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a b s t r a c t 

For non-invasively investigating the interaction between insulin and glucose, mathematical modeling is 

very helpful. In this paper, we propose a new model for insulin-glucose regulatory system based on the 

well-known prey and predator models. The results of previous researches demonstrate that chaos is a 

common feature in complex biological systems. Our results are in accordance with previous studies and 

indicate that glucose-insulin regulatory system has various dynamics in different conditions. One inter- 

esting feature of this new model is having hidden attractor for some set of parameters. The result of this 

paper might be helpful for better understanding of regulatory system that contains glucose, insulin, and 

diseases such as diabetes, hypoglycemia, and hyperinsulinemia. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Many researchers have tried to investigate the interactions be-

tween glucose and insulin by using mathematical models [1,2] .

Based on previous studies, mathematical models are powerful tools

to gain an insight into such interaction. Apart from experimen-

tal research, developing bilateral interplay mathematical models of

glucose-insulin has played an important part in advancing the sci-

entist vision and saving time and money. 

Diabetes Mellitus (DM), also called diabetes, is one of the most

common metabolic disorders [2] . In patients with diabetes, there

is a high level of sugar in blood and the sugar level can’t be con-

trolled [2] . Researches indicate that the number of diabetic pa-

tients is increasing around the world [3] . From 2012 to 2015, there

are almost 1.5 to 5.0 million people die each year from diabetes

[4,5] . As of 2015, it was estimated that about 415 million people,

approximately 8.3% of the adult population of the world, suffer

from diabetes [5] . Some of the diabetes symptoms are increased

thirst and hunger, which can cause longstanding complications, in-

cluding heart disease and kidney failure [2] . Some of the elements

that can cause this irregular behavior in body are as follows: Ge-

netic factors that can fertilize the body so that other factors of the

disease could disrupt the metabolic system [6] ; Overweight caused

by malnutrition as a consequent of modern lifestyle; Side effects

of some drugs like Glucocorticoids and Thyroid hormone; advance-
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ent of other diseases; and many other elements that cannot be

ully discussed [6] . 

Scientists can develop meditative procedures by understanding

he causes of a disease. Insulin is a peptide hormone, which con-

rols the blood sugar. In diabetes, insulin is either not secreted or

he body cells ignore its presence [7] . Diabetes mellitus is classified

nto three types. In the first type (type1 DM), insulin is not pro-

uced enough by pancreas, so it couldn’t control the blood sugar

evel. In most of the patients with this type of diabetes, the in-

ulin releasing cells, called beta cells, are intercepted, and killed by

ody’s immune system [8] . Five to ten percent of diabetic patients

re suffering from this type. The second type of diabetes (type 2

M), occurs when body cannot use insulin in the right way, be-

ause of overweight, and lack of enough exercise. This type ac-

ounts for 90% to 95% of diabetics [9] . The third type of diabetes,

amely the gestational diabetes, is a temporary situation that oc-

urs during pregnancy, as the blood sugar level increases. Approxi-

ately it affects two to four percent of all pregnant women [8, 9] .

ther elements like stress, anger, and nourishing habits can affect

he blood glucose and insulin levels. 

In previous studies, linear models of diabetes show the relation-

hip between glucose and insulin concentration in isolation from

ther factors [10] . However, in nonlinear models it can be pre-

umed that the relationship between these components is not al-

ays linear and it could be affected by the initial blood glucose

evel; also the statistical properties of the profile of some patients

an change significantly [10,11] . The glucose-insulin system is a

art of human complex system, in which the interactions between

he components determine the overall behavior of the system. The

nsulin secretion system is a negative feedback controller operat-

https://doi.org/10.1016/j.chaos.2018.04.029
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ng between the pancreatic β-cells and plasma glucose concentra-

ion. For instance, when a person eats a snack the body secretes

ore insulin to decrease the glucose level in the blood by increas-

ng the consumption rate of sugar or beginning the storage process.

n the contrary, when there is a low level of glucose in blood, the

ody stops the secretion of insulin, in which the metabolic sys-

em’s condition shifts from absorptive to post-absorptive [12–14] .

n order to have a good understanding of this metabolic interac-

ion, researchers have proposed different mathematical models to

imulate the relationship between plasma glucose concentration

nd plasma insulin concentration more precisely [15,16] . Many sci-

ntists have focused on the analysis of chaotic dynamics, since it

rovides a successful method for investigating biological systems

17–21] . Furthermore, this innovative excellent point of studying

iological phenomena has made significant effects on advancing

iological models [22–25] . 

