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ABSTRACT

As a way to quantify the robustness of a chaotic system, a scheme is proposed to determine the extent to which the parameters of the system
can be altered before the probability of destroying the chaos exceeds 50%. The calculation uses a Monte-Carlo method and is applied to several
common dissipative chaotic maps and flows with varying numbers of parameters.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0077645

In recent decades, hundreds of examples of iterated maps and
systems of ordinary differential equations with chaotic solu-
tions have been reported and studied. Some of these systems are
intended as models of natural phenomena, but most are mathe-
matical illustrations of particular dynamical behaviors. In either
case, it is useful to know how much the parameters can vary from
their nominal values before the chaos is destroyed since that will
indicate how realistic the model is and how difficult it might be
to employ the system in some practical application. For exam-
ple, when constructing an electrical circuit designed to produce
a chaotic signal, it is useful to know how carefully the component
values must be chosen and controlled.1 However, such informa-
tion is rarely provided in the published literature. Thus, it is
useful to propose a quantitative measure that others can use and
to give values for some common chaotic systems as a baseline for
comparison.

I. INTRODUCTION

One of the defining characteristics of chaos is the sensitive
dependence on initial conditions, usually quantified by calculation
of the Lyapunov exponent(s).2 Generally, a change in initial condi-
tions will greatly alter the subsequent trajectory but will not affect
the attractor for a dissipative dynamical system. However, a suf-
ficiently large change in initial conditions can put the orbit in
the basin of a different attractor or can make it unbounded and
approach infinity. Thus, it is useful to know the shape and size of the
basin of attraction, and a method for doing so has been suggested.3

Similarly, a small change in the parameters of a chaotic dynami-
cal system will greatly alter the trajectory but will only slightly distort
the attractor unless the chosen parameters happen to be close to a

bifurcation point, in which case the attractor can be destroyed or can
undergo a qualitative change such as becoming a periodic limit cycle.
Hence, it is customary to choose the parameters of a chaotic system
to be well away from any such bifurcations. Note that parameters
can usually be converted to initial conditions by adding variables to
a dynamical system.4

Mathematically, a robust dynamical system can be defined as
one in which all small perturbations of the parameters away from
their nominal values leave the system qualitatively unchanged.5 Said
differently, quantities that characterize the dynamics and topol-
ogy such as Lyapunov exponents and attractor dimension change
continuously as a function of the size of the perturbation for a
robust system. A system that is not robust is said to be “fragile.”
It is usually also required that a robust system has no coexisting
attractors. For some applications such as secure communications,6

it is critically important to have a rigorously robust chaotic system.
There is a large literature devoted to the design and proof of robust
systems.7

However, for many purposes, a less rigid definition of robust is
useful, and it is informative to assign a numerical value to quan-
tify the robustness of the system, rather than to have a simple
binary classification. Such a quantity should be a dimensionless
number in the range of zero to one or 0 to 100% to facilitate com-
parisons among diverse dynamical systems. There are many ways
such a number could be constructed, and what follows is only one
reasonable suggestion.

II. EXAMPLE: HÉNON MAP

To illustrate the idea, it is useful to consider in detail the sim-
ple two-dimensional iterated map introduced by Hénon8 and is
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FIG. 1. Regions of parameter space (in red) for which the Hénonmap has chaotic
solutions with X0 = Y0 = 0. The black circle is centered on the nominal param-
eters (a = 1.4 and b = 0.3) and has a radius such that half of the enclosed
parameters give chaotic solutions.

given by

Xn+1 = 1 − aXn
2 + bYn,

Yn+1 = Xn,
(1)

with chaotic solutions for the parameters a = 1.4 and b = 0.3 and
initial conditions X0 = Y0 = 0.

The choice of initial conditions will generally alter the results
unless the attractor is globally attracting, which the Hénon map is
not. However, initial conditions at or near the origin are usually
appropriate since chaos is born in nearly all mechanical and elec-
tronic systems through a route that begins when the equilibrium at
the origin loses its stability.

Figure 1 shows a 1000 × 1000 grid of parameters in the range
of 0 < a ≤ 2.8 and 0 < b ≤ 0.6 with the chaotic regions colored in
red. The nominal parameter values are at the center of the plot, and
the dimensionless parameters (a/1.4 and b/0.3) range from 0 to 2 (a
±100% variation in each parameter).

In this case, chaos is identified by eliminating solutions that are
unbounded (|x| > 1000) or periodic (with periods up to 1000) and
assuming those that remain are chaotic. Using a positive Lyapunov
as a criterion gives a similar result. Exactly 107 786 of the million
points (approximately 10.8%) are chaotic, a value of some interest
in its own right, and one that could serve as a measure of robustness.

