COMPUTER CALCULATIONS OF PULSE FORMING NETWORK BEHAVIOR

J. C. Sprott

August 1975

Plasma Studies
 University of Wisconsin

These PLP Reports are informal and preliminary and as such may contain errors not yet eliminated. They are for private circulation only and are not to be further transmitted without consent of the authors and major professor.

This note describes a computer code (PFNCAL) that calculates the output pulse shape of an arbitrary, voltage fed, E-section, pulse forming network. The code was written to study the feasibility of producing strange-shaped (i.e.: non-rectangular) pulses of ECRH and ICRH power for plasma heating. In particular, it appears that increasing the ECRH power as a function of time may lead to denser plasmas than the same amount of energy delivered at constant power.

A pulse forming network is basically a lumped constant transmission line each section of which can be represented as below:

The behavior of the section is determined by a voltage (loop) equation,

$$
V_{N}-V_{N-1}=I_{N}{\underset{R}{R}}_{R_{N}}+L_{N} \frac{d I_{N}}{d t},
$$

and a node (current equation),

$$
I_{N+1}-I_{N}=C_{N} \frac{d V_{N}}{d t}
$$

With a number of sections N_{S}, the behavior of the line is uniquely determined by a set of $2 \mathrm{~N}_{\mathrm{S}}$ linear, first-order, differential equations plus a set of boundary conditions which are generally given by $V_{N}=V_{0}$ and $I_{N}=0$ for all N. The first section ($N=1$) which is generally terminated in a load resistor (R_{L}) and the last section ($N=N_{S}$) must be treated as special cases:

$$
\begin{aligned}
V_{1}-I_{1} R_{L} & =I_{1} R_{1}+L_{1} \frac{d I_{1}}{d t} \\
V_{N_{S}} & =C_{N_{S}}=C_{N_{S}} \frac{d V_{N_{S}}}{d t} .
\end{aligned}
$$

To make the problem even more general, we allow some mutual inductance between adjacent sections, but for simplicity, we take the coupling coefficient (k) to be the same for all sections. This modifies the voltage equation as follows:

$$
V_{N}-V_{N-1}=I_{N} R_{N}+L_{N}(1-2 k) \frac{d I_{N}}{d t}+k_{N}\left(\frac{d I_{N-1}}{d t}+\frac{d I_{N+1}}{d t}\right)
$$

Unfortunately, this represents a significant complication for the numerical method used, and so we simplify the problem by assuming $k \ll 1$ (as is uaually the case) and keep terms only to first order in k :

$$
V_{N}-V_{N-1} \cong(1-2 k)\left(I_{N} R_{N}+L_{N} \frac{d I_{N}}{d t}\right)+k\left(V_{N+1}-v_{N}+V_{N-1}-V_{N-2}\right)
$$

For this case, the first two sections ($\mathrm{N}=1$ and 2) and the last section ($N=N_{S}$) have to be treated separately:

$$
V_{1}-I_{1} R R_{L}=(1--k)\left(I_{1} R_{1}+L_{1} \frac{d I_{1}}{d t}\right)+k\left(V_{2}-V_{1}\right)
$$

$$
\begin{aligned}
& v_{2}-v_{1}=(1-2 k)\left(I_{2} R_{2}+L_{2} \frac{d I_{2}}{d t}\right) \pm k\left(v_{3}-v_{2}+v_{1}-I_{1} R_{L}\right) \\
& v_{N_{S}}-V_{N_{S}=1}=(1-k)\left(I_{N_{S}} R_{N_{S}}+L_{N_{S}} \frac{d I_{N_{S}}}{d t}\right)+k\left(v_{N_{S}-1}-v_{N_{S}-2}\right) .
\end{aligned}
$$

he The computer code solves this set of $2 N_{S}$ simultaneous, linear, differential equations (up to $N_{S}=50$) using the MACC predictor-corrector subroutine DEPC. A Fortran listing of the code which includes provisions for a line-printer graph of the output is included in the appendix. The user need specify only the values of the arrays R_{N}, L_{N}, and C_{N} and the values of N_{S}, R_{L}, k, and the time at which the computation is to end. All voltages are normalized to the initial voltage on the line. A sample of typical output is shown for a line of 10 identical sections except for the end sections which have 25% extra inductance, terminated in its characteristic impedance ($R_{L}=L_{N} / C_{N}$) with a total resistance that is 20% of $R_{L}\left(R_{N}=0.2 R_{L} / N_{S}\right)$, and a coupling coefficient of 0.15 . This is typical of lines which are optimized to give a rectangular pulse with a droop of $\sim 10 \%$. The calculation takes ~ 7 seconds of 1110 computer time and costs ~ 80 cents.