In the next section, the theoretical model of the system is in-

roduced and its dynamical properties are presented. After that,

ection 3 illustrates the results and discusses the model. At last

onclusion remarks are given in Section 4 . 

. Mathematical model 

.1. Previous mathematical models for insulin-glucose regulatory 

ystem 

Some mathematical models have been proposed to study the

elationship between the blood glucose and insulin concentration.

he mathematical model (1) consists of two linear differential

quations for modeling glucose-insulin tolerance test, which is pro-

osed by Ackerman et al in 1964 [16] . 

dx 

dt 
= a 1 y ( t ) − a 2 x ( t ) + C 1 

dy 

dt 
= −a 3 y ( t ) − a 4 x ( t ) + C 2 + I ( t ) (1) 

here x ( t ) and y ( t ) represent insulin and glucose concentrations

espectively. I ( t ) indicates the increase rate of blood glucose due to

bsorption in the gastrointestinal system. 

It has been discovered that β- cells have an essential role in

egulating glucose and insulin concentration, which was not men-

ioned in Ackerman model. The main function of β-cells is to store

nd release insulin. Mathematical model (2) for insulin-glucose

egulatory system, proposed by Bajaj and Rao in 1987 [26] , con-

ists of three differential equations and incorporates β-cells. 

dx 

dt 
= R 1 y − R 2 x + C 1 

dy 

dt 
= 

R 3 N 

z 
− R 4 x + C 2 

dz 

d t 
= R 5 y ( T − z ) + R 6 z ( T − z ) − R 7 z (2) 

here x ( t ) is insulin concentration, y ( t ) is blood glucose concen-

ration and z(t) is the population density of β-cells. T is total den-

ity of β-cells. R 1 represents the rate of increase in insulin con-

entration in response to blood glucose increase. R 2 shows the rate

f insulin reduction which is independent from glucose concen-

ration and is based on its current level. R 4 indicates the decrease

ate of glucose in response to insulin secretion. R 5 shows the rate

f increase in dividing β-cells due to interaction between blood

lucose above the fasting level and the non-dividing β-cells, R 6 is

he rate of increase in β-cells due to interaction between divid-

ng and non-dividing β-cells, R 7 shows the decrease rate of β-cells

ue to its current level, C 1 accounts for the rate of increase of x in

he absence of x and y and C shows increase rate of y in the absence
2 
f x and z . Mentioned models treat the system as an isolated envi-

onment, omitting many factors that may affect the insulin-glucose

elationship. 

.2. Mathematical model of prey and predator 

Predation, by means of biological expressions, is defined as the

nteraction between a predator and a prey in an ecosystem [27] .

ito Volterra was the pioneer mathematician who introduced the

rst model composed of two simple differential equations describ-

ng the behavior of population dynamics of the aforementioned

enres in terms of measurable variables in 1926. The model (3) is

nown as Lotka–Volterra model [22] . 

dx 

dt 
= ax ( 1 − x ) − bxy 

dy 

dt 
= −cy + dxy (3) 

here x ( t ) is the population density of prey and y ( t ) is the popu-

ation density of predator. It is noteworthy to say that a, b, c and d

re all positive parameters. 

.3. New mathematical model for insulin-glucose regulatory system 

As it can be conceived, the relationship between glucose and

nsulin is like prey and predator; therefore, we propose a contin-

ous nonlinear model for insulin-glucose regulatory system using

rey and predator model proposed by Vito Volterra in [22] . The bi-

ateral influence of the components has also been taken into ac-

ount in order to preserve the comprehensiveness and accuracy

f the model. In the proposed model, it has been assumed that

he derivatives of the variables are cubic function of the variables

hemselves. Using cubic function of variables enhances the accu-

acy of model and can convincingly mimic the insulin glucose reg-

latory system. In addition to normal state, the new model is ca-

able of showing the state of glucose-insulin regulatory system in

bnormal metabolic conditions, which was the blind spot of the

revious models. These capabilities will be explained in next sec-

ions. The mathematical relationships for the model are formulated

s follows: 

