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In this paper the equation of motion of a charged particle in a 

particular non-uniform magnetic field is solved explicitly in order to 

determine the energy gained during one transit through a region of 

electron cyclotron resonance. A collection of non-interacting particles 

is then considered in order to estimate the heating rate. The approach 
1 is similar to that of Kuckes in a recent paper. 

We begin with the following assumptions: 

1) Infinite magnetic field, linearly varying with distance: 

B = BO (1 + az). 

2) Linearly polarized electromagnetic wave propogating along the 

z-axis with wave number k and frequency w. 

3) Electric field along the x-axis with negligible magnetic field 

from the wave. 

4) Particle with charge e and constant parallel velocity, vz' 

The equations of motion are 

dv x eE . (wt - kz + �) + �v B m y crt = ill Sln 

and 

dv 
af= e - - v B. m x 

The phase angle � is introduced to allow us to assume the particle is 

at z = 0 at time t = 0, still with freedom to choose the plane z = o. 

Multiplying the second equation of motion by i (= .; -1) and adding the 

result to the first equation gives 

eE sin (wt - kz + �) - i eB (v + iv ). m m x y (1) 



Now let v == V
x 

+ ivy where Ivl = "'i is the perpendicular velocity of 

the particle. E quation (1) then becomes 

dv . eB eE . 
+ 1 - V = - SIn err m m (wt - kz + ct» . 

Because of the freedom of choosing the plane z = 0 (or in other words 

BO) '  we can write 
eB wc = _0 
III 

w - kv z 

as a definition of BO. Substituting B and z in equation (2) gives 

or 

d . eBO E 2 + 1 - (1 + az) v = � sin (wt - kv + ct» dt m m z 

dv 
+ iw (1 + av t) v = eE sin (w t + cb). dt c z m C '  

E quation (3) is the basic equation to be solved in this paper. 

To simplify, let 

2 
V = Ve -iwc(t + avzt /2) 

so that equation (3) becoITBs 

But 

so that equation (4) becomes 

dV eE [i(2w t + aw v t2/2 + ct>LeiCCtwcvze/2 - ct»]. 
<It = 2mi e c c z 

2 

(2) 

(3) 

(4) 

(5) 
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A parti cle with zero perpendicular velocity at t = -00 will have at 

t = + 00, 

V( )' - eE foo [i(2w t + aw v t2/2 + ¢ )  i(aw v t2/2 + ¢ ) ]dt (6) 
00 - � e c c z -e c z • L.ilU -00 

By completing the square in the first term of the integrand, 

aw v 2w 
aw v t2/2 +2w t + ¢ = c z c 

'� z (t + _2_) 2 + ¢ - eN C , avz Z 

equation (6) becomes a sum of two Fresnel integrals with the solution 

or 

-i¢ ] - e , 

2w 
lim v = 

eE I� 'IT -i1T/4 - iw (t + av t2 12 ) [ i (¢- --..£ ) -i¢ ] t-w:> m """2a-w-v- e e c z e av z -e • 

c z 

Since we are interested only in I�!: vi = v� (00) , we note that 

l ei(¢ - 2w lav ) -i¢ 1 = I [cos (<I> - 2 w  leN )- cos¢ ]+i[sin(¢-2w leN )+sin¢ ] I. c z -e c z c z 

Then 

v. (00) = 
eE lIT I [cos (<I> - 2w /av ) coS¢ ]+i[· ('" 2 I � )+sin ¢] I ..... m 2awcvz c z - Sln 't' - Wc a z 

' • 

The corresponding energy gain is 

W I  2 1:,. J.. = 7: mv.L ( 00 ) 
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Note that the energy gain 

vJ. (-co) = 0), and can take 

depending on the phase ¢. 

is always positive (as required for 

on any value between zero and TIeLE2j maw v c z 
For a group of particles incident on the 

resonance region with random phases, we can consider all phase angles 

equally likely, so that the average energy gain per particle is given 

by 

(7) 

This result is identical to eq�ation (10) of Kuckes paper (where wc'= awc). 

Now consider a group of non-interacting particles, all moving with 

the same velocity, v .  TIle power absorbed per unit area normal to z is z 
given by 

dP 
CIA = MW-1Y z (8) 

where n is the density of particles. But dA can be written ln terms 

of the magnetic flux � as 

so that equation (8) becomes 

Note that the power absorbed by the particles is independent of their 

parallel velocity, since more fast particles pass through resonance 

per unit time but spend less time in resonance than do the slow particles. 

TIle effect of the parallel velocity is to doppler shift the resonance 

away from the plane w= wc' or in the case of a spectrum of velocities, 

a doppler broadening occurs. TIle result can be carried one step 

further by noting that the differential resonance volume can be written as 

d2V = dAdz "" $/: dB 
DO aBO ' 
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so that 

dP _ 'IT 2 d2V 
CIW - 1" neE CTI3clijj . 

(9) 

This result is identical to equation (4) of PLP 213, but the derivations 

are quite different. (There is a factor of 2/3 difference, but this 

comes from the fact that the electric field in PLP 213 was assumed 

random such that EJ.L = } E2 . ) 
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