When Two Dual Chaotic Systems Shake Hands

J. C. Sprott
Department of Physics, University of Wisconsin,
Madison, WI 53706, USA
sprott@physics.wisc.edu

Xiong Wang
Department of Electronic Engineering,
City University of Hong Kong, Hong Kong
wangxiong8686@gmail.com

Received January 12, 2014

This letter reports an interesting finding that the parametric Lorenz system and the parametric Chen system “shake hands” at a particular point of their common parameter space, as the time variable \(t \to +\infty \) in the Lorenz system while \(t \to -\infty \) in the Chen system. This helps better clarify and understand the relationship between these two closely related but topologically nonequivalent chaotic systems.

Keywords: Chaos; Lorenz system; Chen system; topological equivalence.

1. Introduction

The celebrated parametric Lorenz system [Lorenz, 1963] is described by

\[
\begin{align*}
\frac{dX}{dt} &= \sigma (Y - X) \\
\frac{dY}{dt} &= \rho X - Y - XZ \\
\frac{dZ}{dt} &= -\beta Z + XY
\end{align*}
\]

\tag{1}

which is chaotic on a particular parameter set, \((\sigma, \rho, \beta) = (10, 28, 8/3)\) in the real parameter space of the general system (1); but for other parameter sets, system (1) may not be chaotic. The chaotic Lorenz system (2) has received sustained research interest in the literature since its discovery. For example, in [Tucker, 1999; Stewart, 2000], a rigorous proof confirms the existence of the chaotic attractor in system (2); in [Franceschini et al., 1993], the chaotic attractor of system (2) is characterized in terms of unstable periodic orbits; in [Gilmore et al., 2003, 2007; Mindlin et al., 1990];
Tsankov & Gilmore, 2004, 2003; Gilmore & Lefranc, 2002, 2008], various topological properties of the chaotic system (2) are studied.

The above-mentioned research were all carried out based on a common observation that, with different parameter sets other than \((σ, ρ, β) = (10, 28, 8/3)\), the parametric Lorenz system (1) may simply converge, divergent, periodic, or have other types of complex dynamics irrelevant to or very different from the chaotic attractor of system (2).

In some sense [ˇCelikovský & Chen, 2002] being a dual system to the Lorenz system (1), the so-called parametric Chen system [Chen & Ueta, 1999] is described by

\[
\begin{align*}
\frac{dx}{dt} &= a(y - x) \\
\frac{dy}{dt} &= (c - a)x + cy - xz \\
\frac{dz}{dt} &= -bz + xy
\end{align*}
\]

(3)

where \(a, b\) and \(c\) are real parameters.

It was found that this parametric system is chaotic for the parameter set \((a, b, c) = (35, 3, 28)\), giving

\[
\begin{align*}
\frac{dx}{dt} &= 35(y - x) \\
\frac{dy}{dt} &= -7x + 28y - xz \\
\frac{dz}{dt} &= -3z + xy
\end{align*}
\]

(4)

Likewise, for other parameter sets of \((a, b, c)\), system (3) may not be chaotic.

2. When the Two Systems Shake Their Hands

Recently, we found that, with the parameter set \((σ, ρ, β) = (0.4, -1.4, -0.4)\), system (1) becomes

\[
\begin{align*}
\frac{dX}{dt} &= 0.4(Y - X) \\
\frac{dY}{dt} &= -1.4X - Y - XZ \\
\frac{dZ}{dt} &= 0.4Z + XY
\end{align*}
\]

(5)

\[
\begin{align*}
\frac{dx}{dt} &= 35(y - x) \\
\frac{dy}{dt} &= -7x + 28y - xz \\
\frac{dz}{dt} &= -3z + xy
\end{align*}
\]

Likewise, for other parameter sets of \((a, b, c)\), system (3) may not be chaotic.

Fig. 1. The same chaotic attractor produced by both — system (5) as \(t \to +\infty\) and system (6) as \(t \to -\infty\).
and, with the parameter set \((a, b, c) = (-0.4, 0.4, 1)\), system (3) becomes

\[
\begin{align*}
\frac{dx}{dt} &= -0.4(y - x) \\
\frac{dy}{dt} &= 1.4x + y - xz \\
\frac{dz}{dt} &= -0.4z + xy.
\end{align*}
\]

We observed that these two systems produce the same limiting set — a chaotic attractor if one lets \(t \to +\infty\) in system (5) and a chaotic repellor if one lets \(t \to -\infty\) in system (6) — the two limiting sets are identical (see Fig. 1).

In fact, a simple transformation \((x, y, z, t) \to (X, Y, -Z, -t)\) can convert system (6) to system (5). Likewise, systems (5) and (6) are nonequivalent topologically because of time reversal here, and generally, does not preserve flow orientation: a well-known example is the following two linear systems:

\[
\frac{dX}{dt} = X \quad \text{and} \quad \frac{dx}{dt} = -x
\]

which can be converted from one to another via \(t \to -t\), but the first system is unstable and the second one is stable about their zero equilibria, with opposite flow orientations (namely, the time reversion transform \(t \to -t\) does not preserve flow orientation).

3. Conclusions

This letter has reported a very interesting finding that the parametric Lorenz system (1) and the parametric Chen system (3) “shake hands” at a single parameter point \((\sigma, \rho, \beta) = (0.4, -1.4, -0.4)\) as \(t \to +\infty\) for the former and a single parameter point \((a, b, c) = (-0.4, 0.4, 1)\) as \(t \to -\infty\) for the latter. This further reveals more intermittent relationship between the Lorenz system and the Chen system, in addition to their algebraic duality and topological nonequivalence.

A final remark is that, although it has been well known that the parametric Lorenz system (1) is chaotic with the parameter set \((\sigma, \rho, \beta) = (10, 28, 8/3)\), in this letter we found that it is also chaotic with the parameter set \((\sigma, \rho, \beta) = (0.4, -1.4, -0.4)\).

References