dx 

dt 
= −a 1 x + a 2 xy + a 3 y 

2 + a 4 y 
3 + a 5 z + a 6 z 

2 + a 7 z 
3 + a 20 

dy 

dt 
= −a 8 xy − a 9 x 

2 − a 10 x 
3 + a 11 y ( 1 − y ) − a 12 z 

−a 13 z 
2 − a 14 z 

3 + a 21 

dz 

d t 
= a 15 y + a 16 y 

2 + a 17 y 
3 − a 18 z − a 19 yz (4) 

here x ( t ) is the population density of predator (insulin), y ( t ) is

he population density of prey (glucose) and z ( t ) is the population

ensity of β-cells; −a 1 represents the natural reduction of insulin

oncentration in absence of glucose; a 2 shows the propagation rate

f insulin in presence of glucose; −a 8 represents the effect of in-

ulin on glucose and a 11 indicates the natural growth of glucose in

bsence of insulin. These terms are determined through prey and

redator model; meanwhile, it is vital that these four parameters

e positive. a 3 and a 4 show the increase rate of insulin when there

s an increase in glucose concentration. a 5 , a 6 and a 7 show the in-

rease rate of insulin level secreted by β-cells and are independent

rom other components. a 9 and a 10 represent the rate of glucose re-

uction in response to insulin secretion. a 12 , a 13 and a 14 show the

eduction rate of glucose concentration due to insulin secreted by

-cells. a 15 , a 16 and a 17 represent the rate of increase in β-cells

aused by the increase in glucose concentration. a 18 and a 19 show

he rate of decrease in β-cells due to its current level. 
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Fig. 1. a) Time series of the System (4) with initial condition of x 0 = 0 . 53 , y 0 = 1 . 31 , z 0 = 1 . 03 for the parameters given in Table 1 and parameter a 1 = 3 . b) Time series 

of the System (4) with initial condition of x 0 = 0 . 53 , y 0 = 1 . 31 , z 0 = 1 . 03 for the parameters given in Table 1 . (For interpretation of the references to color in the text, the 

reader is referred to the web version of this article.) 

Fig. 2. Different projection of the visualization of chaotic attractor of System (4) by trajectory with initial condition of x 0 = 0 . 53 , y 0 = 1 . 31 , z 0 = 1 . 03 for the parameters 

given in Table 1 . 
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3. Results and discussion 

3.1. Time series and state space 

The available experimental data is only based on glucose con-

centration which were acquired during the execution of experi-

ments whose timescale is not sufficiently long for the purpose of

verifying numerical models [15] . Furthermore, most models do not

conform to known physiological data. In contemporary research

methods, matching numerical results to experimental outcomes

and choosing the best coinciding curve is not adequate for veri-

fying numerical models. A model is pretended to be accurate if it

demonstrates the same dynamic performance as observed in real

data as well. To be more precise, if a fluctuating pattern is per-

ceptible from experimental data, an appropriate model showing

the same data fluctuation trend must be proposed. In the current

model, it is expected to observe periodic behavior under normal

metabolic conditions and chaotic behavior under faulty status of

metabolic system. It is noteworthy that these expectations are in

line with previous studies in the field revealing that a chaotic be-

havior of a system is a sign of an existing disorder in the system

[28,29] . 

In this research, the behavior of System (4) for different quan-

tity of parameters is investigated. The proposed model comprises a

number of parameters whose values are essential in changing the

behavior of the system. Figs. 1 and 2 indicate the time-series and
 m  
tate space trajectories of the proposed system, respectively. Com-

uter simulation of the Figs. 1 and 2 is performed through taking

he model coefficients as following table: 

As it can be conceived, the value of insulin, glucose and β-cells’

oncentration can’t be negative. Time series of the System (4) s are

ll positive. Fig. 1 a indicates time series of the variables of the

roposed model, which are all periodic, under normal condition.

everal studies have reported persistent cyclic patterns in plasma

lucose and insulin concentrations in man and monkeys in nor-

al condition [30] . The results obtained from Kroll’s experiment

emonstrated proofs of chaotic behavior in glucose and insulin

ime-series [31] . As can be seen in Fig. 1 b, the outcomes of another

tudy ran by Molnar et al. by making an observation of 48 hours

nder the condition that immunoreactive insulin measurements

ere made from ambulatory-fed subjects, indicated chaotic behav-

or in plasma insulin and glucose patterns as well [32] . Fig. 1 b

hows time series of the variables of the proposed model in ab-

ormal conditions which are all chaotic. It has been proven in the

ext section that these time-series are chaotic. 

