGJBHHGPHUHLQYSPG 1.61 1.22

RSCVKBOZJYRMFXUTRKLPCNUEACOFHWFSTPFXNDRKGHVWCTXMLRGXVNCBPEUMH 1.69 0.00

SAQKAETCTPFRJAKFEAQRHYFLQZXHNBZGGGJHSDMQQRYYRSWVHKU
ORXKNXPGISSZETJOBELEUEALMZYSDXOOLNPQSAUEBUYAACEBFPMCWJP 1.75 0.24

SFDUKQTRGSVQGTNHJCKNNNCONFTCEJKXEIPRMJMWOZKXHIERPG
SLKDHYAKJKAOLDWSRUIKJMCXAOXTXJFKBORSIAVJLCFOKYOTDUTUEWOA 1.66 1.06

SHBNLCIMXEHDFWCTGGTHMISUIWQVKNOGMRKXUHGAWBSURGPMQGNWIY
HIXDWOEMNSMHNGSNRQUXBSMODGHPAHQXBRNPLGYPFBVPMONHPRDN 1.79 1.13

SQFECQRRYIURKSQUPQJFXYIGXSIBLHXMGPPQIAZNMOYVDLCAWDKMX
OCMDFHPVRROTLEISGDMYLOIIPMIJXMNSZYMOQSTDIRJRHEUTJVULN 1.53 0.11

SSKBHUTGPQHPOEPHRDGFXBALTEPFKACLGRQNWPIIBOGXWOJDLSKQNF
XYITSIRDNIBBFLCDOURLWRFWFEFIOYBHMMTBVRVNJWWFTBULDJEB 1.55 0.15

SUISTHIXFBRILKWHLDWTNCQZSDCNERFJGXAJMEXFVZGTQDDOVECKJQR
SZDYLDBGOEVMGTKYBPSZKXUYKTNPFRMCINCDGDVNMIEXLBDRMKP 1.65 0.45

TBEIESEQRCCJAWWIIMLCJIRCVBWJKCDDRBGOCSLIWUNQNRAGFDOBFOBCRXTVVABBAF
GXLWFFADIGBVOGUROQITIGGDKEUFLVUAJOWBXNIVRAPRTWCXEMMQMDIRWJAICFN
NJKGHBDFFSWPEMBKYKXGRLCSTIAGASCOSPJTFYEU 1.02 0.32

TFRKCBHSZKGAIBHFDVHBWGRWWGWXOPMNPBBEBICJJEVAZDIIVICHNQQPQIRU
MMAPIWNQXEBBOUWGQXJLQFHJPGRDNJFTSCHDLSDTLIHSHEENPJDGFQJJAMEDDILOPUECKN
FIFHWGPSJCOQAPGAEILMOXOQHMRECTRKNCLNHYE 1.90 0.00

THBDSQARKUURSXNOXNTVUHHCALECVHBGQXXACJJJVNCWCXPTXB
FCKGXQSPKXZXCCKWMHVNDAJDJISIOEMRZONFYLVXNLQJNUQCNRZJJSLKDWBAXMOTQAGN
MMGGIIVLOPMTSOCBTXWRDMJJBCBUJVDPEADZWDULHNXDJVFPJFT 2.28 2.36

TIKDSMEKSFJJVOHCDMJQQCRWJAEAEOFLLTVKOUOYRQUGRWRMSRS
VMHKUDOBLKEOARQFQCICONTEARQPCTCVTMLQMUDUUOLVBQUAYOYKWQILMHOJVGL
ADWYQJAXXLJYNXWIGHCTSAETKIEOLGBUQQFJASMQGWNWGCQRLVFADJR 1.89 1.42

TLFBEBGPQAJQLXYMFGYJCXTKGFDZKCSTBCXBFJESQKNOGFGBPWLLDTVL
LPPFBHSKMMFKJTDQQHHSHJJFXYFLNDCXZJXOCQTPAHFLISHTDHFCKIYWSGNWYKEFRW
MAESTCGPRKDYEBSGWBMWQEDVEEKEZJOSQYWVJSLFBKIMPAI 2.08 0.58

TNGLFVWPULUKVAAVNVVQFDYANMFMYAJIJYZVYMGLDVXHCPKAVXF
RMJBCQMKRDETSSUZGVMQNEIYHFTEKLPTKJXUFYGQQRKKPEGHIWZPURYSXOTTT
BMNYWEAUMXLEODVWIUGKNDRRILVUHLFTRLUGFNORBJEFMEEMGGQIHBPWS 0.01-0.00

580

TQHTPBVXADIMPQSVRDTOTEUGRXODMBJNGAAYTXWW
DDDXDQUONAIGEDVYFXPBGHIDXJOXHBACYQNMHFONNBQXQCGUCRDYDBRYTLBMNXDKNMCQF
NDDYKJTBQRFBTWCKHVMPGJUWOHPYTDNJUMKYLYRNUEBFDBOYSHODYYYAYEXC 1.73 0.31

UGLICIRJDBAEOQBFPHVDSPDIUVHNRQHCVYAEBCNPSFNBQGAQWQNKJDHQTPQPR 1.46 0.09

UUHXPWNCEPURTFNMIOMYQOVRENSHECMCBGEDFHOKXESOIQNUGLDRHTFVNICEE 1.61 0.02

UUJBACFHDEGOKAPREYHRDQAGWPWEWGNTXXWHPPBRCGFOLHOKQLXBIYJPQYYXL 1.55 0.00

VFFSCILFFJKHLPTIXBMAJLOOIXCAIYHILEGQHADVECJ
FHRYWXBXOLMNCUDHJILAGGFMCPSDPKEMOHJAYDWXAGQVHVVHJIIEBO
NJCHSTCCXVHCEVXQGYQPCSJNPUUNHRYPQXBLLUURIXEB 2.15 0.00

VFQGCVARGFCJIGFCJIYQWNAQARFLGRJHCABE
JYGPTBQGWOWEKJTCFUJHJBJSODRBOYEAUFUCNWAJGVRNJNCGKVKB
PBLVTPDELMLMBDAVFUSLIRRNBPWUNGNHUGLCFSXJGKYOSMEBKEHKY 1.55 0.53

VGKEMAGQAQNXJEXJBSMEAXYCMKHYFGCIULBNEMFXSQCCOTXAUIW
SFYKOEQGGJNJQYTTFWAQFIKTYKDBYTNGYKVEBRIABYHWJJLG
USPFUFOHINREPFALYEULXLMCQFBEVYWNXAJCPWVIJC 1.72 0.26

VHTQNWHDQRFGFJXRDQYRWNCRCQFPSBSNVPESANICCHC
SKCQQQMNCYLEEEHJGMKYLRJIWFEORUNBDYQWFHWGNIRSRKEFYOAFM
GCRBBQXDPSCQGQYARKRIMHOPVKFINAHUXOTTLWMMKIBUQ 1.51 0.03

