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Synchronization is a prominent phenomenon in coupled chaotic systems. The master stability
function (MSF) is an approach that offers the prerequisites for the stability of complete syn-
chronization, which is dependent on the coupling configuration. In this paper, some basic
chaotic systems with the general form of the Sprott-A, Sprott-B, Sprott-D, Sprott-F, Sprott-G,
Sprott-O, and Jerk systems are considered. For each system, their parametric form is designed,
and constraints required to have similar MSFs in different coupling schemes are determined.
Then, the parameters of the designed chaotic systems are found through an exhaustive com-
puter search seeking chaotic solutions. The simplest cases found in this way are introduced, and
similar synchronization patterns are confirmed numerically.
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1. Introduction

Coupled oscillatory systems represent a dynamical
network with manifold characteristics [Boccaletti
et al., 2006]. Synchronization is among the most
significant ones [Pikovsky et al., 2002; Lü et al.,
2004]. The intrinsic dynamics of the single systems
in this phenomenon is modified to maintain the
same trajectory as they evolve over time [Belykh
et al., 2005]. Synchronization may occur as a result
of proper coupling, feedback, or external stimu-
lation [Rafikov & Balthazar, 2008; Dahms et al.,
2012; Franović et al., 2014; Zhou et al., 2021; Saw-
icki et al., 2022]. Applications for synchronization
have been discussed in a variety of fields, includ-
ing physics, biology, engineering, and social sciences
[Moskalenko et al., 2013; Wang et al., 2018; Couzin,
2018; Rakshit et al., 2018; Parastesh et al., 2022].

Over the past two decades, much research has
been done on synchronizing chaotic systems [Boc-
caletti et al., 2002]. This interest is derived from
using chaotic systems’ synchronization in control
theory, neurology, secure communication, and cryp-
tography [Antonik et al., 2018; Chen et al., 2019;
Tang et al., 2021; Wang et al., 2009]. Different types
of chaos synchronization exist, including full, gener-
alized, phase, and lag synchronization [Rosenblum
et al., 1996, 1997; Franović et al., 2012; Rakshit &
Ghosh, 2020; Frolov & Hramov, 2021; Amritkar &
Rangarajan, 2009]. Complete (full) synchronization
happens when two or more initially different sys-
tems arrive at the same attractor with similar tem-
poral behavior. One of the crucial issues in this
field is examining the stability of synchronization
[Pecora & Carroll, 2015; Li & Chen, 2006]. The
ability of a network to stay with the dynamics on
the synchronization manifold despite a variety of
disturbances and disruptions is referred to as syn-
chronization stability.

A well-known method for examining local sta-
bility of synchronization in complicated dynamical
systems is the master stability function (MSF) [Pec-
ora & Carroll, 1990, 1998]. This technique deter-
mines the stability of the synchronization manifold
for any coupling topology by calculating the largest
Lyapunov exponent of the synchronized solution
as a function of a formal complex parameter λ,
i.e. the MSF. If this function is negative for any
eigenvalue of the coupling (adjacency) matrix sub-
stituted for λ, then the synchronization mani-
fold is stable. The MSF offers insights into the
dynamic behavior of the network and can assist in

achieving performance with improved synchroniza-
tion [Faghani et al., 2020]. The MSF approach is
described in the Appendix.

Symmetries in the system’s equations pro-
vide distinctive characteristics, such as equivalent
synchronization dynamics, obtained by comput-
ing MSFs. Chaotic circulant systems with cyclic
symmetry are basic examples for this [Panahi
et al., 2021]. A three-dimensional circulant system
is defined as,

ẋ = f(x, y, z),

ẏ = f(y, z, x),

ż = f(z, x, y).

(1)

In these systems, there are identical MSFs for
some coupling functions due to the symmetries.
For example, by considering f(x, y, z) = y2 − z, a
chaotic circulant system is obtained with the fol-
lowing equations [Panahi et al., 2021],

ẋ = y2 − z,

ẏ = z2 − x,

ż = x2 − y.

