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Attracting torus is a rare phenomenon in the dynamics of low-dimensional autonomous systems. Adding 
an anti-damping term to the well-known Nosé-Hoover oscillator, this paper introduces a new system 
exhibiting attracting torus in a wide range of parameter values. This system has a variety of dynamical 
solutions like limit cycles, strange attractors, attracting tori, invariant tori, and chaotic sea. It is also 
demonstrated that the system is multistable in some regions of parameter space wherein different types 
of attractors coexist. However, the attracting torus is the leading bounded solution in a considerable area 
of parameter space. Moreover, the coexistence of four limit cycles is found in the time-reversed system. 
The study of the system’s basin of attraction shows that the system owns a solid basin of attraction with 
rounded boundaries for the attracting torus, which is an exciting property.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Many researchers have decided to propose or design chaotic 
systems with distinctive or fascinating dynamical properties. Due 
to the importance of equilibria in analyzing the dynamics of a sys-
tem, introducing new systems with particular equilibrium point(s) 
has become a hot topic in designing new systems [1]. In this re-
gard, the existence of stable equilibrium point(s) [2,3], no equilibria 
[4], line(s) [5], curve(s) [6,7], and plane(s) [8] of equilibria in a 
system has attracted lots of attention. Such systems triggered two 
other topics in designing new chaotic systems: systems with hid-
den attractors and systems with multistability. On the one hand, 
the systems with hidden attractors have been exciting since they 
are the counterexamples of the relation between unstable equi-
librium points and chaotic attractors [9]. On the other hand, the 
coexistence of two or more simultaneous attractors for a system 
is inherently an interesting property, especially when these coex-
isting attractors are of infinite countable or uncountable numbers. 
These two typical cases of multistability are respectively known as 
megastability [10,11] and extreme multistability [12,13].

In addition to designing new systems with unique dynamical 
characteristics, some systems were developed to describe real-
world phenomena [14,15]. Lorenz system [16], Hodgkin-Huxley 
model [17], and Nosé-Hoover oscillator [18] are three well-known 
examples of such systems. The Nosé-Hoover oscillator, also known 
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as the Sprott A system, describes the dynamics of a thermostat 
for a constant temperature. This system is interesting since it has 
no equilibrium point and two quadrative nonlinearities. Also, the 
coexistence of an invariant tori with a chaotic sea, which is an un-
usual property, was observed as its dynamics. Different studies on 
the Nosé-Hoover system revealed some exciting behaviors of this 
oscillator, although it is a conservative system. Moreover, in the 
study on categorizing conservative flows, the Nosé-Hoover system 
was identified in the third case of conservative flows since nu-
merical solutions (not analytic ones) are needed to prove that this 
system is conservative [19]. Furthermore, adding a damping term 
to the Nosé-Hoover equations, a chaotic system with adjustable 
Kaplan-Yorke dimension (DKY ) was reported in [20].

Although finding chaotic dynamics in a nonlinear system is of 
high importance, observing nonchaotic dynamics, such as attract-
ing torus, is interesting as well. The reason is that attracting torus 
is a sporadic dynamical behavior that has hardly been observed in 
low-dimensional autonomous nonlinear systems. Some studies re-
ported the existence of attracting torus in nonautonomous systems. 
For instance, in [21], the authors showed how adding a forcing 
term to a simple two-dimensional system can change the system’s 
dynamics from exhibiting the limit cycles to attracting torus and 
chaos. However, a few studies indicated attracting torus in the 
three-dimensional autonomous systems. As an illustration, a sym-
metric coexistence of two attracting tori in a three-dimensional 
autonomous system was reported in [22].

This paper proposes an anti-damping term for the Nosé-Hoover 
system, resulting in a three-dimensional dissipative system with 
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rich dynamical properties. In the following sections, the system 
is defined (Section 2), and its dynamical properties, such as the 
system equilibrium point, its stability analysis, the coexistence of 
different types of attractors, the monostability region of the at-
tracting torus, bifurcation diagrams, and the dynamical properties 
of the time-reversed system (Section 3) is described in details. 
Finally, to conclude the paper, the most important results are sum-
marized (Section 4).