A variety of cases have been run including ones in which the inductance increases with distance from the load (which steepens the rise and introduces a significant droop) and cases in which the inductance decreases with distance from the load (which produces a monotonically rising waveform). More complicated cases will be examined if there appears to be some benefit to be gained from the standpoint of plasma heating.

SPROTT. 298 त, 4126810219

N-MACP PNCAb

NGMACC 1.14S08/25175-16i12:33 . PFNCAL

${ }^{\text {A }}$ -	${ }_{C}$	
2.		DIMENSION VI(100), VF'(101),SAVE(101.100), TIME (101), AI (101)
3.		COMMON NS, NN,RL, AK, AL (50), C(50), R(50)
4		EXTERNAL DERIVS
5	c	NS IS THE NUMBER OF SECTIONS IN THE LINE (MAX 50)
6.		NS $=10$
7.	C	RL IS THE LOAD RESISTANCE
$8{ }^{8}$		$R L=1.0$
9.	c	AK is the Coupling coefficient between sections
10.		$A K=0.15$
11.	c	TEND IS THE TIME AT WHICH THE COMPUTATION ENDS
12.		TENDE4.0
13.		DO. 100 . IE1.NS
14.		$A L(I)=1$ O/FLOAT(NS)
15.		$C(I)=1.0 / F L O A T(N S)$
16.		$R(T)=0.2 / F L O A T(N S)$
17.		VI (2*I-1)=0.0
18.		VI(2*I) $=1.0$
19°.	100	CONTINUE
20.		$A L(1)=12 ? 5 * A L(1)$
21.		$\Delta_{L}(N S)=1.25 * L_{L}(N S)$
22.		NN=2*NS
23.		DT:0.01*TEND
24.		
25.	300	FORMATPIHI, STEP TIME CURRENTi).
36.		
27.		2,DT, 2H...SAVE, 101 , NN, NPOINT, NOTIFY, \$400)
28.	400	CONTINUE
29.		DO $600 \mathrm{~J}=1$, NPOINT
30.		
31.		AI (J)=SAVE(J.1)
32.		
33.	500	FORMAT (1H.I6, 2F13.4)
34.	600	CONT TNUE
35.		
36.		2E FORMING NETWORK LOAD..i, it IME..i, iCURRENT...i.i*i)
37.		CALL GRPHND
38.		END

```
END OF COMPILATION:
```

 - DERIVS
 NMMACC.1.14S-08/25i75-16:12:38

DERIVS
SUBROUTINE DERIVS(TIME.V.DV,STORE,ITEST)
DIMENSTON V(1).DV(1).STORE(1)
COMMON NS,NN,RL,AK,AL(50),C(50),R(50)
VOEV (1)*RL
DVC(1)=fV(2)-VO+AK*(2CO*V(2)-VO-V(4))-R(1)*V(1))/AL(1)
$D V(3)=((V(4)-V(2)) *(1.0+3.0 * A K)+A K *(V O-V(6))-R(2) * V(3)) / \Delta L(2)$
DO. 200 I $12 . \mathrm{NS}$
200
DV(2*I-2 $)=(V(2 * I-1)-V(3 * I-3)) / C(I-1)$
DO 250 I $=4 . N S$

10°	250	
11%		$2(I-1) * V(2 * I-3)) / A L(I-1)$
12.		OV $(2 * N S-1)=(V(2 * N S)-V(2 * N S=2)+A K *(V(2 * N S)=2.0 * V(2 * N S-2)+V(2 * N S-4))$
13.		2-R(NS)*V(2*NS-1) / AL (NS)
14.		$D V(2 * N S)=-V(2 * N S-1) / C$ (NS)
15		00300 Im $1 . \mathrm{NN}$
16	300	STORE (I) wV (I)
17%		RETURN
18.		END

END OF COMPILATION: NO DIÄGNOSTTCS.