(2)

Fig. 1. Master stability functions (Λ(K)) of the circulant
system in Eq. (2) in dependence on K for different coupling
schemes. This system has only three distinct MSF curves.
The notations represent the coupling configuration where e.g.
in x → y coupling, the coupling is defined in the x state
variables and added to the dynamic equation of the y state
variables.
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Fig. 2. Master stability functions (Λ(K)) of the jerk system [Eq. (4)] in dependence on K for y → y and z → z couplings.

On the other hand, a network of coupled oscillators
can be described as

Ẋi = F (Xi) − σ

N∑
j=1

LijH(Xj), (3)

where Xi = (x, y, z) is a three-dimensional state
vector, F defines the local nonlinear oscillator
dynamics, i = 1, . . . , N denotes the index of the
network nodes and σ shows the overall coupling
strength. The N × N matrix L is the Laplacian
matrix of the network, and H(X) = hX defines
the coupling scheme (more details are given in the
Appendix).

The MSFs Λ(K), where K = σλ is the rescaled
coupling strength, of this system for all single-
variable coupling schemes are shown in Fig. 1. The
notation x → y coupling represents that the cou-
pling is defined in x state variables and added to
the dynamic equation for the y state variables. It
follows from the circulant symmetry that this sys-
tem has equivalent MSF curves in x → x, y → y,
z → z, also in x → y, y → z, z → x and in x → z,
y → x, z → y couplings. Therefore, there is no dif-
ference in synchronization when coupled in x → x
or y → y or z → z; also for the two other symmetry
groups.

Another nontrivial example is a certain type
of chaotic system, called the jerk system. It was
recently demonstrated by Mirzaei et al. [2022] that
specific jerk systems can have identical MSFs in
velocity coupling (y) and acceleration coupling (z).
They discovered that jerk systems, in which the jerk
equation is independent of acceleration, have identi-
cal MSFs in two coupling configurations y → y and
z → z. An example of these systems is as follows,

ẋ = y,

ẏ = z,

ż = −8y + |x| − 1.

(4)

As mentioned, this system has the same MSF curves
in y → y, z → z coupling configurations, which are
shown in Fig. 2.

As a result of the findings discussed above, we
look for basic 3D chaotic systems with the same
MSF curves in various coupling configurations in
this paper. To achieve this, some well-known chaotic
systems are taken into consideration, and their third
equation is substituted with a general parametric
quadratic equation. Different forms of parametric
equations that lead to having identical MSFs in
various couplings are then determined by using the
equations relating to MSF. Consequently, a system-
atic numerical search for chaotic solutions enables
us to identify the coefficients of the designed chaotic
systems.

2. The Design Method

Some basic chaotic systems are considered, includ-
ing Sprott-A, Sprott-B, Sprott-D, Sprott-F, Sprott-
G, Sprott-O, and a jerk system [Sprott, 1994]. The
third equation of these systems is replaced by a gen-
eral parametric equation with constant, linear and
quadratic terms as follows,

ẋ = f1(x, y, z),

ẏ = f2(x, y, z),

ż = a1x + a2y + a3z + a4x
2 + a5y

2 + a6z
2

+ a7xy + a8xz + a9yz + a10.

(5)

To find chaotic systems with identical MSFs
for each case, firstly, some constraints should be
derived. Then, the parameters that meet these con-
ditions should be found. Using a systematic search,
the coefficients of the parametric equations are com-
puted so that chaotic dynamics exist. In the fol-
lowing, the procedure for finding desired systems is
explained. As an example, the Sprott-A system is
considered.
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The original Sprott-A system is defined as,

ẋ = y, ẏ = −x + yz, ż = 1 − y2. (6)

First of all, the third equation is substituted by a
general parametric equation as,

ẋ = y,

ẏ = −x + yz,

ż = a1x + a2y + a3z + a4x
2 + a5y

2 + a6z
2

+ a7xy + a8xz + a9yz + a10

(7)

leading to the Jacobian matrix,

DF =

⎡
⎢⎣

0 1 0

−1 z y

fx fy fz

⎤
⎥⎦, (8)

where fx, fy, fz are the partial derivatives of the
polynomial equation in (6) as,

fx = a1 + 2a4x + a7y + a8z,

fy = a2 + 2a5y + a7x + a9z,

fz = a3 + 2a6z + a8x + a9y.