.2. Stability analysis 

The dynamical behavior of the proposed system can be de-

ermined by evaluating the eigenvalues of corresponding Jacobian

atrix at each of the equilibrium points. Due to the biological

eaning of the variables (the time series should be positive), only
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Table 1 

Coefficients of proposed model. 

a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 

Model Coefficients 2.04 0.1 1.09 −1.08 0.03 −0.06 2.01 0.22 −3.84 −1.2 0.3 

a 12 a 13 a 14 a 15 a 16 a 17 a 18 a 19 a 20 a 21 

Model Coefficients 1.37 −0.3 0.22 0.3 −1.35 0.5 −0.42 −0.15 −0.19 −0.56 

Table 2 

Eigenvalues and equilibria of System (4) . 

Equilibria ( x 0 , y 0 , z 0 ) Eigen values 

(0.805, 1.815, 1.319) λ1 = 1 . 3802 , λ2 , 3 = −1 . 7563 ± 7 . 5090 i 

(0.624, 0.935, 0.877) λ1 = −2 . 8372 , λ2 , 3 = 0 . 5262 ± 2 . 3472 i 

Due to λ values, both of these equilibrium points are saddle, since 

both have positive and negative eigenvalues. 

s  

t
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tability analysis of positive fixed points is done. The Jacobian ma-

rix of the System (4) is given by: 

 = 

( −a 1 + a 2 y a 2 x + 2 a 3 y + 3 a 4 y 
2 a 5 +

−a 8 y − 2 a 9 x − 3 a 10 x 
2 −a 8 x + a 11 ( 1 − 2 y ) −a 12 −

0 a 15 + 2 a 16 y + 3 a 17 y 
2 − a 19 z −

The System (4) has two positive fixed points for parameter set

n Table 1 and a 1 = 3 , which are given in Table 2 . 

.3. Bifurcation diagrams 

In this section, bifurcation diagrams of the System (4) for dif-

erent parameters are plotted and the biological meanings of these

iagrams are discussed. In a bifurcation diagram, the quantities

ained or approached asymptotically by a system (fixed points, pe-

iodic orbits, or chaotic attractors) is plotted against a bifurcation

ariable in the system. As it has been observed in previous studies,

henever a chaotic behavior is demonstrated by a system, it signi-

es the existence of some disorders [28,29] . In the present study,

henever system acts chaotically we specify it as some kind of dis-

rder. Four common disorders related to insulin-glucose regulatory

ystem is simulated by the proposed mathematical model. 
Fig. 3. The System (4) bifurcation diagram ba
 

z + 3 a 7 z 
2 

3 z − 3 a 14 z 
2 

− a 19 y 

) 

(5) 

.3.1. Type2 diabetes 

If the effect of insulin on glucose concentration is declined or

ells of the body become insulin-resistant, insulin cannot track

lucose and the concentration of blood glucose rises, which re-

ults in type 2 diabetes disorder. We expect the system to show

haotic manner in this situation, this expectation is in line with

he decrease in a 8 parameter. This parameter represents the effect

f secreted insulin on glucose concentration. When this parame-

er decreases, it means that body cells resist on accepting insulin.

ig. 3 is the bifurcation diagram of the system based on different

alues of a 8 . In order to plot the bifurcation diagrams of the sys-

em for each value of control parameter the system is first allowed

o settle down and then the local maxima of time series ( X max )

re plotted for a few thousand iterations. Fig. 3 shows that if body

ells resist on accepting insulin, which is the main cause of type 2

iabetes, the system behaves chaotically. System is stable for large

alues of parameter a 8 but as this parameter decreases system acts

n chaotic behavior. As it can be seen small changes in quantities of

he parameters of the model cause overall changes in the behavior

f the system. 

