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Abstract – Migraine is one of the primary headache disorders in a group of the ten most prevalent
and disabling diseases. There are some valuable computational models of this disease which
considered the onset and spatial patterns of migraine pain. Here we focus on dynamical transitions
of this cyclic disease using the subnetworks which are essential in its complex network. Regarding
the dynamical diseases theory, we propose a dynamical network biomarker for this disease that
can predict the upcoming prodromal phase for clinical use. In this research, we use the bifurcation
diagram as a tool to show the prediction of the model as the considered physiological parameter
of the model changes.

Copyright c© EPLA, 2018

Introduction. – Migraine headache is the third most
prevalent and sixth most disabling disease in the world.
This cyclic disease is characterized by repetitive periods
of throbbing and severe pain in one side of the head. Each
migraine cycle can be separated into one normal phase
(inter-ictal) and four distinct abnormal phases; prodro-
mal, aura, ictal and postdrome phases. Each phase has its
own associated symptoms, prevalence, and duration which
are different between migraineurs. Considering the exis-
tence of each phase in the migraine cycle, there are several
subtypes of this disease such as migraine with aura (MA)
and migraine without aura (MWOA), which are major
subtypes of migraine headaches.

Despite the research that has been done about this dis-
ease, the mechanism of migraine is not yet well under-
stood. There are two main theories about the migraine
mechanism [1]: Spreading Depression (SD) and Migraine
Generator (MG) theories. The SD theory of migraine as-
sumes that Cortical Spreading Depression (CSD) waves
cause neurological symptoms and pain in the aura and
ictal phases, respectively [2,3]. However in MG theory,
a large amount of evidence supports the claim that dys-
function in the brainstem causes the migraine cycle and
even CSD waves [4,5]. Many different studies have shown
that neural hyperexcitability is the physiological param-
eter that causes the migraine cycle to initiate. Actually,

increasing excitability brings the brain to a tipping point
in which a migraine initiates [6–8].

Mathematically, migraine is a dynamical disease con-
taining transitions that happen because of parameter
changes through the migraine cycle [1,6,9]. To investi-
gate the progress of this disease, computational models
can be used. These models should characterize the es-
sential involved subnetworks and their connections during
the migraine cycle which are needed to understand how
the migraineur’s brain can reach a tipping point through
increasing excitability.

Dynamical diseases, the extension of periodic diseases,
are defined as those in which changes in physiological con-
trol parameters cause sudden transitions and abnormal
dynamics [10]. Transitions between phases in the migraine
cycle put this disease in a group of dynamical diseases.
The concept of bifurcation can mathematically describe
a dynamical disease with critical transitions [6,10–15]. In
complex diseases with distinct phases, the Dynamical Net-
work Biomarker (DNB) is essentially a group of states that
are highly deviated from each other. The biological sys-
tems show DNB at critical transition points [15–20]. A
DNB which is strongly correlated and has high-amplitude
fluctuating states has been seen in the pre-ictal phase of
dynamical diseases and migraine which we focus on in this
paper and has not been seen before. Moreover, regarding
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A. Bayani et al.

the complex dynamical diseases concept, both inter-ictal
and ictal phases are steady states with low-amplitude fluc-
tuation and correlation in states [1,16].

Accurate prediction of transitions will improve the qual-
ity of treatment strategies in patients with dynamical dis-
eases. A lot of effort has been made to propose indicators
which can detect the vicinity of critical transitions in eco-
logical, financial and biological phenomena [21]. Among
the proposed indicators, variance, skewness and auto-
correlation at-lag-1are most commonly employed to pre-
dict the critical transitions in experimental and simulated
data [15].

Habituation which still is not completely understood,
is a physiological learning process in which there is a de-
crease in amplitude of response to a repeated stimulus.
Habituation changes during the migraine cycle is one of
the most reproducible experiments in migraines. Neuro-
physiological studies have shown that in most methodolog-
ical approaches, the migraineur’s brain shows pre-ictal and
postdrome abnormality in habituation. Interestingly, just
before and during the ictal phase, habituation normalizes
like inter-ictal phase [22]. These results, in addition to
complex dynamical disease concepts, can be used to inves-
tigate dynamical features of inter-ictal and ictal phases.