VIPHNKSOEEWSDGCOABBNEJXOBCTAKHTDEHXIFJVHIRTQGXBOS
RNRFRFRSJOJUOERMJTGMJBMMWJIKTMMIHBREBUXDQNEUYYYVL
NIWJLMFQOQUEYEPDJGPJGLDMIHSFCJJLWCXEDDETIHB 2.32 0.27

VJEVASEYAEKHGRQRDLPHAXOGBVIOCSXVLVWXGOBTFUMQTQXW
SMHBQGBOUXRKYEPQKBRMRSPIFPGTBYVWFQRYGXBLBVVVELYDGKQ
FBVGFLJMXMBFJDTSUFPPYAVDCVDQGBMJRUBVLDOSXI 1.80 1.28

VKCLEUHORCIEPAEPGXOXQICXPOMNDFWFOFEOSAQCERPLN
FIQTPROJUBIITHOGKLCIIGENHRPIORNRXDRRISYFBBUFKBDKWSYB
NORDVTFHPHDAURTMHPRVXVFWSGVHOGSCRDIKMXNCMRPI 1.90 0.04

WJCUJYONOYWSFMVSWQXTDCQTPWHWTFDISTVUNKMJGMUWRSGQIBVGU
FVKPURLEQKTDUGOLJFQVVMPVBLMEHQBWHLHAXMQYTLNVMYDRQOCCKXREWDLUYMHONCRWVSEI
UOJJCKIGQVOFQAXIAXCQVNNMJONXITKIDNVQSRSGWRYYBIYDHASUM
AYMCHOUOPKKBKBJSTWSCVDVXDUSWXWOTQMKAYWQNPBG
SHNWSGWRBUSGELGAASIBFBJUPQBIDABHCIRJEKRVSMYDRWQADIAGRNAKYYAD 1.62 0.36

WJUKEUQUEHVWQKIVEHANFQCPGOYIGJCQUKIDROQLRFRHPMYDLFSQIOXUSODQQ
OPBAPNMWDLDNLITGAIXAFKFBKYUHGNPIGWXKFEEADWMAGYGGBWSSFVIBAJWJVFQG
BGBNKYAJOQJADSVEMTHDRINKSTALPSNXORTFLGYYRRBLBMNKDCMW
RPGVRTHHKKSDDTOBLVSGDGORQIMSAUKBIYRGLPJLPC
PHFAXKFAHCGSFRSMYJPTDNGYEWSNESCHRCPLQHNOWVADJXCXFDVMSQRSYOQHEY 2.62 0.00

WKDEDPGPQXLGMOYNFBMPSIYDQNGTDIYKHFLSCRYLVKRESBDQHBRSEHGXGELVCXDVBMQVSAOPDSITCQ

581

NBNNHUXYFAEIBOGSJMHWHTNKOHBLOHBLQBRDPNKCXEOOHMUSHPGFYNYOTLVUIIEMUNBIFH
SGXOLKGBINCAPFRQVURUHEUIVARQWIWUYNECWWCVCGHINKEKFEATHVRCCHXHIROA
RIAFBWHHQMUTNVSEKQJJQWCGSCULQURQSNHGQAREIPCAJYXOFWJKKSNJDVYEUEPJBHELO 1.76 0.18

WKLAAVLORDCHCPKWGNJLIXUHKAUWAREVFQSGSIKIWRQJLTRHNFUOYOE
VAXJXYSTWXRYGEMQYQKEARQULSQWQIYOXEBXMFPBEOEUFTQDGSBJELDIJTEGAOHRR
XDNOQFTCARAUWJLICIUKHCCAKPMTTRQAWFFWLUTLRNUJTXMALIIKBUBEVNIVMLUJTYW
LPOIORFVADRHKVFCAEWRXOKSIBGUOKKBEREBMJHBEXYMJHXXMTELYSKXYSKVJCSLFS
HLHPTWEGKPPGYYSPFWGNEHAVERBY 1.46 0.41

WNFIDCJHJODNDTYMYSQPICGMDDCQYEODQHCIPAYOIERSSDVFVHQOAC
KDEJIKPOKVVSYAQOJPHJJXUHKYJSTGNSLFFITGPJEAUHJYLEYASIXWXFPGGBGPP
MDERGKEMYNIHXRXHFPMJXEEKRFVJNVDIHGJUMWYTIEQWSAROHRUNDCYSGNQ
EANEWJQXHRPUDCBHXGAOHTWRKKSDAEDJYNSNARSXVUQIVWPGVVGYQQRBGODPJFYDWQQXT
WPJDOKQEQHESDNCOEBMLKELJBMGHAMWETWDU 1.66 0.00

WNHRNECEKBNTNSVBIBKNTHKYDMTDJOPAMRHQVLMOOKKCSSJET
XHQFAPEEMBCJKVKBSFRDOLQJDUYVFBNGWCFNBDHTPCNODDRQUYRGXQEILCNBKRXWIGVLQMIS
JJXRWEUOLOTXQKAIGLOASPRAXQTEVJXGTABDDKTRGYQMBCIOKCXUHGNPXFCIMGFQMV
IGYRHTQGSXOANGWBSKQVIKNCTSEEWDHOWFNWBDRKYTSLGGTKUMAWNUNTONPWMAVO
TUKSYGRQGIIRGELFRKPMVPYKKKGCLL 2.21 0.17

WTQRFNAVWGUNPKGINIXKVCVSOCGUJQDUHTMTKSROOXVKTONNHQJFHVU
GKGDDJCEHHXLSVOMVDDQYMTKRVYTWRWJNGSXHDHGNRVFXNNSWINEDCAAFQBQJMRSUL
FUIBEKGHMEQDDRKAGWNGDCWQLXVTQABHNMOBBGHHERNQVNVWQLMAQQBPFRLAUCOQYBBSUEISAEK
RJOHWMHNWTKFPKGJBLHVBGVNWSEQYXBRAFBXVJWRXRJOECFSLIQBVGXRJVVDAKIE
YCCJHEERAYSCRLEVNHGER 1.78 0.47