2. System definition

The Nosé-Hoover oscillator is a famous instance of a conserva-
tive system that has intensively been investigated. The definition 
of the Nosé-Hoover oscillator is

ẋ = y

ẏ = −x + yz (1)

ż = a − y2

here, yz is the nonlinear damping, which impacts on lowering 
the difference of y2 and the parameter a. Considering y2 as the 
normalized temperature in each moment, yz plays the role of a 
thermostat in System (1). Using different sets of initial conditions, 
the Nosé-Hoover oscillator solutions contain an infinite number 
of nested tori encircled by a chaotic sea. Generally, for a three-
dimensional conservative system, the following condition must be 
met:

Tr(Jac.) = ∂ ẋ

∂x
+ ∂ ẏ

∂ y
+ ∂ ż

∂z
= 0 = λ1 + λ2 + λ3 (2)

where Tr(Jac.) indicates the trace of the system’s Jacobian matrix, 
and λi are the system’s Lyapunov exponents (LEs) for a specific 
attractor. Based on the classification presented in [19], a conserva-
tive system can be categorized into four groups. This case, wherein 
Tr(Jac.) = −z and 〈z〉 = 0, can be categorized in the third case of 
the conservative flows since the system’s local divergence is state-
dependent that can not be detected as a conservative solution by 
a glance at the equations of the system or, in other words, check-
ing the boundedness condition. Note that 〈.〉 indicates averaging 
over time. Adding a damping term to the right-hand side equations 
is the most straightforward way, leading to dissipative solutions. 
Adding the damping term −by to ẏ equation, the system becomes:

ẋ = y

ẏ = −x + yz − by (3)

ż = a − y2

where Tr(Jac.) = z − b and b is the control parameter. Assuming 
z′ = z − b, System (3) remains the same. Therefore, adding the 
damping term to ẏ equation cannot help to make the system dis-
sipative, and the system remains conservative. On the other hand, 
the addition of −bx to ẋ equation, as the damping term, can dis-
continuously reduce the DKY by raising the b parameter. Similarly, 
adding −bz to ż equation can make the system dissipative, while 
the regions of chaotic solutions are too restricted. Nevertheless, as 
mentioned in [20], replacing y2, which is one of the nonlinearities
of the Nosé-Hoover system, by a weaker nonlinear term |y| leads 
to a continuous decreasing trend of DKY by the increase b value.

Applying z → −z, another version of the Nosé-Hoover oscillator 
can be defined as:

ẋ = y

ẏ = −x − yz (4)

ż = y2 − a
2

Fig. 1. a) The bifurcation diagram b) LEs spectra, and c) the dissipation diagram of 
System (5) for a = 7 and 0 ≤ b ≤ 1. The diagrams are plotted assuming the end of 
the trajectory obtained for each b value as the initial conditions for the subsequent 
step calculations. Also, the first initial condition is (x0, y0, z0) = (0.5, 0.5, 0). The 
figure shows how the system dynamics and dissipativity varies as the value of the 
parameter b changes.

All the characteristics mentioned for the Nosé-Hoover system can 
also be found in System (4). Adding an anti-damping term bz to 
the ż equation can lead to a dissipative system which can be pre-
sented as follows:

ẋ = y

ẏ = −x − yz (5)

