1. B
2. C
3. E
4. D
5. B

6. Which of the following best describes the image of a convex mirror when the object's distance from the mirror is less than the absolute value of the focal point distance?

 a. virtual, upright and magnification greater than one
 b. real, inverted and magnification less than one
 c. real, inverted and magnification greater than one
 d. virtual, inverted, and magnification greater than one
 e. virtual, upright and magnification less than one

 **CONVEX MIRROR HAS f < 0
 \(\frac{1}{f} > 0 \) (REAL OBJECT) AND
 \(\frac{1}{f} = \frac{1}{o} - \frac{1}{v} \)
 \(\text{since } \frac{1}{f} > 0 \)

 AND \(\frac{1}{o} < 0 \) \(\Rightarrow \frac{1}{o} \text{ must be } > 0 \)
 \(\frac{1}{o} > \frac{1}{f} \)

 THEN \(\frac{1}{f} + \frac{1}{o} = \frac{1}{f} + \frac{1}{o} \text{ if } \frac{1}{o} < 0 \)
 \(\Rightarrow \frac{1}{o} < \frac{1}{f} \text{ since } \frac{1}{f} > 0 \)

 THAT MEANS \(1|o| = 1\frac{1}{f} < 1 \)
 \(\Rightarrow \text{virtual image} \)

7. You stand two feet away from a plane mirror. How far is it from you to your image?

 a. 2.0 ft
 b. 4.0 ft
 c. 3.0 ft
 d. 5.0 ft
 e. 1.0 ft

 IMAGE IS AS FAR BEHIND MIRROR AS YOU ARE IN FRONT OF IT.

 THESE MEASURES ARE THE SAME.
8. The real image of an object is located 45.0 cm away from a concave mirror, which has a focal length of 10.0 cm. How far is the object from the mirror?

a. 12.9 cm
 \(f = +10 \) (Concave)
 \[
 \frac{1}{f} + \frac{1}{p} = \frac{1}{45} \Rightarrow \frac{1}{p} = \frac{1}{10} - \frac{1}{45} = \frac{1}{10} - \frac{1}{45}
 \]
 \[
 \frac{1}{p} = \frac{1}{10} - \frac{1}{45} = 0.0777... \Rightarrow p = 12.9 \]

b. 40.0 cm

c. 35.0 cm

d. 22.5 cm

e. 4.5 cm

9. An object is placed at a distance of 50 cm from a thin lens along the axis. If a real image forms at a distance of 40 cm from the lens, on the opposite side from the object, what is the focal length of the lens?

a. 45 cm
 \(p = +50 \) \(b = +40 \) (Real)

b. 22 cm
 \[
 \frac{1}{f} + \frac{1}{50} = \frac{1}{40} \Rightarrow \frac{1}{f} = \frac{1}{50} - \frac{1}{40} = \frac{1}{50} - \frac{1}{40} = \frac{1}{1045} \n \]
 \[
 f = +22 \]

c. 90 cm

d. 200 cm

e. 150 cm

10. A projector lens is needed to form an image on a screen 10 times the size of its corresponding object. The screen is located 8.0 m from the lens. What is the required focal length of the lens?

a. 0.32 m
 \(b = +800 \) (6 m, Real because it appears on a screen)

b. 0.54 m

c. 1.25 m
 \(M = -10 \) (Real images are inverted)

d. 0.73 m

0.80 m

11. If a wave from one slit of a Young’s double-slit set-up arrives at a point on the screen one wavelength behind the wave from the other slit, what is observed at that point?

a. dark fringe
 b. multi-colored fringe
 c. bright fringe
 d. gray, not dark nor bright

ONE WAVELENGTH PATH DIFFERENCE IS CONSTRUCTIVE INTERFERENCE
12. A Young’s double slit has a slit separation of 2.50×10^{-5} m on which light of a single wavelength is directed. The resultant bright fringes on a screen 1.00 m from the double slit are separated by 2.30×10^{-2} m. What is the wavelength of this beam? (1 nm = 10^{-9} m)

- a. 373 nm
- b. 454 nm
- c. 375 nm
- d. 667 nm
- e. 725 nm

\[
\lambda = 2.50 \times 10^{-5} \quad \Theta = \frac{\Delta y}{L} = \frac{2.30 \times 10^{-2}}{1} = 1023 \text{ nm}
\]

13. A beam of polarized light of intensity I_0 passes through a sheet of ideal polarizing material. The polarization axis of the beam and the transmission axis of the sheet differ by 30°. What is the intensity of the emerging light?