A careful examination of the figure suggests that the param-
eter space is dense in periodic windows9 as it is typical of low-
dimensional dynamical systems with a smooth nonlinearity.10 Thus,
the system does not satisfy the mathematical definition of robust.

FIG. 2. Fraction of chaotic solutions within a distance r of the nominal normalized
parameter values in parameter space for the Hénon map with X0 = Y0 = 0.

However, small perturbations of the parameters are much more
likely than not to preserve the chaos.

This notion can be quantified by constructing circles of radii

r =
√

(a/1.4 − 1)2 + (b/0.3 − 1)2 centered on the nominal values

and calculating the fraction F(r) of points within each circle that are
chaotic. Figure 2 shows the result of such a calculation for the Hénon
map.

Generally, but certainly not always, F(r) is a monotonically
decreasing function of r, that for this case first falls below F = 0.5
at r = 0.246, hereafter denoted as r0. Hence, we conclude that the
Hénon map is about 25% robust in the sense that a 25% varia-
tion in parameters is more likely than not to destroy the chaos.
Figure 1 shows a circle of radius r0, the interior of which contains an
equal number of parameter values that give chaotic and nonchaotic
solutions.

It is also useful to quantify the sensitivity of the chaos to the
parameters a and b individually with the other held constant at its
nominal value. Such a calculation is straightforward and leads to
r0 = 11% for a and r0 = 100% for b. This result is consistent with
the vertical elongation of the chaotic region in Fig. 1. The value
of 100% means that most values for a = 1.4 and 0 < b < 0.3 give
chaos, while most values for 0.3 < b < 0.6 do not.

To assess the sensitivity of the robustness to initial conditions,
the calculation was repeated with X0 = Y0 = 0.9, which is close to
the boundary of the basin of attraction. The calculated robustness
was 23.2%, which is close to the value of 24.6% for initial conditions
at the origin. Whether this result is typical is an open question.
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III. MONTE-CARLO ALGORITHM

The method just described is meant to illustrate the concept
with a simple example, but it is unwieldy and computationally inten-
sive, especially for systems with more than two parameters where
the circles become spheres or hyperspheres in parameter space and
for systems of ordinary differential equations where identification
of chaos requires the calculation of the largest Lyapunov exponent
or some equivalent quantity. Thus, it is useful to describe a Monte-
Carlo algorithm11 that gives a good approximation to r0 with orders
of magnitude less computation and without the need to make plots
and graphs.

The method begins by making an initial guess for the value of
r0 such as r0 = 0.5 and randomly choosing a parameter point within

a circle of radius r =
√

2r0. The factor
√

2 is not critical and can be
replaced by any value somewhat greater than 1.0. For this first point,
the fraction that is chaotic F0(r0) will be either 1.0 if the solution is
chaotic or zero if not. Continue the process if necessary N times until
FN(r0) = 1/N > 0 (until there is one chaotic case with r < r0). On

average, this will occur for N = 2p/2, where p is the dimension of the
parameter space (the number of parameters).

Then, replace r0 by 2r0FN(r0) and continue iterating FN(r0)

until it converges to a value of 0.5 and r0 converges to a value that is
no longer changing by a significant amount. This procedure is noth-
ing more than Newton’s method for finding the root r = r0 of the
equation F(r) − 0.5 = 0 assuming the local slope is dF/dr = −1/2r
at r = r0, which is a crude approximation to the curve in Fig. 2.

FIG. 3. Two Monte-Carlo calculations of the robustness of the Hénon map with
X0 = Y0 = 0 as a function of the number of cases tested. The black horizontal
line is the value of r0 = 0.246 calculated from F(r) = 0.5 in Fig. 2.

Newton’s method converges rapidly if the slope is known accurately,
which is unfortunately not the case here.

Nonetheless, applying the method to the Hénon map for two
different instances (different sequences of randomly chosen param-
eters), gives the result in Fig. 3. Despite the fact that this is a slowly
converging case because of the shoulder on the curve in Fig. 2 near
F(r) = 0.5, the value of r0 appears to converge to the expected value
of r0 = 0.246 (shown as a horizontal line in Fig. 3) to within a few
percent after a few thousand iterations. Thus, the method is several
orders of magnitude faster than the million-point method in Sec. II
and simpler to implement.

Pseudocode written in a dielect of BASIC that implements the
Monte-Carlo calculation that produced Fig. 3 is shown in Fig. 4.