(9)

As explained in the Appendix, the MSF is the
largest Lyapunov exponent of Eq. (A.3). Since the
Lyapunov exponents are related to the temporally
averaged normalized dynamic eigenvalues Λ, we
compute the eigenvalues of Eq. (A.3) as follows:

Det(ΛI − (DF − Kh)) = 0, (10)

where I is the unity matrix. Next, the eigenvalues
are calculated for all single-variable couplings. The
resultant equations for the dynamic eigenvalues of
the Sprott-A system are obtained as,

x → x : Λ3 + (−fz + k − z)Λ2 + (1 − fzk − fyy + fzz − kz)Λ − fz − fxy − fyky + fzkz = 0,

y → x : Λ3 + (−fz − z)Λ2 + (1 − k − fyy + fzz)Λ − fz + fzk − fxy + fxky = 0,

z → x : Λ3 + (−fz − z)Λ2 + (1 + fxk − fyy + fzz)Λ − fz − fyk − fxy − fxkz = 0,

x → y : Λ3 + (−fz − z)Λ2 + (1 + k − fyy + fzz)Λ − fz − fzk − fxy = 0,

Table 1. Parametric systems with identical MSFs based on Sprott-A system [Eq. (7)] (m → n coupling means that
m state variables affect the dynamics of the n state variables).

System Parameters Couplings with Identical MSF

1 ẋ = y

ẏ = −x + yz

ż = −x + a1y + a2z + a3y
2 + a4z2 + a5yz + a6

a1 = −a2

2a3 + a5 = 1

2a4 + a5 = 1

y → x

z → x

2 ẋ = y

ẏ = −x + yz

ż = x + a1y + a2z + a3y2 + a4z2 + a5yz + a6

a1 = a2

a5 = 2a3

2a4 − a5 = 1

z → x

x → y

3 ẋ = y

ẏ = −x + yz

ż = a1x + y + a2z + a3x2 + a4z2 + a5xz + a6

a1 = −a2

a3 = −0.5a5

a4 = −0.5a5

x → y

z → y

4 ẋ = y

ẏ = −x + yz

ż = a1z − 1

2
y2 + a2z2 + a3

No constraint z → x

x → z

5 ẋ = y

ẏ = −x + yz

ż = a1z +
1

2
y2 + a2z2 + a3

No constraint z → y

y → z
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Table 2. Designed chaotic systems that have identical MSF in different coupling configurations.

Basic System Equations Function f Couplings with Identical MSF

Sprott-A ẋ = y

ẏ = −x + yz

ż = f

f = x − 0.1y − 0.1z − 0.3y2 + 0.2z2 − 0.6yz + 2.5 (14)
z → x

x → y

f = −1

2
y2 + 0.01z2 + 1.2 (15)

z → x

x → z

Sprott-B

ẋ = yz

ẏ = x − y

ż = f

f = −0.16x + y + 0.08z2 + 0.03 (16)
z → y

y → x

Sprott-D

ẋ = −y

ẏ = x + z

ż = f

f = 0.49x − 7 − 0.49x2 (17)
x → x

z → z

Jerk

ẋ = y

ẏ = z

ż = f

f = −1.37x − 10.97y + 0.01x2 + 0.52y2 + 0.46 (18)
x → y

y → z

f = 1.2x − 3.7y − 0.09x2 − 0.42xy + 0.46 (19)
z → z

y → y

Sprott-F

ẋ = y + z

ẏ = −x + αy

ż = f

f = 0.016y − 0.2x2 + y2 + z2 + 2yz

α = −0.016
(20)

x → y

x → z

f = x + 0.38y + 0.5z + 0.005y2 + 0.02z2

+ 0.02yz − 2.3

α = −0.26

(21)

z → x

x → y

f = −x − 11.66z + 0.28z2

α = 0.12
(22)

z → y

y → z

f = −x + 0.43y − 0.23z − 0.15y2 + 5.78

α = −0.23
(23)

