COLLISIONAL CYCLOTRON
HEATING NEAR THE OCTUPOLE B = 0 AXIS

by

J. C. Sprott

March 1974

These PLP reports are preliminary and informal and such may contain errors not yet eliminated. They are for private circulation only and are not to be further transmitted without consent of the author and major professor.
Previous calculations of rf heating rates in multipoles have considered collisionless ($v/\omega << 1$) and collisional ($v/\omega_c >> 1$) cases. This note reports the results of (electron or ion) cyclotron heating calculations near the $B = 0$ axis in an octupole for arbitrary values of collision frequency. The results show a smooth transition from the collisionless to the collisional limit with no unexpected behavior.

As always, the starting point for the calculation is the steady state conductivity tensor which has components perpendicular and parallel to the magnetic field:

$$\sigma_\perp = \varepsilon_0 \frac{\omega^2 v}{p} \left[\frac{\omega^2 + \omega_c^2 + v^2}{(\omega^2 - \omega^2)^2 + v^2(2\omega^2 + 2\omega_c^2 + v^2)} \right]$$

$$\sigma_\parallel = \frac{\varepsilon_0 \omega^2 v}{\omega^2 + v^2} .$$

The heating rate is given by

$$\frac{d\langle W\rangle}{dt} = \int \frac{(\sigma_\perp E_\perp^2 + \sigma_\parallel E_\parallel^2) dV}{\int ndV} .$$

For an isotropic electric field

$$\frac{d\langle W\rangle}{dt} = \frac{1}{3} \int \frac{(\frac{2}{3} \sigma_\perp E^2 + \frac{1}{3} \sigma_\parallel E^2) dV}{\int ndV} = \frac{e^2 E^2}{m\omega} G ,$$

where G is the dimensionless heating rate:

$$G = \omega \int \frac{\frac{2}{3} \sigma_\perp E^2 + \frac{1}{3} \sigma_\parallel E^2 dV}{\varepsilon_0 \int \frac{\omega^2 E^2 dV}{p}} .$$
If the density and electric field are homogeneous,

$$G = \frac{\omega}{\varepsilon_0 \omega_p^2} \int dV$$

$$= \frac{2\omega \varepsilon}{3V} \int \frac{\omega^2 + \omega_C^2 + v^2}{(\omega^2 - \omega_C^2)^2 + v^2(2\omega^2 + 2\omega_C^2 + v^2)} dV + \frac{\omega \varepsilon}{3(\omega^2 + v^2)}.$$

Near the octupole axis, the resonance surface is a large aspect ratio toroid of minor radius r_o, and the cyclotron frequency varies as

$$\omega_C = \omega \left(\frac{r}{r_o} \right)^3.$$

Changing variables,

$$a = \frac{\nu}{\omega}, \quad b = \frac{r_{\max}}{r_o}, \quad \text{and} \quad x = \frac{r}{r_o},$$

we obtain

$$G = \frac{4a}{3b^2} \int_0^b \left[\frac{x^7 + a^2x + x}{(1 - x^6)^2 + a^2(2x^6 + 2 + a^2)} + \frac{b}{4(1 + a^2)} \right] dx.$$

This integral has been evaluated numerically for various a (collision frequency) and b (resonance zone position), and the results are shown in the figures. The quantity r_{\max} is given by

$$r_{\max} = \sqrt{\frac{V}{2\pi^2 R_o}} = \begin{cases}
18.9 \text{ cm (small octupole)} \\
55.8 \text{ cm (large octupole)},
\end{cases}$$
where R_0 is the radius of the $B = 0$ axis and V is the volume of the plasma.
The graph shows the relationship between G and γ/ω for different values of r_{max}/r_0. The curves represent the following ratios:

- $r_{max}/r_0 = 2$
- $r_{max}/r_0 = 4$
- $r_{max}/r_0 = 8$
- $r_{max}/r_0 = 16$
- $r_{max}/r_0 = 32$

The y-axis represents G, while the x-axis represents γ/ω. The logarithmic scale is used for both axes.