GRENOBLE 1982 ICRH POSTER PAPER

R.N. Dexter, C.M. Fortgang, S.C. Prager
J.C. Sprott, E.J. Strait, J.C. Twichell

PLP 872
March 1982

Plasma Studies
University of Wisconsin

These PLP Reports are informal and preliminary and as such may contain errors not yet eliminated. They are for private circulation only and are not to be further transmitted without consent of the authors and major professor.
WISCONSIN: LEVITATED OCTUPOLE

- B_p windings
- to turbopump
- Levitated rings
- Ti getter
- He cryopanel
- Iron core
- Neutral beams
- Nitrogen-cooled liner
- B_T windings
- Plasma guns (3)
- ICRH source

Dimensions:
- 1 m
- 1.4 m
TYPICAL SINGLE SHOT PARAMETERS

- $P_{in} = 0.8$ MW
- $N = 5 \times 10^{12} \text{ cm}^{-3}$
- $N_h/N_e = 0.5$
- $T_e = 40$ eV
- $T_{i\text{one}} = 60$ eV cold component
 300 eV hot component
- $B = 1.0$ kG at antenna
 2.5 kG at outer ring
- 10 gyroradii at 300 eV
- ion energy confinement
 time $= 1.0$ msec (measured)
- ion-electron equilibration
 time $= 0.8$ msec (calc.)
- hot-cold ion equilibration
 time $= 0.9$ msec (calc.)
FARADAY SHIELD STRIPS

120° AT TOROIDAL MID CYLINDER

OCTUPOLE LOWER LID

TO OSCILLATOR

FEED-THRU ROD

COPPER STRIP
ICRH RESONANCE

- VACUUM
- WITH PLASMA

E/E₀ vs. CM ABOVE ANTENNA
POWER BALANCE

HOT IONS
300 eV
1 x 10^{12} \text{ cm}^{-3}

C-X (meas.)
200 kW

OBST. (calc.)
75 kW

50 kW
COULOMB COLLISIONS (calc.)

50 eV
1 x 10^{12} \text{ cm}^{-3}

COLD IONS

50 kW
OBST. (calc.)

25 kW

C-X (meas.)

IMPURITY RADIATION

? \sim 0

ELECTRONS
50 eV
2 x 10^{12} \text{ cm}^{-3}

OBST. (calc.)
30 kW

RF (meas.)
600 kW