ż = y2 − a + bz

here, Tr(Jac.) = b − z. The parameter b (b is considered a positive 
real number) is the control parameter. Numerical analysis proves 
that System (5) is a dissipative system since the 〈b − z〉 < 0 as 
the value of b parameter gradually grows. It can be seen that the 
addition of the anti-damping term affects the system’s local diver-
gence by adding the term b to the Tr(Jac.). Hence, at first glance, 
it is expected to have an unbounded solution. However, the anti-
damping parameter impacts the system’s dynamic so that the sys-
tem surprisingly can exhibit bounded dissipative solutions. Fig. 1
demonstrates the system’s bifurcation diagram versus b parame-
ter, its corresponding LEs spectra (employing the Wolf algorithm 
[23] with the run-time of 100000 seconds), and dissipation dia-
gram (value of 〈b − z〉) of System (5) for a = 7, 0 < b ≤ 1, and the 
initial conditions of (x0, y0, z0) = (0.5, 0.5, 0). It should be noted 
that the initial conditions for obtaining the system’s dynamics for 
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Fig. 2. The attracting torus of System (5) in a) x-y, b) x-z, c) y-z planes and d)x-y-z space considering a = 7, b = 0.55 and (x0, y0, z0) = (0.5, 0.5, 0). The system owns a fat 
monostable attracting torus in this set of parameters.

Fig. 3. The coexisting attractors of System (5) in a) (a, b) = (7, 0.925), b) (a, b) = (2.7804, 0.1192), c) (a, b) = (4.162, 0.1), and d) (a, b) = (7, 0.3). Dark purple indicates the 
attracting torus. Also, the chaotic attractor is presented in light pink, gray, and cyan colors. Light purple and light green also signify the limit cycles. More details can be 
found in Table 1. The system has rich dynamical properties and shows the exciting coexistence of different attractors. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)
each step (each b value) are acquired from the last sample of the 
previous step’s trajectory (forward method). This method simply 
helps to follow or remain in an attractor basin of attraction as 
the bifurcation parameter varies. Consequently, using this method, 
multistability can be hopefully identified when applied in different 
directions (increasing or decreasing the value of the bifurcation pa-
rameter). Furthermore, the forward method helps to start solving 
the system from the nearest point to the trajectory in each step. 
Therefore, the least transient time can be expected, which con-
3

firms that the dynamics shown in the bifurcation diagrams are not 
transients.

It is very interesting and counter-intuitive that the system is 
conservative for b = 0 but dissipative for both positive and nega-
tive b. The authors are unaware of such a feature in any known 
chaotic system.

From Fig. 1a-b, it can be observed that for about b ∈ [0.174,

0.392] ∩ [0.514, 0.928], there exists two zero and one negative LEs. 
Thus, Fig. 1 reveals that System (5) owns an attracting torus for a 
significant range of b values. Fig. 1c also shows how the dissipa-
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Fig. 4. The cross-section of a) the chaotic sea and nested tori ((a, b) = (7, 0)) and b) the attracting torus and limit cycles ((a, b) = (7, 0.005)) in the y = 0 plane. c) The 
coexistence of the attracting torus with a pair of period-4 symmetric limit cycles and a period-5 limit cycle (symmetric about the origin) in (a, b) = (7, 0.005). In the absence 
of the anti-damping term (b = 0), the system is the original conservative Nosé-Hoover system. However, even a small strength of the anti-damping term makes the system 
dissipative. Also, in small values of parameter b, the system shows multistability.
tivity of System (5) varies as the value of parameter b changes. 
Observing an attracting torus in the dynamics of bounded au-
tonomous systems is exceptionally infrequent. In contrast, attract-
ing torus is typical behavior that can be noticed in nonautonomous 
megastable systems like the ones reported in [21]. As an example, 
attracting torus in a three-dimensional autonomous system was 
previously observed in [22] but in a small range of parameter val-
ues. The attracting torus of System (5) is represented in Fig. 2 for 
(a, b) = (7, 0.55) and (x0, y0, z0) = (0.5, 0.5, 0).

Employing the Wolf algorithm [23], the LEs of the fat attracting 
torus, represented in Fig. 2, are (λ1, λ2, λ3) = (0, 0, −0.1041) with 
the run-time of 100000 seconds.