XJUSDQKDEJYCDRBCBQFKKINFBFCIHLYWDDGHDSYQPKWIAGKVETECIW
FODMNAIJKATEBDCFMIYBYSGPFNLFPNCCDVATVLWBJCPBEXWVUPBWTJSTUUYEXOBEDDUXJNIF
UUWAXIJEMTPCXKILNVLYOSNTLFTBTFMFWLBJYUHLJMEPKJXWTYIWJDPCLJIRQSROTUBHQWBMBDIYIEBCPM
LBSOVXKDDKTOHRLFGJKKLGJAONUQXJYXHEPXMGROTIMOPSWHQJDELFHMAGFRPLBJIQQUKNNEWQG
HRGSWNNUNIMNALFLPBGNHFYDKPDOWPKUGIMYHYTPAOHXUOTCPAVAQLOADUHOVFDSJRMI
DHBPXYJDLRIPCVJBFXEQYIDDYFEICPTPLGUNRSWXJYH
GQKNETCYEFRNYUSSDGXSWRBAPNFKNMAUHMHXYTUQMPXQMGSJSVFK
TMJKNINYUFOBEFYGKCWIJWAEMOMTTRWBJTYOITXIJWGVGAPHMENULICMSSQ 1.65 0.33

XNOYBECRSMOTWDWDPQGPJPPEOSJLUBTKKGOPWQGQTSPBMISYTUVHN
WWXUIGGJRFKSMRAEHMLYHQCILLLKBKJJDWSUFQYAUETYMVJLCAPSUSCBUHYFTTTAG
OYFVEEJXIDKCPOGBUSRXIOOAUAAKTEUXIGICEGWVULNLHBHJOLDETAXFICCSLIT
VXTJREJGDTSHIEJGNVHLRYTEQVNKHJBVAFGJMVQFSFPGDEFCQAEFQXFGPEROFUTWBPRFUEBNYBYMYMINMO
LACTXNBWFVCHETYYKNCISHRRSUUTFWKXMUALWPESAGWQHTRBWFATKQKEAEBRGTQHDUEYMJYGIGMNPULLC
FVYLMXINBUASIBHYRMKDXHMSAGSCHLVRUDLJOVIHQVTKOCCUCQSWWJKMPDROP
WXFPSJLKDEIDMFXUHWFQSBLBNAISWNSWXEPCUXUAHCSVUW
YGLLXNPCRXJFQYSYJJXMIWTWVPINIRPUMSDWPCTMQGWVELQMOFEBUB 1.50 0.58

XPOOCSENDLUDHWQRTQDCQDHPWSTUYDLBKQKWIAKNPVLAFNNANJXBYNSYPASAGDEDHTDMWKRVUM
RRNQIOFDKBJYQTHFYALOAPCYUORXLYQKKBDFKFYSXDIHSPKGUDUVVMGDAIQHEDMURPYAQRONAFMJI
XKGLQVNXDYBKYMMHHHYVVGYDAKBLMDJMYOYFCIPCVYCCTDREHEPFEYUHUHUVRQCMBYPXUIDL
UIVDLJJBNDNGERYWLFDNLGKDRYUDPVWCWNACGGKYBIEIKVKNRNFVFEVMXMHIMJGKSMQEOQFVVCBP
JTYTXYVSPOQYOAPEOMXOQBHDLIBWPNHOUPUUXJXJPYOSUGQHJCEQDNAFAXDEGRJ

582

PMBKSUNCHBELOANHOQUYSWITSYNKYUMUKFPNMKGXPMTRHYIADGKKFPHAKGMON
ALAXAICFVKURUQGSEPDAIUPMQSEOFIDUQUEKBKGTPBYRMWUEFGEHSUDJJKBDVK
CDXNIXEARYBSNEAXGCAK 1.38 0.14

XRDYAOEYFENFXMQMXXPSSCWORVLAKLAFXSADHCQGWDRGUXUKURRLOAQTDYUAVCPJPUPC
TPLWVIOXMCCHRUYNNPGYYYBTSOHALFLBLBGQVIXKUJDSCTPFDLXJOBXLKDBTDANERYUD
ESXIIRMJFBOSGBMIAJKCRXXNLYQAFVBACVXQVMRTJFUUGIGOBPCKAKOKPBWMRQQYVYGJ
WPOKTEHEBWCYYIBXVOLKVFGHDPQAOQKQUSCLDCLRBDPIIFRCMLULATVPCDSXRDIOYILUL
OUUCFRUGWWXAJRHNOIEHIUPMMCLPJSOLVOTTKGQNRNALLDKIIOVAQNAKEQLETILABC
ROPKFXXTPHGVPGUQLQIHJGODMSVDWCGPKYKJAJNMMJBIUJKYPHFYBH
PEAOBETXFGKPJKTDOVEPQMHCWNARVTVIIMKUPCMUNTFLQAVWPYABQLNYEAHFIMQRLGHJ
YDLIGQFAGAYKNQVOSXWSLHUFTQRWIHWFDJCELYGHXFMQ 2.31 0.24

XTPXAPOKYSXEJCLEHGQGYXTGILQANWASHNBSHSWNQHHUPOSBWSXDDRPUQPTJVPGA
NCRXHBFOMHXHEJKHRTIHHPBRPVEXOCFFNUUUUHUHKSHYCTJGAJMJAMUKIMQJOBQDGPDBLBN
LMVAFNYGWCJUPWHNMWOLTINFJUEMSNMKUMABSHYBRTAHJRDTFGIYXOMFAYVXXSSXIUQFBGOETJK
KTNVQPBFPQOCXNQJVROLJOSXIQFUAGANAJYQIXHCTJLLQAHEJODVVDGJMPBNR
GFFJOYGADQESGDHSCORYQCGPYNTBMUDDOGLEKUOMQTNEXSXOQKMEHFFAGTQ
YIFVDRCGDTSUKEBNPPXDHHNKNOTEKMWDHDLGNEJUITQNGXDLBN
GWSYJARIIIGCQGGGQUTTCJYUQNFWWTWBDIHXARWNFIFSMUNWLAPIYTBDVGVCWCPUIMFWWKYQOKKO
PGXCRFSEUPOKHYTPOTECMIOHCSFGSWYCUBPAAQEDAMITQSHTG 1.81 0.45

The cases below represent a collection of additional strange attractors
chosen for their beauty and diversity. They would have been appropriate for
inclusion in this book if space had permitted. You can enter these cases into the
program manually using the I command, or copy the file SELECTED.DIC on the
accompanying disk to SA.DIC and view them automatically using the E command.
Note that the contents of any existing SA.DIC file will be lost when you do this unless
you use the DOS command COPY SA.DIC + SELECTED.DIC SA.DIC to append the
new cases to the end of the SA.DIC file.

