Background, Motivation, and Previous Results (2000)

- Confinement in standard RFP plasma is poor due to magnetic fluctuation induced transport.
 - **Question:** How do the magnetic fluctuations affect the confinement of energetic ions?
 - Extremely important for auxiliary heating with NBI and for high T\(_i\) plasmas.

- Confinement of fast ions injected with Diagnostic Neutral Beam was measured.
 - Fast CX neutral flux (a.u.) from plasma for 10 keV and 20 keV injection.

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 keV</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>20 keV</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0</td>
</tr>
</tbody>
</table>

Fast ion confinement time 1ms is of the order of plasma confinement time.

- **Expected stochastic losses** = E\(^{1/2}\) - not observed:
 - 10 keV and 20 keV ions seem to behave similarly.
 - If confinement time is 1ms for bulk (200 eV) ions then for 20keV ions it is expected to be 0.1 ms.

- We tried to measure fast ion confinement in improved plasmas (smaller fluctuations) but CX flux was too low to detect.

- We also measured the rate of fast ion energy loss and found it to be consistent with the classical i-e slow down time.

- **What is the fast ion loss mechanism?**
 - Stochastic diffusion?
 - Charge exchange?
 - Direct drift orbit losses?

Goals and Directions

- Effect of stochasticity on fast ion confinement.
- Role of background neutrals and CX losses.
- Macroscopic effect of NBI - plasma heating and induced rotation.
- Fast ions energy losses.
- Numerical simulations - see poster by Ben Hudson.

Possible Macroscopic Effects of Injection

- **Heating**
 - Fast ion energy content - 1 kJ
 - Plasma thermal energy content - from 3 kJ to 10 kJ

- **Plasma rotation**
 - Rate of fast ion toroidal momentum injection - 1 kg m/s
 - Rate of plasma momentum change during sawtooth - 10 kg m/s\(^2\)

Background, Motivation, and Previous Results (2000)

- Confinement in standard RFP plasma is poor due to magnetic fluctuation induced transport.
 - **Question:** How do the magnetic fluctuations affect the confinement of energetic ions?
 - Extremely important for auxiliary heating with NBI and for high T\(_i\) plasmas.

- Confinement of fast ions injected with Diagnostic Neutral Beam was measured.
 - Fast CX neutral flux (a.u.) from plasma for 10 keV and 20 keV injection.

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 keV</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>20 keV</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0</td>
</tr>
</tbody>
</table>

Fast ion confinement time 1ms is of the order of plasma confinement time.

- **Expected stochastic losses** = E\(^{1/2}\) - not observed:
 - 10 keV and 20 keV ions seem to behave similarly.
 - If confinement time is 1ms for bulk (200 eV) ion then for 20keV ions it is expected to be 0.1 ms.

- We tried to measure fast ion confinement in improved plasmas (smaller fluctuations) but CX flux was too low to detect.

- We also measured the rate of fast ion energy loss and found it to be consistent with the classical i-e slow down time.

- **What is the fast ion loss mechanism?**
 - Stochastic diffusion?
 - Charge exchange?
 - Direct drift orbit losses?

Goals and Directions

- Effect of stochasticity on fast ion confinement.
- Role of background neutrals and CX losses.
- Macroscopic effect of NBI - plasma heating and induced rotation.
- Fast ions energy losses.
- Numerical simulations - see poster by Ben Hudson.

Possible Macroscopic Effects of Injection

- **Heating**
 - Fast ion energy content - 1 kJ
 - Plasma thermal energy content - from 3 kJ to 10 kJ

- **Plasma rotation**
 - Rate of fast ion toroidal momentum injection - 1 kg m/s
 - Rate of plasma momentum change during sawtooth - 10 kg m/s\(^2\)

New Tool

60A/25keV/1ms Neutral Beam Injector

- **Beam Testing Preliminary Results**
 - Designed Parameters:
 - \(I_{beam} = 60\) A
 - \(U_{beam} = 25\) kV
 - Duration = 1.2 ms

- **Schematic of experiment**

 - \(a = 0.5\) m
 - \(R = 1.3\) m
 - \(V = 7.4\) m\(^3\)

- **Diagnostics:**
 - Fast ion confinement and plasma ion heating - NPAs, CHERS
 - Electron heating - Thomson Scattering
 - Plasma rotation - magnetics and Doppler spectrometry