y → y

z → z

Sprott-G

ẋ = αx + z

ẏ = xz − y

ż = f

f = −5.71x + y + 1.64z − 0.5xz

α = −1
(24)

z → y

x → z

Sprott-O

ẋ = y

ẏ = x − z

ż = f

f = 12.06y + 0.58z − 0.03z2 + 0.53 (25)
y → x

x → y

2350122-5



August 29, 2023 20:15 WSPC/S0218-1274 2350122

Z. Dayani et al.

y → y : Λ3 + (−fz + k − z)Λ2 + (1 − fzk − fyy + fzz)Λ − fz − fxy = 0,

z → y : Λ3 + (−fz − z)Λ2 + (1 + fyk − fyy + fzz)Λ − fz + fxk − fxy = 0,

x → z : Λ3 + (−fz − z)Λ2 + (1 − fyy + fzz)Λ − fz − fxy + ky = 0,

y → z : Λ3 + (−fz − z)Λ2 + (1 − fyy + fzz + ky)Λ − fz − fxy = 0,

z → z : Λ3 + (−fz + k − z)Λ2 + (1 − fyy + fzz − kz)Λ + k − fz − fxy = 0.
(11)

In order to have similar MSFs for any subset
of the coupling configurations, their characteristic
equations must be the same. Hence, fx, fy, and fz

are found to obey similar eigenvalues equations. For
instance, the equations of two coupling configura-
tions y → x and z → x are the same if,

fx = −1,

fz + fy = y + z.
(12)

All the possible cases leading to similar MSFs for
the system of Eq. (7) are given in Table 1.

Finally, the parameters of all the cases found
(Table 1) for a chaotic solution are obtained with
a systematic computer search. For example, one of
the obtained systems that has the form of Case 2 in
Table 1 with identical MSFs in z → x and x → y
coupling configurations is defined as

ẋ = y,

ẏ = −x + yz,

ż = x − 0.1y − 0.1z − 0.3y2 + 0.2z2

− 0.6yz + 2.5.

(13)

Using a similar procedure, the conditions are
derived for the other mentioned basic chaotic sys-
tems. Subsequently, new chaotic systems are found
with identical MSF curves in different coupling con-
figurations. The designed chaotic systems and their
parameters are given in Table 2.

3. Results

In the previous section, basic chaotic systems with
identical MSFs in different coupling configurations

Fig. 3. Master stability functions (Λ(K)) for the Sprott-A system [Eq. (14)] in dependence on K for x → y and z → x
couplings.

Fig. 4. Master stability functions (Λ(K)) for the Sprott-A system [Eq. (15)] in dependence on K for x → z and z → x
couplings.
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Fig. 5. Master stability functions (Λ(K)) for the Sprott-B system [Eq. (16)] in dependence on K for y → x and z → y
couplings.

Fig. 6. MSFs (Λ(K)) for the Sprott-D system [Eq. (17)] in dependence on K for x → x and z → z couplings.

Fig. 7. Master stability functions (Λ(K)) for the Jerk system [Eq. (18)] in dependence on K for y → z and x → y couplings.

Fig. 8. Master stability functions (Λ(K)) for the Jerk system [Eq. (19)] in dependence on K for y → y and z → z couplings.
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Fig. 9. Master stability functions (Λ(K)) for the Sprott-F system [Eq. (20)] in dependence on K for x → z and x → y
couplings.

Fig. 10. Master stability functions (Λ(K)) for the Sprott-F system [Eq. (21)] in dependence on K for x → y and z → x
couplings.

Fig. 11. Master stability functions (Λ(K)) for the Sprott-F system [Eq. (22)] in dependence on K for y → z and z → y
couplings.

Fig. 12. MSFs (Λ(K)) for the Sprott-F system [Eq. (23)] in dependence on K for z → z and y → y couplings.

2350122-8
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Fig. 13. Master stability functions (Λ(K)) for the Sprott-G system [Eq. (24)] in dependence on K for x → z and z → y
couplings.