3. Dynamical characteristics

The Nosé-Hoover system defined in Eq. (4) is originally a no-
equilibrium system. For a system to have an equilibrium point, 
there must be at least one set of (x∗, y∗, z∗) value which makes 
the right-hand side system’s equations zero. Accordingly, setting 
y = 0, −x − yz = 0, and y2 − a + bz = 0, the only equilibrium 
point of System (5) is (x∗, y∗, z∗) = (0, 0, ab ). The eigenvalues of 
this equilibrium satisfy the following condition:

λ3 − f3λ
2 − f2λ − f1 = 0 (6)

where f3 = 1
b (a − b2), f2 = a − 1, and f1 = b. Applying the Routh–

Hurwitz criterion, the system’s equilibrium point is stable for f3 <

0, f1 < 0, and f2 f3 + f1 > 0 or, in other words, 1
b (a − b2) < 0, 

b < 0, and 1
b (a − b2)(a − 1) + b > 0. Since one eigenvalue is the 

parameter b, the system’s equilibrium point is never stable for 
b ≥ 0. Also, it appears that for a > 2b the equilibrium point is 
a saddle-node. Note that the unstable manifold is z axis and the 
other two manifolds are in the z = 0 plane. Looking more closely 
at the stability criteria, for b < 0, the stability of the equilibrium 
point depends on the sign of the parameter a. More specifically, 
for b, a < 0, the equilibrium point is stabled, otherwise, i.e., for 
b < 0 and a > 0, the system has a saddle-node equilibrium point.
4

Furthermore, applying (x, y, z) → (−x, −y, z), the system re-
mains unaffected. So, System (5) is symmetric with respect to the 
z axis.

3.1. Multistability

Performing an extensive numerical search in the two-dimen-
sional parameter space of (a, b) where a ∈ [0, 20] and b ∈ [0, 1], 
reveals that System (5) has rich dynamical properties, and the 
exciting coexistence of different attractors can be observed for var-
ious values of a and b parameters. Fig. 3a shows the coexistence 
of an attracting torus (dark purple) and a chaotic attractor (light 
pink). The coexistence of a strange attractor (light pink) and a 
period-5 limit cycle (light purple) is also demonstrated in Fig. 3b. 
In Fig. 3c, a symmetric pair of chaotic attractors (light pink and 
gray) surrounded by another chaotic coexisting attractor (cyan) can 
be observed. Similarly, Fig. 3d illustrates the coexistence of a sym-
metric pair of period-2 limit cycles (light purple and light green) 
with an attracting torus (dark purple). More details, such as initial 
conditions, LEs, DKY , and parameter values are given in Table 1.

Apparently, when b = 0, System (5) becomes a conservative 
system owning nested conservative tori and a chaotic sea. The 
Poincaré section of these nested tori within the chaotic sea is rep-
resented in Fig. 4a. According to Fig. 4b, as soon as the value of b
parameter slightly increases, the system becomes dissipative, and 
an attracting torus appears in coexistence with three limit cycles, 
including a pair of symmetric period-4 limit cycles and a period-5 
limit cycle symmetric about the origin, shown in Fig. 4c.

3.2. Bifurcations and dynamics region

It is observed that in a = 7 and b = 0.3, System (5) has 
three coexisting attractors, including an attracting torus and a 
pair of symmetric limit cycles. Considering three initial conditions 
of (x01, y01, z01) = (0.5, 0.5, 0), (x02, y02, z02) = (2.5, −8, 0), and 
(x03, y03, z03) = (−2.5, 8, 0), that respectively lead to the attract-
ing torus and limit cycles, the bifurcation diagram of System (5) is 
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Table 1
The details of attractors that are presented in Fig. 3. The considered run-time for calculating the LEs is 1000000 seconds.

Fig. (a,b) (x0, y0, z0) (λ1, λ2, λ3) D K Y Attractor type Color

3a (7,0.925)
(1.5,0,1.6) (0,0,−0.2356) 2.0 Attracting torus Dark purple

(1.9,0,0.7) (0.0625,0,−1.7425) 2.0359 Strange attractor Light pink

3b (4.162,0.1)
(3,0,0.5) (0.0231,0,−0.0981) 2.2355 Strange attractor Light pink

(6,0,0.8) (0,−0.0425,−0.0425) 1.0 Limit cycle Light purple

3c (2.7804,0.1192)
(±9.14,0,2.7) (0.0348,0,−0.1514) 2.2299 Symmetric pair of strange attractors Light pink/gray