Chaos occurs in complex systems whose behavior is
highly sensitive to initial conditions. Consequently, small
changes in initial conditions can yield completely different
responses [23]. Some evidence claims that chaos exists in
many biological systems both in normal and abnormal sit-
uations, e.g. brain [24–31], heart [32,33], and kidney [34].
According to this evidence, chaotic behavior is consid-
ered in many computational models of different biological
systems [11,12,35–41]. Recently dynamical systems were
categorized into systems with self-excited attractors and
systems with hidden attractors [42–46]. When an attrac-
tor’s basin of attraction involves equilibrium, we call that
attractor “self-excited”. Otherwise, the attractor is hid-
den [47–50]. Through the nonlinear dynamics concepts
such as chaos, bifurcation diagram, hidden attractors and
tipping points, we try to make effort to better understand
the mechanism of migraine headache.

Migraine model. –

Dynamical and structural assumptions. As mentioned
in the previous section, the migraine (MWOA type) cy-
cle is considered as four distinct phases each having its
own dynamic (fig. 1). In the attack-free interval (normal
phase), as the brain locates in its normal states, chaotic
dynamics are considered. This dynamic not only provides
low-amplitude fluctuation and low-correlation in states
but also confirms by experiments that the brain is chaotic
in normal states. It should be noted that the deviations
of the states are low and the neighboring states are just
close to each other as we see this type of responses in
chaotic attractors. However, in the pre-ictal phase, these
fluctuations are more deviated and the states are far from
each other as we see this type of responses in periodic

Fig. 1: (Colour online) Migraine cycle illustration. In this time-
variant landscape, the balls represent the current state and its
variability (yellow dashed line) as the excitability of the brain
increases over time. Also stable attractors, both pain state and
attack-free states, are represented with potential walls. At the
end of the pain state, when the trigger factors (hammer) end,
the curvatures of the two wells change in the way that the balls
leave the left well and go to the right well, and subsequently
the postdrome phase occurs; hence, to consider the postdrome
phase, we should consider the same landscapes, but at this
time, from top (pain phase) to bottom (attack-free interval).
The second and third landscapes show the transient states be-
tween attack-free interval and prodromal phase. Regarding the
amplitude of the fluctuations (fluctuations of the balls), these
two states can be categorized to attack-free interval or prodro-
mal phase. Modified figure from fig. 1 of ref. [9].

attractors; hence, periodic dynamics can provide strongly
correlated and high-amplitude fluctuating states in DNB
which are seen in the pre-ictal phase. As mentioned be-
fore, the ictal phase has the same chaotic dynamics as
the inter-ictal one. In the postdrome phase, a physiolog-
ical parameter goes through the opposite direction that
it passed during the three past phases. But in this case,
the brain does not repeat the exact previous responses. In
nonlinear dynamics theory, there are coexisting attractors
in this situation, and hysteresis happens between these
attractors.

Previous studies suggested the role of different parts in
the migraine generator network [4,5,51,52]. Despite the
value of considering all details of this network, it is better
to consider the simplest network with essential parts in
which transitions occur as control parameters change [53].
MGN can be considered as a system containing two sub-
networks; the Trigeminovascular and the descending mod-
ulatory brainstem systems [53]. The link between the
MGN and SD theories are probably irreconcilable since
these two subnetworks should be connected to the cortex
where SD happens (fig. 2).

Local population of neurons model for migraine. Our
mathematical model is based on [6] which will be briefly
explained in this subsection. In this model, activity (A) of
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Fig. 2: (Colour online) Migraine network. Trigeminovascular,
descending modulatory brainstem and cortex are considered as
the main subnetworks of this model. Modified figure from fig. 2
of ref. [54].

a local population of neurons is considered to be the result
of interactions between the generation and decay of pulses.
The following equation describes the neural activity rate:

dA

dt
=

(

εS + A · q
εp

εp + ε
p

crit

)

(1 − A) − d · A (1)

In this equation, the last term (d ·A) reflects the decay
of pulses with a rate d, and the rest of this equation rep-
resents the generation of pulses. In the generation term,
1 − A is zero when A equals one so that activity belongs
to the interval (0, 1). The multiplier (εS + A · q εp

εp+ε
p

crit

)

illustrates two main terms that cause generation of pulses;
the first one, external stimuli (εS) in which excitability of
the neurons (ε) increases this effect, and the second one is
the activity of the neighboring neurons (A · q εp

εp+ε
p

crit

). In

the neighboring term, the factor q is the maximum inten-
sity of its effect, and the Hill function ( εp

εp+ε
p

crit

) is used to

show that this effect dominates when ε reaches a critical
excitability level (εcrit). The parameter p is the Hill func-
tion coefficient. For simplicity, the activity of the neigh-
boring region (A in neighboring term) is considered equal
to the activity of the main local region.