SELECTED.DIC. A selection of additional visually interesting attractors

EAEUBNVIAHERQ 1.36 0.16
EAHSVIGTJKOTB 1.22 0.12
EAMTMNQQXUYGA 1.27 0.10
EBDNOAXZJNRSG 1.41 0.20
ECDJXIYLSYQUM 1.43 0.11
EDSZHYZHEKUNJ 1.45 0.13
EENWUQSLHYSAT 1.46 0.15
EEURCEQVLRNSF 1.04 0.09
EFFRXAXMGLFNI 1.31 0.19
EFHUPPBRKIWHO 1.43 0.05
EFIRCDERRPVLD 1.37 0.05
EFMMMYWCFUMMM 1.59 0.18
EFOKRIROFDMPQ 1.01 0.09

583

EGLXOESFTTPSV 1.77 0.12
EGOSXRBRCBSPM 1.26 0.19
EHGUHDPHNSGOH 1.46 0.03
EHNHBMWMSVEPL 1.18 0.10
EIFLJUWMAICIB 1.17 0.02
EIFVQJFOOLVDV 1.58 0.11
EIJYRRWOBTMEN 1.44 0.09
EIXOFHUZSBQHK 1.35 0.10
EJOYHUWIVDACF 1.31 0.12
EJXAICXIXFRHI 1.37 0.12
EKCBIUIPLETRR 1.20 0.03
EKJXKXKKDYTLK 1.36 0.07
EKMMMYSUKEMMM 1.50 0.12
ELIRZLTCPNHOX 1.44 0.11
ELRWEFKFHUBHS 1.33 0.06
ELUFBBFISGJYS 1.59 0.18
EMCRBIPOPHTBN 1.39 0.05
EMFPGVXTIIDKB 1.48 0.35
EMJDSFTVHGEEV 1.31 0.02
EMLDRMQYIQWQD 1.34 0.21
EMQPUKNVAGCBE 1.64 0.43
EMTGETXEJWCUR 1.44 0.07
EMTQIBOXSCMRC 1.24 0.16
ENDVDPLVKBXEF 1.15 0.15
EODGQCNXODNYA 1.31 0.07
EODSTPMSDFIAO 1.46 0.08
EOOHVSVPDBGXW 1.26 0.01
EPKBNVOONOTTC 1.36 0.30
EQEGJUASEDNUJ 1.41 0.25
EQFFVSLMJJGCR 1.37 0.11
EQHVHQHYTEYQA 1.60 0.22
EQVEUTIPLADHO 1.26 0.09
ERLKHGBBDLIKJ 1.48 0.20
ESOKMLEVUMKDW 1.26 0.07
ETAPDHJKMTUBD 1.33 0.03
EUATWVBSHJIWR 1.35 0.11
EVAVMXOETHDMQ 1.23 0.11
EVBUQHNYPGJDF 1.34 0.37
EVBWNBDELYHUL 1.47 0.13
EWNCSLFLGIHGL 1.24 0.05
EWQKCSBRBQDJX 1.28 0.17
EWQLIJJHEXMPP 1.05 0.05
EWRAHGMIKMCHF 1.07 0.07
EWXHJEGNRHQFP 1.26 0.26
EXXFGRHFTPDWD 1.32 0.22
EZMCQGIXPJMJB 1.21 0.28
FBOJESOSHMVVWMHJMQIIQ 1.40 0.09
FEROJRKQNOWMUXJOIYLIM 1.21 0.07
FFEWXYQONQQJNVELRTBPS 1.43 0.21
FHGVGMHYSSJSHFWIBTSUA 1.16 0.06
FHHOLCTHYWJITRPCYLEHO 1.08 0.16

584

FHWHHMFMKFBEKIKSXLMYS 1.25 0.02
FIWOJAIIXSPLVYKSUHUEW 1.21 0.12
FJMANGGKMZMNRBNKCJGCK 1.34 0.07
FKDPVHZGDBDFPTCQHFLXL 1.06 0.03
FKMIABSKYNEQUXZZHSMPC 1.53 0.16
FLAJYVHGVIHGBPQWXYSRJ 1.19 0.29
FLUUCTCPDSRYFJWBQOCYJ 1.21 0.03
FLWAQNQVNQOOHIQQMBWSC 1.25 0.05
FLWIAFTKMWQJDIUCXKEKU 1.23 0.14
FMDEEAVWKUXTHEYOHOICN 1.19 0.03
FMKWIQQVZNEBRWNCJTLON 1.20 0.01
FNFIVJTOSUSTJWCJAYCLM 1.49 0.08
FNHWLFXVXQGPFILBICUJB 1.14 0.04
FNOYESLFRWEWERNDUKOCI 1.19 0.19
FODKJNNRHWCSUAJTUGHBP 1.29 0.17
FOGUKSYQYMBLEUWIHRKTQ 1.34 0.14
FOMMMMMMMKCXIDMMMMMMM 1.16 0.09
FQFEOIKPUKEIBJOTDQAMY 1.35 0.02
FRDLDHYKHKPWENJTOWOXD 1.63 0.31
FRHBYPULLAQSYMQYGREQP 1.27 0.13
FRMMMMMMMSYPVKMMMMMMM 1.22 0.19
FSCEYJHFADPMQDMCUWKVW 1.12 0.19
FVFOTKULQICUAFLQHUKPX 1.05 0.18
FXHDPILBCVMHPOJFVXIWK 1.10 0.17
FYAFYNGBDDHNVBPSPAIDF 1.39 0.14
GGTLDSNGVTBTEINQKQDPQEGNVFMOKES 1.44 0.05
GIGXPNBBVEMODKOCLXERMUNVVPWECYS 1.38 0.07
GISPJWDOAOFTCUBLOMEWXFCXDJQDRDU 1.30 0.17
GJNQRXOIMQLYVLQUNWKDCMXQAOYNZOT 1.52 0.15
GKDSEBTOQIOKPQYHKJUGSWYHMKICRYS 1.30 0.09
GKJWTVIJQTOGJDROEPYKTNWTGABNVBN 1.13 0.18
GKPQYRIDMPDGDKTTRRQPHOCFAOWRABQ 1.23 0.06
GMEHSXHFEMMYNXCJPRTKWADSAPIBBWR 1.44 0.19
GMTBIQYTGHEOJFMLDRXEIFJHLUPBBUY 1.56 0.24
GMVMMPSBXJMZCOFROXCKAFGVDQOKGIK 1.06 0.01
GNCDXEXXMVEOQBKWKEIMXJMLTDEDVSR 1.23 0.11
GNVIKAVSGBOYGFMTIXSOQNOTCVDOZCR 1.36 0.04
GOSLDJIOXHGVDTGGNCNOQYNWJBFHYLX 1.35 0.15
GQHRLGBFRLNFSNXGUKGWEJKFMQTGRDC 1.41 0.07
GQIWKNIRBQKIYSLXLCCKGEUQVUELLLJ 1.14 0.03
GQXEHVCCLDWBHSHHMUUABJRSPJLTTFC 1.51 0.16
GRLKHETMSIVYWMBBQODMFNGRISGHBSI 1.41 0.10
GSELTBLWMEENVFBSFAXMVDXKKEDGYXL 1.40 0.04
GTUFSHTHCLKCTBYWNMCISKERQISFVAV 1.32 0.20
GUMMMMMMMMMMMMWEODFMMMMMMMMMMMM 1.02 0.08
GUOBMPCJRXSHHSCPMQFZVNESALEKOHY 1.49 0.24
GXEMONYFKDJMDTPNSLGHQLHOOTOQBUN 1.20 0.18
HCJBKUPMMMMMMMMMMWMMMMICMMMMMMMMMMMMMMMMMMM 1.39 0.07
HHANQRENHONYATQYPTNXKNMNQEGDWKYPNSMMMODAOBC 1.13 0.01
HIFZLMPJUBERQBKLRRDOWMOLICDPVRJOTHOBSFUKGVL 1.39 0.24
HJVVHSHPOLDTXUCNMYRAYOFBMAAJFMLNAHJQOBBNXQX 1.48 0.06

