ION CYCLOTRON HEATING RATE IN THE SMALL OCTUPOLE

J. C. Sprott

November 2, 1972

The spatially averaged cyclotron heating rate in a arbitrary non-uniform magnetic field is given by

$$
\begin{equation*}
\frac{\mathrm{d} \bar{W}}{\mathrm{dt}}=\frac{\pi \mathrm{e} \int \mathrm{nE}_{\perp}^{2} \delta\left(\mathrm{~B}-\mathrm{B}_{\mathrm{o}}\right) \mathrm{dV}}{2 \int \mathrm{ndV}} \tag{1}
\end{equation*}
$$

where n is the density, E_{\perp} is the component of the RF electric field perpendicular to the magnetic field, B, and B_{o} is the magnetic field at cyclotron resonance. Near the axis of a linear multipole, the $B=$ const. contours are nearly circular and the volume integration can be written

$$
d V=r d r d \phi d L
$$

The heating rate becomes

$$
\begin{equation*}
\frac{d \bar{W}}{d t}=\frac{\pi e r_{o} \int n\left(r_{0}, \phi\right) E_{\perp}^{2}\left(r_{0}, \phi\right) d \phi}{\left.2 \frac{d B}{d r} \right\rvert\, r_{0} \iint n(r, \phi) r d r d \phi}, \tag{2}
\end{equation*}
$$

where the subscript o refers to the value of a quantity on the resonance surface. For an octupole, the density along a mod B contour can be approximated by

$$
n(r, \phi) \cong \frac{n_{A}+n(r, 0)}{2}-\frac{n_{A}-n(r, 0)}{2} \cos 4 \phi,
$$

where the sưbscript A refers to the value of a quantity on the axis. For a guninjected plasma in the small octupole, the density is known to be approximately

$$
\mathrm{n}(\psi) \cong \mathrm{n}_{\mathrm{A}} \mathrm{e}^{-\left|\psi-\psi_{\mathrm{A}}\right| / \psi_{1}},
$$

where ψ is the magnetic flux function. Near the axis,

$$
B \propto \frac{d \psi}{d r} \propto r^{3} \Rightarrow \psi \propto r^{4}
$$

so that

$$
n(r, o)=n_{A} e^{-\left(r / r_{1}\right)^{4}}
$$

Also,

$$
r_{o} /\left.\frac{d B}{d r}\right|_{r_{0}}=\frac{r_{o}^{2}}{3 B_{o}}
$$

Finally, it has been shown experimentally that for an electric field produced by a hoop at a distance r_{H} from the axis, the field varies approximately as

$$
\mathrm{E}_{\perp}^{2}(\mathrm{r}) \cong \mathrm{E}_{\mathrm{A}}^{2}\left[1+\frac{\mathrm{r}^{2}}{\mathrm{r}_{\mathrm{H}}^{2}}+\frac{2 \mathrm{r}}{\mathrm{r}_{\mathrm{H}}} \cos \phi\right]^{-1.6}
$$

$$
\begin{aligned}
& \text { Substituting into equation (2) gives } \\
& \frac{d \bar{W}}{d t}= \\
& \frac{\pi \operatorname{er}_{0}^{2} E_{A}^{2} \int_{0}^{\pi}\left[1+e^{-\left(r_{0} / r_{1}\right)^{4}}-\left(1-e^{-\left(r_{0} / r_{1}\right)^{4}}\right) \cos 4 \phi\right]\left[1+\frac{r^{2}}{r_{H}} 2+\frac{2 r_{0}}{r_{H}} \cos ^{\phi}\right]^{-1.6} d \phi}{6 B_{0} \int_{0} \pi \int_{0}^{r_{0}}\left[1+e^{-\left(r / r_{1}\right)^{4}}-\left(1-e^{-\left(r / r_{1}\right)^{4}}\right) \cos 4 \phi\right] r d r d \phi}
\end{aligned}
$$

This equation can be written in the form

$$
\frac{d \bar{W}}{d t}=\frac{\pi e E_{A}^{2}}{6 B_{o}} F\left(r_{o}, r_{H}, r_{1}\right)
$$

For typical conditions ($\mathrm{r}_{\mathrm{H}}=6^{\prime \prime}$ and $\mathrm{r}_{1}=4.5^{\prime \prime}$), the function F has been calculated numerically as a function of the resonance zone position $\left(0<r_{o}<r_{H}\right)$, and the result is plotted in the attached figure.

NO. 31.118. 20 divisions per inch (200 divisions) by two $33 / 4$-INCH CyCles ratio ruling
Coodex