(−9.7,0,7.6) (0.0348,0,−0.1517) 2.2294 Strange attractor cyan

3d (7,0.3)
(0.5,0.5,0) (0,0,−0.0637) 2.0 Attracting torus Dark purple

(±2.5,∓8,0) (0,−0.0214,−0.0214) (1.0) Symmetric pair of limit cycles Light purple/light green
Fig. 5. a) The bifurcation diagrams and b, c) LEs spectra of System (5) for 
a = 7 and 0.3 ≤ b ≤ 0.59, using the forward method. The first initial conditions 
are (x01, y01, z01) = (0.5, 0.5, 0), (x02, y02, z02) = (2.5, −8, 0), and (x03, y03, z03) =
(−2.5, 8, 0) that respectively lead to the attracting torus and symmetric limit cy-
cles in (a, b) = (7, 0.3). In b ∈[0.3, 0.363) the attracting torus coexists with a pair 
of symmetric period-2 limit cycles. In b ∈(0.393, 0.513) the period-5 limit-cycle is 
supposed to be monostable. Also, in b ∈[0.363, 0.393]∩[0.513, 0.59] the attracting 
torus is conceivable to be monostable.

plotted in Fig. 5a for a = 7 and 0.3 ≤ b ≤ 0.59, using the forward 
method. Also, employing the Wolf algorithm [23] with the run-
time of 100000 seconds, the LEs of System (5) are also calculated. 
Fig. 5b shows the LEs spectra of System (5), which correspond 
to the dark purple bifurcation (attracting torus). Similarly, Fig. 5c 
shows the LEs spectra for the symmetric limit cycles.

From Fig. 5, it can be seen that the limit cycles collide with 
the attracting torus through a boundary crisis at about b = 0.363. 
5

After the boundary crisis at about b = 0.393, though which the 
attracting torus annihilated, a large periodic window occurs in b ∈
(0.393, 0.513). Likewise, through a boundary crisis at b = 0.513, 
the attracting torus appears.

Fig. 5 can be divided into three regions: The region of coexis-
tence of attracting torus and the symmetric pair of period-2 limit 
cycles (b ∈ [0.3, 0.363)), the suspectable region of monostability 
of period-5 limit cycle (b ∈ (0.393, 0.513)), and the potential re-
gion of monostability of the attracting torus (b ∈ [0.363, 0.393] ∩
[0.513, 0.59]). Hence, there are two separate areas wherein the 
attracting torus can be monostable. It is found that in some re-
gions of b ∈ [0.3, 0.363), there exists another period-3 limit cycle 
that coexists with the stated period-5 limit cycle. On the other 
hand, the results approve that the attracting torus is monostable 
for b ∈ [0.363, 0.393] ∩ [0.513, 0.59]. It should be mentioned that 
the numerical search results indicate that the attracting torus van-
ishes as soon as parameter a reaches about 8.5 for any values of b
parameter.

Fig. 6a shows the basins of attraction for System (5) in three 
y = 0, z = 0, and x = 0 planes. A solid basin of attraction can be 
observed as b parameter is selected in 0.363 ≤ b < 0.513. How-
ever, as illustrated in Fig. 6b, when b parameter is selected in 
[0.513, 0.59], filamentary unbounded regions, spread through the 
system’s basin of attraction, can be noticed. Also, the basin of at-
traction gets more limited by increasing the b parameter value. 
The bifurcation diagrams presented in Fig. 5a are plotted for 0.3 ≤
b ≤ 0.59 since for b > 0.59, the solution gets unstable due to these 
scattered unbounded regions within the torus basin of attraction. 
Figs. 6c-e show how the torus basin of attraction shrinks by grow-
ing b values up to 0.9.