- a. 0.87 I_0
- b. 0.75 I_0
- c. 0.50 I_0
- d. 0.25 I_0
- e. 0.33 I_0

\[
I = I_0 \cos^2 30° = 0.75 I_0
\]

MALUS' LAW

14. Waves from a radio station with a wavelength of 600 m arrive at a home receiver a distance 50 km away from the transmitter by two paths. One is a direct-line path and the second by reflection from a mountain directly behind the receiver. What is the minimum distance between the mountain and receiver such that destructive interference occurs at the location of the listener? Assume no phase change on reflection.

- a. 300 m
- b. 450 m
- c. 150 m
- d. 600 m
- e. 75 m

\[
\text{SMALLEST PATH DIFF. FOR DESTRUCTIVE INTERFERENCE IS } \lambda/2 \text{ (WITH NO PHASE CHANGE)},
\]

\[
\frac{\lambda}{2} = 2d
\]

\[
d = \frac{\lambda}{4} = 600 / 4
\]

\[
d = 150 \text{ m}
\]
15. A soap bubble \((n = 1.35)\) is floating in air. If the thickness of the bubble wall is 300 nm, which of the following wavelengths of visible light is strongly reflected?

a. 620 nm (red)
b. 580 nm (yellow)
c. 500 nm (blue)
d. 850 nm (infrared)
e. 540 nm (green)

\[\lambda = \frac{2nt}{m+\frac{1}{2}} \]

For constructive interference with phase shift \(2t=(m+\frac{1}{2})\frac{\lambda}{n}\)

\[
\begin{align*}
\text{at } n=1.35, & \quad \frac{\lambda}{n} = \frac{1}{1.35} \\
\text{at } n=2, & \quad \frac{\lambda}{n} = \frac{1}{2} \\
\text{at } n=3, & \quad \frac{\lambda}{n} = \frac{3}{6} \\
\end{align*}
\]

\[
\lambda = \frac{2\cdot1.35 \cdot 300}{m+\frac{1}{2}} = \begin{cases} 1620 \text{ nm} \quad & (m=0) \\
520 \text{ nm} \quad & (m=1)
\end{cases}
\]

16. A simple magnifier makes an image appear at the near point distance from the eye of the viewer (25 cm). What is the magnifying power of the magnifier if it is constructed of a lens of focal length of 4.0 cm?

\[
M_{\text{max}} = 1 + \frac{f}{f_{\text{near}}} = 1 + \frac{25}{25} = 7.3
\]

\[
(\text{m} = \frac{25}{f} \text{ is for image at 00})
\]

17. You are designing eyeglasses for someone whose near point is 60 cm. What focal length lens should you prescribe so that an object can be clearly seen when placed at 25 cm in front of the eye?

\[
\text{For object at } 25 \text{ cm, } p = 25 \text{ cm}
\]

Image must be upright and at 60 cm

\[
g = -60, \text{ virtual image}
\]

\[
\frac{1}{p} + \frac{1}{g} = \frac{1}{f} \Rightarrow \frac{1}{25} + \frac{1}{-60} = 0.023 \Rightarrow f = 43 \text{ cm}
\]
18. If different transmission filters are used with an astronomical telescope, which of the following would give the best angular resolution?

- a. blue
- b. red
- c. green
- d. All yield the same resolution.
- e. infrared

\[\text{Smallest Resolution is best} \]

\[\text{Resolution } \theta_{\text{min}} = \frac{1.22 \frac{\lambda}{D}}{D} \]

\[\text{Smallest } \lambda \text{ is best} \]

\[\text{Blue has smallest } \lambda \]

19. A 1.5 m tall woman stands 5.0 m in front of a camera with a 4.0 cm focal length lens. What is the size of the image formed on film?

- a. 1.2 cm
- b. 2.4 cm
- c. 1.9 cm
- d. 0.60 cm
- e. 1.0 cm

For a real image on the film behind the lens, \(q > 0 \) so with \(q = 500 \text{ cm} \):

\[\frac{1}{q} + \frac{1}{f} = \frac{1}{500} \rightarrow f = 4 \text{ cm} \]

Then \(\frac{1}{500} + \frac{1}{f} = \frac{1}{4} \) so \(\frac{1}{f} = \frac{1}{4} - \frac{1}{500} \) and \(f = 4.03 \text{ cm} \)

\[M = \frac{h}{Q} = -\frac{4}{500} = -8.0 \times 10^{-2} \]

\[h' = Mh = -150 \times 8.0 \times 10^{-2} = -1.2 \text{ cm} \]

20. You are building a compound microscope with an objective lens of focal length 0.70 cm and an eyepiece lens of focal length 5.0 cm. You mount the lenses 18 cm apart. What is the maximum magnification of your microscope?