Lenbury et al. showed that the key elements specifying dynamic

ehaviors of insulin-glucose regulatory system are shape and vol-

me of the cells. This fact was discovered by investigating channel

onductance related parameters during the clinical observation of

lectrical activities of cells. It has been well established that such

lectrical activities are closely related to insulin secretion and the

egulation of plasma glucose [33] . 
sed on different values of parameter a 8 . 
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Fig. 4. a) Bifurcation diagram of System (4) based on different values of parameter a 1 . b) The Lyapunov exponent diagram of System (4) based on parameter a 1 . 
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3.3.2. Hypoglycemia 

Existence of so much insulin in blood causes a disorder named

hypoglycemia [34] . If the rate of “insulin decay”, which is indicated

with parameter a 1 in the model, gets low, it proceeds to hypo-

glycemia, thus we anticipate that the proposed system act chaot-

ically. Fig. 4 a is the bifurcation diagram of the System (4) based

on different values of a 1 . It can be observed in Fig. 4 a that sys-

tem is stable for large values of parameter a 1 but as this pa-

rameter decreases system starts to act chaotically. The numeri-

cal results of Lyapunov exponent is shown in Fig. 4 b. A positive

Finite-time Lyapunov exponent is an indicator of chaotic behav-

ior [35,36] . As can be seen, the system is stable for large val-

ues of a 1 , but when this parameter decreases, the system exhibits

chaotic behavior. Here Lyapunov exponents are denoted by λL i 
,

i = 1, 2, 3 with λL 1 
> λL 2 

> λL 3 
. Obviously, the proposed system

is chaotic according to the values of the exponents bounded as

λL 1 
> 0, λL 2 

= 0 and λL 3 
< 0 with | λL 1 

| < | λL 3 
|. The fractional dimen-

sion, which presents the complexity of attractor, is defined by 
s  
 KY = j + 

1 ∣∣λL j+1 

∣∣
j ∑ 

i =1 

λL i (6)

here j is the largest integer satisfying 
j ∑ 

i =1 

λL i 
≥0 and j 

j+1 ∑ 

i =1 

λL i 
<

. The calculated dimension of System (4) when a 1 = 2.04 is

KY = 2.1725 > 2. In consequence, a strange attractor is detectable

n the system. (See Fig. 2 ) 

.3.3. Hyperinsulinemia 

One of the common diseases related to insulin glucose regula-

ory system is hyperinsulinemia. If β-cells of pancreas secrete in-

ulin more than particular quantities in response to the continued

igh blood glucose levels, hyperinsulinemia occurs [37,38] . This

act can be observed in the proposed model. The system is stable

or small values of parameter a 7 , which illustrates amplified rate of

nsulin level secreted by β-cells. As this parameter increases, the

ystem shows chaotic behavior. Bifurcation diagram of the system
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Fig. 5. The System (4) bifurcation diagram based on different values of parameter a 7 . 

Fig. 6. The System (4) bifurcation diagram based on different values of parameter a 15 . 
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or different values of a 7 is plotted in Fig. 5 . System is stable for

mall values of parameter a 7 but as this parameter increases dy-

amic of the system changes to chaos. It can be realized that any

mall fluctuation in model parameters leads to undesired behavior

f the system. We discovered in bifurcation diagrams of the system

he appearance of a period doubling route to chaos, which resem-

les dynamics of prey and predator population model. 

.3.4. Type1 diabetes 

Type 1 diabetes involves an autoimmune destruction of the

nsulin-producing β-cells in the pancreas. Proposed model can ex-

ibit this disorder. If the rate of increase in population density

f β-cells, represented by a 15 , diminishes, pancreas cannot secrete

nough insulin to stabilize glucose concentration level. We expect

hat system show chaotic behavior for small values of parameter

 15 . Fig. 6 is the bifurcation diagram of the System (4) based on

ontrol parameter a . As can be seen the proposed system displays
15 
ome kind of steady state manner for large values of control pa-

ameter a 15 but as this parameter decreases, system starts to act

haotically which is in line with our expectation. 