585

HKTSDLOMMMMMMMMMMWMMMMDCMMMMMMMMMMMMMMMMMMM 1.41 0.06
HLONENJVYCXAJUMHKRSEUAOANAQGULOQBHKNWQOVOJN 1.22 0.13
HMOAQRKMMMMMMMMMMWMMMMYCMMMMMMMMMMMMMMMMMMM 1.35 0.10
HNBCTKKSQMGKBDNBXSLIFLJWOONPAPCGTYTUXWRVMQU 1.07 0.15
HNJCYVPMFLGQMPHCQEOMHMMEIHIJJJDDCRVYEGUXBSF 1.36 0.14
HOLTJASMMMMMMMMMMWMMMMWCMMMMMMMMMMMMMMMMMMM 1.16 0.03
HPYIESIXFDBTDVPNOUFHZZPNFOCNTRINYYVMVLHHZLE 1.33 0.25
HQJDYFYUMIRBQRDGPLHOBEHGBHDNKVCRSSYVJIFIVLF 1.25 0.18
HQMXVDGMMMMMMMMMMWMMMMBCMMMMMMMMMMMMMMMMMMM 1.39 0.06
HROIARTMMMMMMMMMMWMMMMFCMMMMMMMMMMMMMMMMMMM 1.15 0.03
HRPMBJSMMMMMMMMMMWMMMMKCMMMMMMMMMMMMMMMMMMM 1.41 0.05
HRUTHBNTTDGJJJDTVZBMVMIFSIDNDFEGWLJINVMMVXM 1.21 0.16
HSAXIXDPKULROIQBVOECGZQNWTAEYJAKDETXIOCHJQV 1.24 0.04
HUCXVGLMMMMMMMMMMWMMMMGCMMMMMMMMMMMMMMMMMMM 1.40 0.07
HWBVVHLMMMMMMMMMMCMMMMSWMMMMMMMMMMMMMMMMMMM 1.05 0.02
IGHCMVFESUFJJGIUOHWFROOIGMGFBEC 1.41 0.05
IHESJWNBMQQEOYLGPPBXGNHTJTPNTUG 1.23 0.05
IIIQMSNRHWELIGAGIURCSRIWABJSESC 1.74 0.22
IIUWOTLCIVQNMKGLXCBGELWUUWUQKIT 1.48 0.08
IIXYMLIVIVWOAXXXLEHKDPICIGQUQGF 1.33 0.02
IJVSBDFVNDDWWNMDMHDOPCFNYRIYWIU 1.08 0.03
IJWWHJKPHMMKUVMKFSRHKJCYOISSQNB 1.98 0.02
IKLEDDBHYJKFRYPBNYCVPRSVJILWEFP 1.50 0.10
IKTOSTVLDYEKWJRCTSIHIQJQVBSSEWG 1.32 0.03
IKTSIRHICWJQSSEVWGBJQKVLDSYETTO 1.33 0.03
IKUELCPYRWJFNDCNNRBVQKQREITYMIY 1.51 0.06
ILGEBMRRGWSRRFOQCLRDOOEARWYJBVE 1.56 0.05
ILLMEVWJKOGMOIVHTISBKJGYYEFWSEK 1.59 0.08
ILOTMOQYJBPLDUWTSWJQDQJVAQLEDQF 1.49 0.21
IMNGCLHTMPFKYEQXNXVUETBDSSWOOGN 1.47 0.04
INJWFGVSOPUNATNJMNRWDQMFKIGMRSB 1.39 0.10
INKRCPBNOMEMVQQKSKYEIJOCQWEYOFP 1.48 0.02
INLJYYNNEIORHAKLKJKOVJFTFGGSMQY 1.52 0.04
INNRCKWREIASTBGRGPADGMGSHPKMPHU 1.33 0.03
IOCVGJFNYEVPTEQLASRSELPUHOTDBXP 1.50 0.07
IOGBGSHOUTDPTRFKCORFDLNKOSPNPHA 1.61 0.10
IPBMEFIUKEKPDTZEJMPXSJTUFZLFRJA 1.20 0.03
IPIIOOVNXNHPAUADBROXSSACJSXGMKX 1.52 0.07
IPNBJINWBKXSIISTQCVRQNUPKSCLTXS 1.45 0.04
IQETFNJNAHIINXFKUHXYHMTTBNJSIII 1.34 0.08
IQNBDVISXIPPLGVLRMKNCMORMJOCIHX 1.60 0.19
IRGOUVHFMIJQBAKEWDJOVQNUSGCNPDU 1.63 0.04
IRIVIMLQBPFVPSLIKHJNDSPMWMCBGMK 1.95 0.02
IUFPFQLVOLTUAVQYFLEVREPQLSNQRCD 1.40 0.08
IUIMPUSPSEJNDPKKENDVSEHCVWDVEGQ 1.36 0.11
IWUBBBVGSWOQFPMBKOPLQKUEIKHSVHM 1.62 0.14

JLDMKNSOMROLNJUIPQVIFKDIYJMYLSUIWGJFWHTIPRVUTBSGQKMHYPGIDKLPH 1.19 0.11
JONRJIUFLWTQFQFTUOCWQLPSSEQGBNLGMCKKEXSFGLHWKSDPJYIQNMJQBAIMT 1.33 0.02
JUDGRDVXMOHNMOYGPJIXMNMJPKXEAIIHNLJKHKBWHJIQUCGCVGQRSQGQDENMX 1.95 0.06