- a. 3.1
- b. 7.3
- c. 67
- d. 175
- e. 130

\[\text{MAX EYEPICE } m = 1 + \frac{25}{f_{c}} = 6 \]

\[\text{A virtual image at 25 cm. Then for one eyepiece} \]

\[\frac{1}{q_{c}} + \frac{1}{25} = \frac{1}{5} \]

\[\text{Pe} = 4.167, \quad B_{c} = L - Pe = 18 - 4.167 = +13.83 \]

\[\frac{1}{p_{c}} = \frac{1}{f_{c}} \rightarrow \frac{1}{p_{c}} + \frac{1}{13.83} = \frac{1}{0.70}; \quad P_{c} = 0.737 \]

\[M_{0} = -B_{c} = -13.83 \]

\[M_{0} = 13.76 \quad M = M_{0} \times m = 110 \rightarrow \text{Exact} \]

\[\text{APPROXIMATE FORMULA } M = \frac{L}{f_{c}} = \frac{18 \times 25}{0.7 \times 5} = 129 \]

21. Einstein's theory of relativity is based in part on which one of the following postulates?

- a. the existence of an absolute frame of reference
- b. space and time are absolutes
- c. energy is conserved only in elastic collisions
- d. speed of light in a vacuum is same for all observers regardless of source velocity
- e. conservation of momentum
22. An astronaut at rest has a heart rate of 65 beats/min. What will her heart rate be as measured by an earth observer when the astronaut’s spaceship goes by the earth at a speed of 0.60 c?

 a. 39 beats/min
 b. 108 beats/min
 c. 81 beats/min
 d. 103 beats/min
 e. 52 beats/min

 At 0.60 c \(\gamma = \frac{1}{\sqrt{1 - 0.6^2}} = 1.25 \)

 Her clock is slower so there will be fewer beats/min on earth. (earth clock is faster, minutes don’t last as long as hers)

 \(\frac{65}{\gamma} = \frac{65}{1.25} = 52 \) beats/min

23. The observed relativistic length of a super rocket moving by the observer at 0.70 c will be what factor times that of the measured rocket length if it were at rest?

 a. 0.45
 b. 0.82
 c. 1.4
 d. 0.71
 e. 0.55

 Observed length is contracted by \(\gamma \)

 \(\gamma = \frac{1}{\sqrt{1 - 0.7^2}} = \frac{1}{\sqrt{0.51}} = 1.40 \)

 So observed length is \(\frac{1}{\gamma} = 0.71 \) times the length at rest.

24. How fast would a rocket have to move past a ground observer if the latter were to observe a 4.0% length shrinkage in the rocket length? \(c = 3.00 \times 10^8 \) m/s (See #23 a)

 a. 0.12 \times 10^8 m/s
 b. 0.28 \times 10^8 m/s
 c. 0.84 \times 10^8 m/s
 d. 1.2 \times 10^8 m/s
 e. 1.4 \times 10^8 m/s

 4% shrinkage means \(\frac{1}{\gamma} = 96\% = 0.96 \)

 \(\frac{1}{\gamma} = \sqrt{1 - \left(\frac{v}{c}\right)^2} = 0.96 \) \(\left(\frac{v}{c}\right)^2 = 1 - 0.96^2 \)

 \(\frac{v}{c} = \sqrt{1 - 0.96^2} = 0.28 \)

 \(v = 0.28 \times 3 \times 10^8 = 0.84 \times 10^8 \) m/s

25. An unknown particle in an accelerator moving at a speed of 2.00 \times 10^8 m/s has a measured total energy of 1.80 \times 10^{-9} J. What is its mass? \(c = 3.00 \times 10^8 \) m/s

 a. 1.49 \times 10^{-26} kg
 b. 0.650 \times 10^{-26} kg
 c. 0.810 \times 10^{-26} kg
 d. 1.10 \times 10^{-26} kg
 e. 2.00 \times 10^{-26} kg

 \(\gamma = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} = 1.342 \)

 \(\gamma v = \gamma m c^2 \) so \(m = \frac{E}{\gamma c^2} \)

 \(m = \frac{1.8 \times 10^{-9}}{1.342 \times (3 \times 10^8)^2} = 1.49 \times 10^{-26} \) kg