Also one of the main assumptions in the model is the
feedback effect of activity on excitability, which is formu-
lated with a linear equation as follows:

ε = ε0 + cA, (2)

where ε0 is the base-line excitability and c is a constant.
The full model is defined by eq. (3) which is constructed
by substituting eq. (2) into eq. (1):

dA

dt
= ((ε0 + cA)S +A · q

(ε0 + cA)p

(ε0 + cA)p + ε
p

crit

)(1−A)−d ·A

(3)

Fig. 3: (Colour online) Representation of how stable and un-
stable equilibrium values change as a function of base-line
excitability. The fold bifurcation point (F ) determines the
base-line excitability value at which the normal state loses its
stability and the disease state dominates. Modified figure from
fig. 2(c) of ref. [6].

This model is based on considering ignition of spreading
depression as the pathophysiological mechanism for mi-
graine initiation. Increasing excitability brings the brain
to a tipping point which causes SD to start. According
to [6], up to three stable and unstable equilibria are gen-
erated from eq. (3) as the parameter ε0 changes. Figure 3
shows values of these equilibria and stability of each one
as a function of ε0. In fig. 3, the dashed middle branch
characterizes the unstable equilibrium which determines
the border between normal and disease stable equilibria.
As base-line excitability of the brain increases to a critical
level, the unstable equilibrium collides with the normal
stable equilibrium and causes the disease equilibrium to
dominate. In fig. 3, F is the critical level at which a fold-
bifurcation occurs and the brain enters the disease state
from a pathophysiological point of view.

The proposed model. To consider the migraine gener-
ator as a network with complex interactions, three units,
specifying the Trigeminovascular, descending modulatory
brainstem and cortex, are coupled. In this model, each
population of neighboring neurons is considered as a dis-
tinct unit. A linear summation with constant coefficients
of all activities is used to illustrate neighboring interac-
tions. This coupling method is illustrated for i-th unit as
follows:

Ani = Ki1A1 + Ki2A2 + Ki3A3 i = 1, 2, 3. (4)

Ani is the activity of a population of neighboring neurons
for the i-th unit. Also Kij is the multiplier of j-th unit in
i-th one. The complete model is

dA1

dt
=

(

(ε01 + c1A1)S1 + (K11A1 + K12A2 + K13A3)

· q1 ·
(ε01 + c1A1)

p1

(ε01 + c1A1)p1 + ε
p1

crit1

)

(1 − A1) − d1 · A1,

dA2

dt
=

(

(ε02 + c2A2)S2 + (K21A1 + K22A2 + K23A3)

· q2 ·
(ε02 + c2A2)

p2

(ε02 + c2A2)p2 + ε
p2

crit2

)

(1 − A2) − d2 · A2,
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dA3

dt
=

(

(ε03 + c3A3)S3 + (K31A1 + K32A2 + K33A3)

· q3 ·
(ε03 + c3A3)

p3

(ε03 + c3A3)p3 + ε
p3

crit3

)

(1 − A3) − d3 · A3.

(5)
Parameters Si, pi, qi and di are set equal to the values
in [6] (Si = 0.1, pi = 4, qi = 1 and di = 0.1). Other
parameters are set such that the model becomes simpler.
It should be noted that other choices for values of these
parameters are also available, but the goal of this work is
not investigating the quantitative values of these param-
eters, and it is sufficient that this physiologically mean-
ingful model shows the migraine cycle phases and their
dynamics.