586

KFQXCEQYBQSYWDRSDPXYWOOSLJLQQURWRIRMOONBFJJDUQVR
JBFRIRCDOODRYIBWPNXSGREJIRQJWDKAOFNLUIPMCAIILSONYUNZDDNRFZ 1.72 0.16

KKWOOHREEEJUQAVCEEBRTVVBVPUJHIUDNQUUNHZDTHDMYPUGJE
GUPAJGXNMESDDGCDEMYNCDYINJQQDGYHMRMCPHSVJZPQLTVFFFSWODAS 1.35 0.01

KLPQQUQYSIXVMQDFDAEIDXBLHEQNKPWWSFUIKWRECWGRWNTRKQ
SNZTQRAQODNEYETSLOBYLSFGGTDWBAYPUOSAYDSPUHJAYTEPVPSYMITP 1.24 0.04

KNVXSIBPKCSPMTCYGJGBKBACKTUEARUPKKHGNUCXUWEMOCLDKTNJ
YVIHPDQRSDVGHXDRGCTPXUJIHNFFPPNDHFWFIYBINJBTDCIUATHBXG 2.00 0.02

KPUMNHSVGHFQTTXWQLRACVNNRSOROTNEXGQIJMFGPDIJOUYATCHV
NHOUBMQCGYJLGPHMBBULJUSPSVRNBKODHHLGXFYUYSANFVFVRTITDE 1.72 0.05

LJSWOSYKITFNRTXIFBSANRCXSEGVINFAFXVHHJJTUHOUIWJTDYOGTXANV
IDRAAXUMHHJTJXVLJOFHDIJMJMAIJABSJFIFKAGSEYHSJWSIEARJBSKNKGKVOJHIG
FVRFTGOLXANNQVSIIEPXDKBKKCJJLPIRHLJFTKISATMTSJP 1.55 0.13

LJUUKNADVUXNGAFRQDMKIHUDSFRPARHYAGGMEOJWSXOGTRYQTJRFRGDWP
QHKQWVVDXMSDHXKAAYFUPVTODYHVTUIRSAOBMLPYQUCWOPFTEGSRAQNWJDHVVRWHD
RQRFWXTYLKIULWCBAXKGRDCFREDNPJMNDNMAOJMEOLLNDJM 1.43 0.04

MFFJSKNPJKXDRXXJIJJGLJAAMGNLVJTMPLNHEBDFIEMMHRNVSGIRVTVOIPFMI 1.48 0.14
MGRWGVPWQGWJCPIRJWMNTPPPGTQFHNLMLUPPLJVWESGISIHPHRYLXPAWOAPHN 1.54 0.06

MINXSAGQQMMODEJKPNPITOHHGAQNNPJSUMWCQYQHHFPXIJMSFWPWLNWNQVLRH 1.73 0.18
MKSOKQDGVGUFHWQYLSFUYFQBDHTBSXEMHOUSNDCJPGIDNKNGPKQLSLDQWPJNQ 1.72 0.05
MLQALFYIJMJKKCOBFIVNXFELUGSGBNWHAYWDIQYDRJOUWNLMLOPAKJFBFQHHD 1.69 0.06
MLRLDVIRFJRJGILUQYYYSFKHMQQOWRMIIPRGNQJHRKKHYDMXSIYMFPLQRWSSD 1.51 0.04
MMACCBHNSGDQNRKVMRDNJWQBFSLRBGBMLPBRKMNMIORGMDMNTHAVXNEHCLPJA 1.76 0.07
MMDDKCBROKYJMXXQKPBMJSSMSURNIKSONBTWUCCOPRAGMFPNNTVGRNEQDQYNL 1.57 0.05
MMHOQKISLPQJCPKHMRKWOCRJYWDDHCCMOGJRFCIXILWTJQMUXFLCRKNBGQNFX 1.79 0.01
MMLIYSWAWFBMXHXQMMWBHKOECJXSHCGMFJSGCGVQFFNBQXMNFMLIRCGTNHSPJ 1.42 0.03
MMLOLQBGOTTARNTOMGDQKMUPTBDFTBNMEAWCOWUXLXSIACMNBDWPTMARNKEFN 1.06 0.01
MMMNLPBOWPGCVVDNMPQURKHKNXKSVKNMTVMUQLJYKOJFNWMUVCIVGROFBTKNK 1.36 0.02
MMMTHIGVYGFFABIQMTDXTWMBDVACEUXMHHBJLSXROGSPJUMCNYFRYMTEWRXOX 1.30 0.02
MMOUOUYJTCQPFCPFMXWQCKIWBKFXTMKMCUNEFQEQOGAKEHMODHRGLONHWMCRN 1.36 0.16
MMQSQNAJVTXENLDPMEUWPPGVLAIGBWOMWTSAFWOBIKWMYQMGBTOVXDILQKJOE 1.64 0.05
MMWYKARXJGXRDLMKKESHNSJEQHJRVEERSWWFXEELSGGMUAOEHWYXLMHNLMLON 1.73 0.01
MPGBTHKTSSWCKASIJIUFPXNLESSLJNUNICHOHEETONYWOGJSWMNXHOXEBLFLG 1.71 0.03
MQCQGOBGVFLHSXPTPDOOVIREBODHGUMPIYTYPHFWBENBNKOFFBLOLOAPMEHUI 1.85 0.02
MQVEIINRFUOYTBNCLVDSANJJXUTTSAWFRMGWDETGAKRMRDVAVSIKBLBUWLCHQ 1.14 0.01
MSOJMJRQYAJSCATEFVCPNKHPIKKNKQOIWADJDWGJBJFISJNSBVNPHWYMOGINL 1.47 0.07

NMKAIYSQDHFABDWNQMFPVRJYYVNXPNDGTIOYMTGDIRTAUEXPXITIQPIKUJHOONVEEPICMHUM
IDQLBCXFOFCPIACOFYJMICGPJTBAQTRFPAMQMSUNUXTSFHOOMGUNCTEHPTHPCJIAKSKBD 1.85 0.08

NMQJNUVMGQFSHIJOYQCMLIOGXAXUCDXMCPKNMDGFQUKRFBVPKWPBLKTUFEREGFHOYOXR
KMAMAYUNAGEECHJDELBJWAGLDINGXIJXEPSGHPMPLFMCGQWAAOLMHYPATAKUYYTPQFIEEITNH 1.58
0.14

587

QCGPVUQQJPHUYULGKOJNBJEAZPENSZH 1.91 0.02
QDPHNYGLPMVYYQOCUIYOLVKFVFIDMIN 1.52 0.01
QJFPNELMYBGVUOLEEMJJRICCDKLQMUK 1.80 0.33
QJRFPORWBILHPHKQMRUDPUDXIJYGBGF 1.29 0.25

REVUKOGCERMHXEKBCQTJRHCJVXRRIBQAQYHVCXEXIOTVIVKAKKECPWFGPTHXF 1.45 1.99
RFTGHODREUPELRRMEVVELSQBHTDDHYYHFQNAFLQRSEAMVAJGPYWYQBUEHFHRF 1.39 0.25
RIAFAHLTKWQMGNCDYLEJNEDYULQPHJXKUAMSMDQWKZYDFMVBREESSEGMGOJHK 1.96 1.37
RJYQGRWLLATYZGCMHPEZNQNBEDGRLXBSVCZBXHRKLJMERQMCFKTKGKKBLOECH 1.56 1.18
RLBVMDKPEEHKIDLRFCJPLXOYTVEUPSTSLNJZLANDNYPWYRGCPGRWNUXTWYRVJ 1.16 0.17
RNDZJLUGWZKQUSBPXESCPJZDIJCEDQEBYGCFPNQIKBYDFYHTOPXMKTZLFHNNN 1.24 0.07