The computational time required to obtain a meaningful value
for the robustness will depend on the complexity of the system (in
particular, whether it is an iterated map or system of ordinary differ-
ential equations), the computer used, the efficiency of the compiler,
the numerical method, and the desired accuracy. The result in Fig. 3
required about 20 min of computation using the code in Fig. 4,
while the result from Fig. 1 required about 6 days of computation
on a common desktop personal computer using the PowerBASIC
Console Compiler.

Of course, there is some loss of accuracy with such a Monte-
Carlo method, but it does not make sense to seek an overly accurate
value because it will depend on the particular choice of nominal
parameters and initial conditions. Choosing nominal values where
the robustness is greatest may be a good strategy for some purposes.

FIG. 4. Pseudocode used to implement the Monte-Carlo calculation that pro-
duced Fig. 3.
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The method is best suited for comparing various systems and iden-
tifying ones that are highly robust and others that are very fragile.
Section IV gives some examples of each.

IV. ROBUSTNESS OF FAMILIAR SYSTEMS

Most of the familiar examples of chaos occur in systems of ordi-
nary differential equations with simple polynomial and piecewise-
linear nonlinearities, and it is instructive to calculate the robustness
for some of those cases.

A. Lorenz system

Perhaps the most familiar and extensively studied case is the
Lorenz system,12

ẋ = σ(y − x),

ẏ = −xz + ρx − y,

ż = xy − βz,

(2)

with chaotic solutions for the parameters σ = 10, ρ = 28, and β

= 8/3. The resulting attractor has a global basin of attraction (all
initial conditions go to the attractor except for a set of measure zero
representing the three equilibrium points and the infinitely many
unstable periodic orbits).13 Since the origin is an equilibrium point
for all values of the parameters, it is necessary to take different ini-
tial conditions such as x0 = y0 = z0 = 0.01, but the results should
be and are independent of the choice.

The parameter space is three-dimensional with spheres of

radius r =
√

(σ/10 − 1)2 + (ρ/28 − 1)2 + (3β/8 − 1)2 represent-
ing points equidistant from the nominal parameter values. Using the
Monte-Carlo method described in Sec. III gives a value of r0 ≈ 66%.
For this and the following cases, N is at least ten thousand, and the
value of r0 appears to have converged to the two quoted significant
digits. The sensitivity to each parameter individually is 93% for σ ,
64% for ρ, and 79% for β . Thus, the Lorenz system is relatively
robust, at least compared with the Hénon map.

It is instructive to add coefficients to the remaining four terms
in Eq. (2) with nominal values of 1.0 and calculate the robustness
in the resulting seven-dimensional parameter space. The result is
r0 ≈ 87%, which is slightly greater than the three-dimensional case.
Thus, the robustness of a system appears not to depend strongly on
the chosen parameters provided there are sufficiently many to com-
pletely characterize the dynamics. In general, this means that the
number of parameters should be equal to the number of terms in
the equations minus D + 1, where D is the dimension of the system
since D of the variables and time can be linearly rescaled without
altering the dynamics.

B. Rössler system

Similar to the Lorenz system but with a single quadratic non-
linearity is the Rössler system,14

ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c),

(3)

with chaotic solutions for the parameters a = b = 0.2 and c = 5.7
and initial conditions x0 = y0 = z0 = 0.

The parameter space is three-dimensional with spheres

of radius r =
√

(5a − 1)2 + (5b − 1)2 + (c/5.7 − 1)2 representing

points equidistant from the nominal parameter values. Using the
Monte-Carlo method described in Sec. III gives a value of r0 ≈ 51%.
The sensitivity to each parameter individually is 53% for a, 82% for
b, and 57% for c. Thus, the Rössler system is only slightly less robust
than the Lorenz system.

C. Chua’s circuit

Probably, the most famous and highly studied chaotic electrical
circuit was developed by Chua and co-workers15 and can be modeled
by the piecewise-linear equations

ẋ = c

[

y − x + bx +
1

2
(a − b)(|x + 1| − |x − 1|)

]

,

ẏ = x − y + z, (4)

ż = −dy,

with chaotic solutions for the parameters a = 8/7, b = 5/7, c = 9,
and d = 100/7 and initial conditions x0 = y0 = z0 = 0.01.

The parameter space is four-dimensional with hyperspheres of

radius r =
√

(7a/8 − 1)2 + (7b/5 − 1)2 +(c/9 − 1)2 + (7d/100 −1)2

representing points equidistant from the nominal parameter values.
Using the Monte-Carlo method described in Sec. III gives a value
of r0 ≈ 17%. The sensitivity to each parameter individually is 48%
for a, 63% for b, 22% for c, and 25% for d. Thus, Chua’s circuit is
somewhat less robust than the Lorenz system despite having a simi-
lar double-lobe attractor. As a model of an electrical circuit, it might
be more reasonable and instructive to choose the parameters to be
values of the circuit components.