.4. Basins of attraction 

Recently dynamical systems were categorized into systems with

elf-excited attractors and systems with hidden attractors: when

n attractor’s basin of attraction involves equilibrium, we call that

ttractor "self-excited", otherwise, the attractor is hidden [39–42] .

idden attractors exist in some real-world dynamical systems [43–

5] . Rather than design, their localization and control have been of

reat interest in recent years [46–49] . As examples of such systems

e can name systems which have surfaces of equilibria [50,51] ,

urves of equilibria [52] , stable equilibria [53] , and no equilibrium

oints [54,55] . 
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Fig. 7. a) Cross section of basin of attractions for parameter set of Fig. 1 a. b) Cross section of basin of attractions for parameter set of Fig. 1 b. 

Fig. 8. Chaotic evolution of proposed system showing the effect of very small difference in the initial conditions. The initial conditions are x 0 = 0 . 53 and x ′ 0 = 

0 . 54 . ( y 0 = y ′ 0 = 1 . 31 , z 0 = z ′ 0 = 1 . 03 ) . 
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Fig. 7 shows the two basin of attraction of System (4) . Fig. 7 a

is the cross section of basin of attraction in xy-plane at z = 1.31.

It shows regions of different dynamic behavior of system for pa-

rameter set of Fig. 1 a. Unbounded regions are shown in light blue,

periodic (limit cycle) and quasiperiodic (torus) regions are shown

in yellow and black dot corresponds to fixed point. Fig. 7 b shows

a cross section in the xy-plane at z = 1 . 03 with parameter set

of Fig. 1 b. Initial conditions in the light blue region lead to un-

bounded orbits and those in the red region lead to strange attrac-

tor. There is no fixed point in the system for the selected parame-

ters; therefore the chaotic attractor is hidden. The authors are not

aware of any other hidden attractor in biological systems and mod-

els. 

3.5. Sensitivity to initial condition 

In the case of chaotic dynamics, a minor variation in initial con-

ditions may cause significantly different dynamic behavior. There-

fore, even a slight fluctuation in the insulin concentration may re-

sult in unpredictable outcomes through time. 
The effect of small changes in initial insulin concentration on

lucose time-series of the System (4) (variable y) can be observed

n Fig. 8 . It is of note that the administration of insulin through

n appropriate program is difficult in some of patients. Further-

ore, in such patients, using an integration of scheduled nutrition

nd exercise and timetabled insulin administration is purely inad-

quate in confining blood glucose within proper limits. Of course,

he effect of apparent irregular alterations cannot be overlooked

nd must be taken into consideration [32] . The aforementioned

henomenon is shown in Fig. 8 . 

To summarize, we have proposed a new continuous nonlinear

athematical model for insulin-glucose regulatory system using

he mathematical model of prey and predator, which can mimic

he interaction between insulin concentration, glucose concentra-

ion and β-cells in normal and abnormal situations. In comparison

ith previous models proposed for insulin-glucose regulatory sys-

em, this model exhibits various behaviors for different set of pa-

ameters, such as chaos, which was clinically observed in previous

esearches. Previous models were capable of modeling the insulin-

lucose regulatory system only in normal condition, but the pro-



P.S. Shabestari et al. / Chaos, Solitons and Fractals 112 (2018) 44–51 51 

p  

p

4

 

a  

c  

s  

f  

t  

a  

s  

t  

p  

o  

t  

t  

t  

f

A

 

S

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

[  

[  

 

 

[  

[  

 

 

 

[  

[  

[  

 

[  

 

 

 

[  

 

[  

 

[  

 

[  

[  

 

 

 

[  

 

[  

 

[  

[  

[  

 

[  

[  

 

[  

 

[  

[  

[  

[  
osed model is able to explain the interaction between the com-

onents in both normal and abnormal conditions. 

. Conclusion 

In order to describe the interactions between glucose, insulin

nd β-cells, a new mathematical model was presented. Dynami-

al analysis of this new system such as studying time-series, state

pace and stability was done. Bifurcation diagrams of the system

or various control parameters were plotted. Results demonstrated

hat the system exhibits different behaviors in various conditions

nd is capable of explaining the interaction between glucose, in-

ulin and β-cells in different disorders, such as type1 diabetes,

ype2 diabetes, hypoglycemia and hyperinsulinemia. Lyapunov ex-

onent analysis was done in order to determine the exact behavior

f the system in different control parameters. The basin of attrac-

ion plot showed that the proposed model belongs to a newly in-

roduced category of dynamical systems: systems with hidden at-

ractors. Finally, dynamical properties of system were investigated

or different initial conditions. 
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