RQPXHNHUENPJJOICSJJMEHIEJEDRVVMSTQASROWWMADDPNGXMCMYFCTRXODNA 1.30 0.47
RVKNTJDLHNLHODWEIGXXHCCOGAZQIFOFXWJPUUFUQOVYSFENYXJSUNDQESHDL 1.17 0.11
RYQAALUJBCNPFEHQWYTQIUSPFGLLCGHDXGAJWWOKENEFCYOVHGXGHQXURHTUC 1.36 0.99

SABKETAXTDIXENYTOTGIFVLULGFOQQJEIYGPAMRRRYBSCXNNXTYDWUIDR
BFOGPFMRUUFDRLUFJILAIGYNNSMVHRGEOATODWVLDISWXMMND 1.65 0.22

SDHVJMXJNYTYHPMPGZXFRUCGPONXGAGCVKNORVWCWDFHRJWJWDCBHIEY
XJJGAKNRCTJMKMTQEHIJUUPEFAGQHINMBRWDUTYIDWHLJGFFFV 1.41 0.91

SDKUSYQVHCLINLBFHWYDYBYIAAKVIBEUTKGIIHQCENPICOYNWAKJJXOYTYL
KVEQMWRAJITCEINHLIYLOWDMHNUHWPWQQJLNMWTLOQLMFUI 1.37 0.43

SFJBUTEWDSLJBIGEASAPGLXTCPQPBNBFMMQJFYECVALMNYGKEVZUMQRKUNUFMBPHUKD
KHGJAJKLTTORHEBIFDTQLCMNGGNNJISOBIOJVTL 1.30 0.06

SSAHQOJHWOCLGRCGOGUBHOJRGAVXWQJCSFKLBYWGBBKOKONDNQFQUEASCISKXJWBGINOUM
YHRULGSPEATARYGOMQVRUQYKPSNVFTLFADPW 1.19 0.03

SUTYTGVRGAPBEYAVPTRWRNFJSDDMUAVSCIOOXVLDHLOMNCLYGELIMXACINABQQAIKELSKDBHO
GWAUPTCTMSBFEWYOPHTOPIXHTUESYNLDU 1.39 0.37

TSTDKLCSQYLOIQFVLHHXTBDGYMGKRJJBZAFDDDUGEKKWUWWVJVPJFTDBSBSNNIIXWMXLMPJEL
CNGTQHOCWFOYHLHIKZGSGQXSAQJGJJNPUQLKPCEQQWFKVQQOPSLYGPRWUQICYUFQ
IQWKBVGKRZCDTRSDMOQMENFDIXATYCBH 1.88 3.85

UBLFBKKFNATJVTJUKJFGALBIPQHVRUMAROTNVHBLAQVSHVHRGLFJAAABFRJFW 1.81 0.07
UKDGJLEXISFBNTDVQVMXQFXCGMQKOSUHDOFPYOOECJEEOPMNLSQCPEYJEYIGO 1.10 0.16
ULYMXJCIVBIBCHWVWSEEKQVKQIOJBQHQSHJOFBPPDWSMBTVSERGGYPPPATWSB 1.52 0.13
UMALDKMYNVYSDIAQVVHAWOJGDLFHKPSQEDJWPSOQCBFHGYMIVIXGXYCITMAXH 1.33 0.10

VBDIYXAGPEUVXXPCKVYCLPPRBAYDQTEIRDGMWBDIHIJAPGSLDYDLMTANMNMHNCLTYBJGXAYBJ
BLFJXDJRKOHCNPBIRTSLGSYSDOLUNAQTIJMNVOEIUOKAHLIXWPEMPQQFTMVPUFECMACT 1.69 0.60

VHETJPMKNMHQNUVBIOTFADJUXXIQRSGDSNXAGNEKPMCJRIDEHOFTVTPLWUFLNDCWLKHXKKE
LUMBDOHSIBSDEWWSPLQVMWLQERMCANDUBCXULQWYGOTLGLLQFSJGVQEUIEQQXXWGEKVTPA 1.03 0.14

VMMKMRMREPCPYAFRGJBOTPHNQRFXVNSNYQVJNBXXPKRPVHFQAF

588

GFSTHYFKCIDWXOQJAKRFKHPYHNENTDQLJMQGMXTFPBDFUIPAIODWYAMTXJDIWGERTHD
OKWFXPLSWFYPXNQMNOBKILSG 1.84 0.44

YAMHDWIODTE 1.49 0.09
YAQCXBTDRHF 1.43 0.36
YBJSRTYCQLD 1.50 0.22
YDNBSGGTQDW 1.39 0.15
YEBYSXDGLVB 1.54 0.42
YELRVNTLOBU 1.34 0.21
YHKTEILDYRK 1.20 0.01
YLNVRNDFOTX 1.30 0.12
YOJMOEAKWYV 1.00 0.02
YSMLSCXTGBR 1.20 0.03
YVBTGBLJNUB 1.42 0.41
YWOABOXTDFD 1.48 0.32
ZAMWBPMDUAXGGLB 1.47 0.13
ZBBCMQDQKTJPSUR 1.15 0.02
ZCBINUXAKUFLEAK 1.59 0.06
ZCTFTHMKITVNFFG 1.69 0.08
ZEIVGPLCKGALTXT 1.41 0.01
ZFPEIBFLSVWGFPA 1.09 0.01
ZKRFMRHHAVUOIKM 1.16 0.02
ZLFBPYYLFUKMSED 1.18 0.01
ZMEROSWMYGDQTKO 1.87 0.01
ZMIVEQTDVEEOWVN 1.70 0.03
ZNFEMVRCISEHSIN 1.28 0.03
ZNVIDLJDFUUQUBK 1.04 0.03
ZOCGMCVDMPDFMHJ 1.64 0.06
ZRLDWMOJKXHBLAN 1.73 0.03
ZSVGLBHQEXQQMEE 1.21 0.01
[IAWNTNHKJOCOSY 1.32 0.33
[JJMLWFVTUKDTTQ 1.97 0.20
\ASEFAHYBJUVPHIMWYT 1.54 0.27
\BBTXCFCJUGDJXKONUH 1.56 0.12
\IUPGKKXXOTAUMPEPDN 1.30 0.29
\JISPFOVANDEBNXUWBY 1.48 0.21
\JJIASHWXGPXCGROCWG 1.36 0.17
\KBDABMSIBRWMQNMUKW 1.69 0.21
\LLXGLCOXAJDQJOICVC 1.70 0.10
\MEOANCSXDVGCVLGHQT 1.65 0.10
\NBIAYCYGUSVJFXEJGA 1.32 0.29
\NGPKOPDSBDCBGVBBPP 1.58 0.12
\SCNPBHGXICIDBPKQSI 1.48 0.20
\TOFXBCFVQIXXQUWDXB 1.41 0.19
\TTKFATYUYRXVWLWHQB 1.06 0.19
]CDUHTE 1.10 0.04
]FDDLCE 1.06 0.03
]HDFNTE 1.20 0.03
]HGEWRK 1.17 0.02
]KFUDSM 1.21 0.02
]KSFJWS 1.02 0.01