3.3. Time-reversed system

According to Fig. 6a, it can be observed that System (5) is 
monostable for (a, b) = (7, 0.37) and the attracting torus is the 
only attractor of the system. Hence it is interesting to study the 
dynamics of the time-reversed system to check whether the at-
tracting torus exists in the time-reversed version of the system. 
Setting (a, b) = (7, 0.37) and applying t → −t , the time-reversed 
version of System (5) can be achieved as:

ẋ = −y

ẏ = x + yz (7)

ż = a − y2 − bz

The results of a comprehensive numerical search reveal that Sys-
tem (7) has four coexisting period-1 limit cycles for a = 7 and 
b = 0.37, which are shown in Fig. 7. Moreover, Fig. 8 presents 
the basins of attractions for System (7) in z = 0, y = 0, and x = 0
planes. The basin of attraction of each limit cycle in Fig. 7 is rep-
resented with the same color, used to plot their trajectories.
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Fig. 6. The basins of attraction of System (5) for a = 7 and a) b = 0.37, b) b = 0.59, c) b = 0.6, d) b = 0.8, and e) b = 0.9 in y = 0 (left panel), z = 0 (middle panel), and x = 0
(right panels) planes. Dark purple, light gray, and light green colors respectively indicate the attracting torus, the unbounded orbits, and the unstable equilibrium. The figure 
portrays how the basin of attraction of the attracting torus in its monostability region shrinks by growing the value of the parameter b.
Interestingly, no regions of scattered unbounded orbits can be 
found in Fig. 8 (in contrast to Fig. 6a). The results show that, un-
like the original system, the time-reversed system does not have 
a variety of different dynamical solutions, and no other types of 
attractors are detected for it.

4. Conclusion

Adding an anti-damping term to the third equation of the Nosé-
Hoover system, this paper described the exciting and rare charac-
teristics of the three-dimensional quadratic system based on the 
Nosé-Hoover oscillator. An intriguing property of this system is 
that, depending on parameters, it has different dynamical solutions 
6

like limit cycles, attracting torus, and strange attractor, as well as 
invariant tori and a chaotic sea (for b = 0). Despite the nonau-
tonomous megastable systems, attracting torus is an incredibly rare 
dynamic for autonomous systems. Previously, the coexistence of 
two symmetric attracting tori was found in a three-dimensional 
system introduced in [22]. However, in this case, the coexistence of 
an attracting torus with a strange attractor and also with a sym-
metric pair of limit cycles was found. Moreover, the coexistence 
of three chaotic attractors (two symmetric with another strange 
attractor) and a strange attractor with a period-5 limit cycle was 
observed. Some regions of parameters were found in which the at-
tracting torus was the only dynamical solution of the system. The 
study of the system basins attraction showed a solid region with 
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Fig. 7. The coexisting period-1 limit cycles of System (7) for a = 7 and b = 0.37 using the initial condition of a) (x01, y01, z01) = (0, 5, 0), b) (x02, y02, z02) = (0.5, 0.5, 0), c) 
(x03, y03, z03) = (1, 1, 1), and d) (x04, y04, z04) = (−8.5, 0, −1). The time-reversed system has four coexisting period-1 limit cycles in a parameter set wherein the original 
system exhibits a monostable attracting torus.

Fig. 8. The basins of attraction of System (7) for a = 7 and b = 0.37 in a) z = 0, b) y = 0, and c) x = 0 planes. Yellow, green, dark red, and dark blue colors indicate the limit 
cycles in Fig. 7 with the same colors, respectively. No regions of scattered unbounded orbits can be observed in the basin of attraction of the time-reversed system.
clear rounded boundaries for the attracting torus’ basin of attrac-
tion when b ∈ [0.363, 0.393]. In contrast, when b is selected in 
[0.513, 0.59] range, scattered unbounded orbits were seen within 
the torus’ basin of attraction which was shrunk as b gradually 
grew.

The study of the time-reversed system showed that four period-
1 limit cycles coexisted in the same parameter set where the orig-
inal system exhibited a monostable attraction torus with a solid 
rounded basin of attraction. Moreover, no unbounded orbits were 
7

detected in the basin of attraction of the system in such parameter 
sets.
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