Fig. 14. Master stability functions (Λ(K)) for the Sprott-O system [Eq. (25)] in dependence on K for x → y and y → x
couplings.

were found. In this section, the MSFs of those sys-
tems (Table 2) are found by numerically comput-
ing the maximum Lyapunov exponent of Eq. (A.3).
Then, the apparently identical MSFs are plotted
for two corresponding coupling configurations. The
results are shown in Figs. 3 to 14. It can be seen
that the method could successfully design the sys-
tems with similar MSF curves. However, in some
cases there are some minor differences between the
curves (for example in Fig. 3) which is related to
the challenges of LLE simulations.

4. Conclusion

In this paper, some chaotic systems with equiva-
lent synchronization patterns in different coupling
configurations were constructed. The local stabil-
ity of synchronization in coupled dynamical systems
can be computed by the master stability function
(MSF) method. Different coupling schemes can be
constructed for linearly coupled oscillators depend-
ing on the variables involved in the coupling. The
systems introduced here have equivalent MSFs in
two different coupling configurations. Systems with
similar MSF curves are rare. Earlier research has
demonstrated that for various coupling schemes,
circulant systems and special jerk systems have
equivalent MSFs for some different couplings. Here,

new chaotic systems with this feature were devel-
oped on the basis of basic chaotic systems. Some
systems, such as generalized Sprott-A, Sprott-B,
Sprott-D, Sprott-F, Sprott-G, Sprott-O, and a jerk
system, were considered with a general polynomial
form for their third equation. The prerequisites for
equivalent MSFs in various coupling configurations
were then inferred. These constraints defined the
third equation of the systems under consideration.
Subsequently, the parameters, which fulfill this aim,
were found using a systematic computer search such
that the defined system has a chaotic solution.
Finally, 12 chaotic systems were found, and their
identical MSFs were presented.

In terms of application, the importance of these
systems may be having an alternative in the cou-
pling function. If a functional coupling develops a
problem, while the network is in operation or if
using some of the variables in the coupling is not
possible or practical, the coupling can be replaced
with an equivalent alternative without affecting the
network’s performance.
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Similar Master Stability Functions

Appendix A

Master Stability Function

A network of coupled oscillators can be described
as,

Ẋi = F (Xi) − σ

N∑
j=1

LijH(Xj), (A.1)

where Xi is an m-dimensional state vector, F
defines the local nonlinear oscillator dynamics, i =
1, . . . , N denotes the index of the network nodes,
and σ shows the overall coupling strength. The
N ×N matrix L is the Laplacian matrix of the net-
work, and H defines the coupling scheme, i.e. how
the m-dimensional vectors are coupled into the sys-
tem Xi. For a linear coupling H(X) = hX, where
h is an m × m matrix with hkl = 1 if the coupling
is in l → k and hkl = 0, else. Considering Xs as the
synchronous solution, a small perturbation from the
synchronization is denoted as δXi = Xi −Xs which
obeys the linearized variational equations

δẊi(t) = DF (Xs) − σ
N∑

j=1

LijDH (Xs)δXj , (A.2)

where DF (Xs) and DH (Xs) denote the Jacobian of
F and H, respectively, at the synchronous manifold
for the linear diffusive coupling, DH (Xs) = h. The
variational equations Eq. (A.2) can be decoupled by
diagonalizing the Laplacian matrix L as

η̇i(t) = [DF (Xs) − σλih]ηi, (A.3)

where the m-dimensional vector ηi denotes the
variations of the ith oscillator, λi = 0, λ2, . . . , λN

are the eigenvalues of the Laplacian matrix and
η = Q−1δX = (η1, . . . , ηN ) is the Nm-dimensional
vector of the transformed perturbations using the
eigenvectors of L(Q). For λ1 = 0, the variational
equation evolves along the synchronous manifold,
and for the other eigenvalues, it evolves transverse
to the synchronous manifold. The stability of the
variational equation is obtained through comput-
ing its largest Lyapunov exponent (Λ) as a func-
tion of λi, known as MSF. In general, the rescaled
coupling parameter K = σλ is considered, and Λ
is found as a function of K. For K values with
Λ(K) < 0, the variations asymptotically decay to
zero leading to local stability of the synchronous
manifold.
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