589

]LTDADG 1.09 0.03
]MSDXEI 1.03 0.03
]OTYGNE 1.43 0.05
]QFWSDE 1.16 0.02
]RBFMSH 1.10 0.02
]SBSMKG 1.34 0.04
]VEIVIK 1.01 0.01
]WXSAGJ 1.07 0.03
]YDUCBE 1.07 0.01
^EAVTPDJJI 2.28 0.20
^UTKLLWIDM 2.22 0.21
^VRDSNKGRT 2.28 0.24

The cases below represent a collection mostly of attractors, some of which
are not strange, but which are special examples discussed in this book or other
cases of historical or mathematical significance. You can enter them into the
program manually using the I command or copy the file SPECIAL.DIC on the
accompanying disk to SA.DIC and view them automatically using the E command.
Note that the contents of any existing SA.DIC file will be lost when you do this unless
you use the DOS command COPY SA.DIC + SPECIAL.DIC SA.DIC to append the new
cases to the end of the SA.DIC file.

SPECIAL.DIC A list of important special cases

Logistic Map: AMu% 0.86 1.00

Delayed Logistic Map: EM4WM48bM 0.99 0.00

Tinkerbell Map: EMVWMGCMaMaRM 1.14 0.27

Hénon Map: EWM?MPM2WM4 1.20 0.60

Three-Fold Symmetric Icon: FMXUEM2IMEM5C=MXMG 0.79 0.32

Four-Fold Symmetric Icon: GMBMYOM2AMAM4OM5UAM3EBMYM 1.21 0.35

Five-Fold Symmetric Icon: HM4MjQLM2WM5M2jMHM3QM7H=MjMWM2]M4MjML 1.13 0.48

Lorenz Attractor: QMCM3WM5iM2L2M7NM4JM 2.21 0.15

Point Attractor: QMLM3NM5LM3LM14 0.00 -0.14

Rössler Attractor: QM5IM2IM2QM3NM4NM3QM30M 1.94 0.08

Point Repellor: QM5NM5LM18 1.00 0.00

590

Van der Pol Equation: RM11OM9KM2KM6OM28 1.04 0.00

Symmetric Limit Cycle: RMNMAM3AM3NM9LM2AM6NMAM26 1.04 0.00

2-Torus: VMNMAM4AM7NM19LM2AM11NMAM42NMAM2AOM28LM2AM2NMA 1.04 0.00

2-Torus (rotated): VMNMAM8AM13NM24NMAM6AM6OM3LM3AM20NMAM22LM3AM11NMA 1.04 0.00

Gingerbread Man: YCMC2M2WM3 1.42 0.11

Tent Map: YM2WM2VM39 1.23 1.00

Lozi Attractor: YWMW<M2RM3 1.67 0.68

Chirikov (Standard) Map: \MWM4dWqMW2M3dWq 1.13 0.04

Circle Map: \NWMyWM4NM2yWM4 1.16 1.28

Birkhoff's Bagel: ^BVKBDVHIK 1.90 0.22

Forced Damped Hard Spring: ^WCLM2KMWJ 1.01 -0.01

Forced Van der Pol Oscillator: ^WCMCMWMSD 1.68 0.00

Forced Damped Linear Spring: ^WCM3KMWJ 0.92 -0.07

Forced Damped Soft Spring: ^WCNM2JMWJ 1.01 -0.20

Duffing Two-Well Oscillator: ^W2CM2KMRD 2.84 0.15

591

	Title Page
	Table of Contents
	Why This Book Is for You
	Strange Attractors
	Chapter 1: Order and Chaos
	1.1: Predictability and Uncertainty
	1.2: Bucks and Bugs
	1.3: The Butterfly Effect
	1.4: The Computer Artist

	Chapter 2: Wiggly Lines
	2.1: More Knobs to Twiddle
	2.2: Randomness and Pseudorandomness
	2.3: What's in a Name?
	2.4: The Computer Search
	2.5: Wiggles on Wiggles
	2.6: Making Music

	Chaper 3: Pieces of Planes
	3.1: Quadratic Maps in Two Dimensions
	3.2: The Butterfly Effect Revisited
	3.3: Searching the Plane
	3.4 The Fractal Dimension
	3.5: Higher-Order Disorder
	3.6: Strange Attractor Planets
	3.7: Designer Plaids
	3.8: Strange Attractors that Don't
	3.9: A New Dimension in Sound

	Chapter 4: Attractors of Depth
	4.1: Projections
	4.2: Shadows
	4.3: Bands
	4.4: Colors
	4.5: Characters
	4.6: Anaglyphs
	4.7: Stereo Pairs | Stereo Pairs
	4.8: Slices

	Chapter 5: The Fourth Dimension
	5.1: Hyperspace
	5.2: Projections
	5.3: Other Display Techniques
	5.4: Writing on the Wall
	5.5: Murals and Movies
	5.6: Search and Destroy

	Chapter 6: Fields and Flows
	6.1: Beam Me Up Scotty!
	6.2: Professor Lorenz and Dr. Rössler
	6.3: Finite Differences
	6.4: Flows in Four Dimensions
	6.5: Strange Attractors that Aren't
	6.6: Donuts and Coffee

	Chapter 7: Further Fascinating Functions
	7.1: Steps and Tents
	7.2: ANDs and ORs
	7.3: Roots and Powers
	7.4: Sines and Cosines
	7.5: Webs and Wreaths
	7.6: Swings and Springs
	7.7: Roll Your Own

	Chapter 8: Epilogue
	8.1: How Common is Chaos?
	8.2: But Is It Art?
	8.3: Can Computers Critique Art?
	8.4: What's Left to Do?
	8.5: What Good Is It?

	Appendix A: Annotated Bibliography
	Appendix B: BASIC Program Listing
	Appendix C: Other Computers and BASIC Versions
	Appendix D: C Program Listing
	Appendix E: Summary of Equations
	Appendix F: Dictionaries of Strange Attractors