Numerical results and discussion. – The proposed
model is simple with a few parameters which are essen-
tial to show the dynamical transitions in the migraine cy-
cle. According to the physiological assumptions section,
these three subnetworks should show the considered dy-
namics in each phase of the migraine cycle. As mentioned
above, basal excitability of the first subnetworks (ε01) of
this model is considered as a bifurcation parameter when
the other parameters are fixed at values chosen by trial and
error as ε02 = 1, ε03 = 1; c1 = 1, c2 = 1, c3 = 1; K11 = 0,
K12 = −1, K13 = −7, K21 = 1, K22 = 0, K23 = 0, K31 =
23, K32 = 0, K33 = 0; εcrit1 = 1, εcrit2 = 1, εcrit3 = 1.
To evaluate the transitions in one cycle of this disease, a
bifurcation diagram of the model is shown in fig. 4.

The left chaotic region of the fig. 4 (1.39 < ε01 < 1.403)
represents the attack-free interval. The periodic region
shows the prodromal phase (1.403 < ε01 < 1.428). Also
the second chaotic region shows the pain phase (1.428 <

ε01 < 1.45). The black line which represents the post-
drome phase (1.45 > ε01 > 1.39) of the migraine is
the coexisting attractor which emerges as the bifurca-
tion parameter decreases gradually. The prodromal and
postdrome phases show period-3 and period-1 responses,
respectively. It should be noted that the model does not
show the aura phase; hence the model represents MWOA
dynamics.

In such a dynamical disease, an indicator is needed to
show the migraine progress from the inter-ictal state to
the ictal state through the prodromal state. To identify
each phase, the variance of local maxima which was con-
sidered as a “migraine phase indicator” is calculated. The
transitions get the state of the system away from its stable
state and make a large drift which increases the variance
of the system. Particularly, it shows the deviation of the
brain state through smooth changes of excitability.

Recently dynamical systems were categorized into sys-
tems with self-excited attractors and systems with hidden
attractors. When an attractor’s basin of attraction in-
volves equilibrium, we call that attractor “self-excited”.
Otherwise, the attractor is hidden. Rather than design,
their localization and control have been of great interest
in recent years [55–57]. Although hidden attractors exist

Fig. 4: (Colour online) The model bifurcation as the base-line
excitability (ε01) of the first subnetwork increases gradually.
The first chaotic region of the figure represents the attack-free
interval, and the periodic region shows the prodromal phase.
Also the second chaotic region shows the pain phase. The
black line which represents the postdrome phase of the mi-
graine is the coexisting attractor which emerges as the bifur-
cation parameter decreases gradually. It should be noted that
the model does not show the aura phase; hence the model rep-
resents MWOA dynamics. Variance of the local maxima (in
red) is the dynamical biomarker which predicts the upcoming
prodromal phase.

Fig. 5: (Colour online) Cross section of the basins of attraction
of the two attractors (chaotic attractor and fixed-point attrac-
tor) in the yz-plane at x = 0 for the proposed system. The blue
area is the basin of the chaotic attractor, the red area is the
basin of the fixed-point attractor (shown with a black circle),
and unbounded regions are shown in yellow.

in some rare real-world dynamical systems [58,59] no such
system has been reported in biological system. Here we
show that the chaotic strange attractor in the proposed
system is hidden. One easy way to check that is to plot the
basin of attraction around the equilibrium point (which is
obtained numerically and has been plotted as a black cir-
cle in fig. 5). It can be observed from fig. 5 that the basin
of attraction for the strange attractor does not intersect
with the equilibrium point. Thus, according to definition,
the strange attractor is hidden.

Conclusion. – In this study, a novel behavioral
model of migraine is proposed which involves an essential
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subnetwork of the complex network of a migraine. This
model has the potential to present each phase with its
specific considered dynamic which resembles experimen-
tal studies and the theory of dynamical diseases. In this
type of model, the bifurcation diagram is the tool to show
the dynamic changes of the model as the key parameter
of the model increases and/or decreases.

Defining dynamical network biomarkers is done in some
dynamic diseases, but we have not seen application of
these biomarkers in migraines. In this study we intro-
duce variance of local maxima as the DNB to predict the
emergence of the upcoming phase of the migraine. This
DNB increases just before the prodromal phase and can
be used as an early warning signal in this disease.

Other improvements to the model would involve con-
sideration of time delays which exist in the coupling of
subsystems [60–65] and synchronization methods in this
chaotic network [61,64–67]. Larger network sizes [40,68,69]
and electromagnetic field effect [39,40,70,71] are two lines
of research which should be considered in future works.
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