STEP	TIME	CURRENT
1	. 0000	. 0000
2	. 0400	, 2972
3	. 0800	.4570
4	.1200	\% 5100
5	. 1600	. 5043
6	. 2000	. 4846
7	. 2400	,476?
8	. 2800	+4824
9	. 3200	.4932
10	- 3600	. 4981
11	. 4000	4945
12	. 4400	,4871
13	.4800	.4824
14	, 5200	4830
15	. 5600	. 4864
16	.6000	. 4884
17	.6400	4867
18	. 6800	. 4827
19	+7200	. 4794
20	.7600	. 4788
21	.8000	480 ?
22	. 8400	.481?
23	. 8800	.4802
24	. 9200	. 4776
25	-9600	. 4750
26	1.0000	. 4740
27	1.0400	. 4744
28	1,0800	. 4749
29	1.1200	. 4743
30	1.1600	+4724
31	1.2000	. 4702
32	1.2400	. 4689
33	1.2800	. 4688
34	1.3200	f.4689
35	1,3600	.4685
36	1.4000	. 4673
37	1.4400	. 4660
38	1.4800	. 4655
39	1.5200	. 4659
40	1.5600	.4662
41	1,6000	. 4648
42	1.6400	. 4610
43	1.6800	+4553
44	1.7200	14496
45	1,7600	\% 4465
46	1,8000	. 4476
47	1.8400	. 4528
48	1.8800	. 4589
49	1.9200	. 4597
50	1.9600	. 4467
51	2.0000	4118
52	2.0400	$\ldots 514$
53	2.0800	. 2693
54	2.1200	+1779
55	2.1600	10945
56	2.2000	.0352

57	32500	0083
58	2.2800	. 0104
59	2.3200	. 0282
60	2.3600	. 0456
61	2.4000	.0513
62	2.4400	. 0434
63	2.4800	. 0292
64	2.5200	. 0188
65	2.5600	+0189
66	2.6000	. 0284
67	3.6400	. 0402
68	2.6800	. 0460
69	2.7200	0421
70	2.7600	.0314
71	2.8000	. 0210
72	2.8400	. 0171
73	2.8800	. 0211
74	2.9200	. 0288
75	2.9600	. 0338
76	3,0000	. 0321
77	3.0400	, 0249
78	3.0800	. 0172
79	3.1200	. 0140
80	3.1600	.0167
81	3.2000	10223
82	3.3400	. 0257
83	3.2800	,0239
84	3.3200	. 0180
85	3.3600	. 0121
86	3.4000	.0103
87	3.4400	.0131
88	3.4800	. 0177
89	3,5200	0197
90	3,5600	. 0170
91	\$.6000	. 0108
92	3.6400	. 0049
93	3,6800	. 0025
94	3.7200	. 0041
95	3.7600	0073
96	3.8000	. 0095
97	3.8400	.009?
98	3.8800	. 0071
-99	3.9200	0042
100	3.9600	. 0000
101	4.0000	-. 0075

- ${ }^{\circ} \mathrm{F} \mathrm{N}$

```
    RUNID: CWÏzas PROJECTi OZ2goo
    ITEM
epu itme
FilE I%O REQuests
FILE I/O WORDS
MEMORY USAGE
CAROS IN
pages printed
ER + CC
job charge
yotal cost
AMOUNT COST(DOLLARS)
00:00:06.996
239
22?142
    0.202
        6?
    7
```


total cost

USER: 4126810219
COST(DOLLARS)
$\$ 0.26$
$\$ 0.11$
$\$ 0.10$$\$ 0.12$$\$ 0.02$$\$ 0.09$
$\$ 0.06$
$\$ 0.05$$\$ 0.81$

```
ŤHE AbOVE DOLLLAR aMOUNTS ARE APPROXIMATE AND ARE BASE O ON RATES FOR WH. USER BALANCE
```

```
$112.11
```

\$112.11
INITiATION TIME: í:İ:32-AUG 25.T975
fermination time: íiiji30-aug 25.i975
previous run time: i3io8i18=AUG 22.i975

```
```