D. Jerk circuit

Even simpler than Chua’s circuit is the two-parameter
piecewise-linear system given by,16

ẋ = y

ẏ = z

ż = −az − by + |x| − 1,

(5)

with chaotic solutions for the parameters a = 0.6 and b = 1 and ini-
tial conditions x0 = y0 = z0 = 0. Note that the constant 1 in the ż
equation is an amplitude parameter17 that only affects the size of the
attractor and thus cannot be used as a bifurcation parameter.

Equation (5) is called a “jerk system” because it can be written
in compact form as

...
x = −aẍ − bẋ + |x| − 1, where

...
x is the time

derivative of the acceleration ẍ in a mechanical system where x is the
displacement.18 The form of the nonlinearity |x| makes it especially
amenable to electronic implementation using diodes, and it is just
one of a large family of similar systems with various nonlinearities.19

The parameter space is two-dimensional with circles of radius

r =
√

(a/0.6 − 1)2 + (b − 1)2 representing points equidistant from
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the nominal parameter values. Using the Monte-Carlo method
described in the previous section gives a value of r0 ≈ 5.4%. The
sensitivity to each parameter individually is 9% for a and 7% for b.
Thus, the electronic circuit is less robust than Chua’s circuit, but it is
simple to construct and operates reliably provided one of the circuit
components can be carefully adjusted.

E. Simplest chaotic system

The final example is another jerk system but with a single
parameter and a quadratic nonlinearity,20

ẋ = y,

ẏ = z,

ż = −az + y2 − x,

(6)

with chaotic solutions for the parameter a = 2.02 and initial con-
ditions x0 = y0 = z0 = 0.05. It can be written in compact form as
...
x = −aẍ + ẋ2 − x, and it has been rigorously proved that no sim-
pler chaotic system with a single quadratic nonlinearity exists.21

Variations of this system with different nonlinearities22 have been
implemented electronically.23

The parameter space is one-dimensional with r = |a/2.02 − 1|
representing points equidistant from the nominal parameter value
of a = 2.02. Using the Monte-Carlo method described in the previ-
ous section gives a value of r0 ≈ 1.7%. Thus, this system is relatively
fragile in part because of its small basin of attraction that does not
include the origin and accounts for why it was not discovered much
earlier.

With a single parameter, it is easy to visualize the behavior
of the system in a conventional bifurcation diagram as shown in
Fig. 5 where the local maximum of x is plotted. The system under-
goes a common period-doubling route to chaos as the parameter a
decreases. The plot shows the usual large period-3 window on the
right with its period-doubling, but there are infinitely many tiny
periodic windows in the vicinity of a = 2.02, mostly with very large

FIG. 5. Bifurcation diagram of the local maxima of x for the simplest chaotic sys-
tem in Eq. (6) with x0 = y0 = z0 = 0.05 showing seven of the infinitely many tiny
periodic windows.

TABLE I. Selected chaotic systems with their robustness r0.

System Eq. Parameters Init Cond r0 (%)

Hénon8 (1) 1.4, 0.3 0 25
Lorenz12 (2) 10, 28, 8/3 0.01 66
Rössler14 (3) 0.2, 0.2, 5.7 0 51
Chua15 (4) 8/7, 5/7, 9, 100/7 0.01 17
Jerk16 (5) 0.6, 1 0 5
Simplest20 (6) 2.02 0.05 1.7

periods, seven of which (with apparent periods of 4, 6, 8, 7, 5, 7,
and 9 from left to right) are barely visible in the plot. These windows
have transiently chaotic orbits, some of which require calculating for
a time of ∼ 4 × 104 to resolve, which is rarely done in the literature
and accounts for an overestimate of the robustness of some systems.
Points on the left of the plot as well as those outside the basin of
attraction have unbounded orbits.

V. CONCLUSION

This paper has described a simple method for quantifying the
robustness of a chaotic system and given a number of examples.
Table I summarizes the cases previously discussed, showing the wide
range of their robustness. The method can be applied with equal
ease to any dynamical system with any number of variables and
parameters and any desired mode of behavior (stable equilibrium,
periodic, quasiperiodic, chaotic, hyperchaotic). Such a calculation
should probably be included as part of the complete description of
any new chaotic system that is proposed or reported.
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