Amplitude Control in Chaotic Systems
Chunbiao Li and J.C. Sprott

1. Background and motivation
 - Difficult to amplify a chaotic signal for broadband frequency characteristics.
 - Eliminating extra hardware devices, and for flexibility.
 - The amplitude controller may substitute for an amplifier or represent a new security key.

2. Definition of amplitude control
 - Amplitude control: variables are controlled proportionally by Amplitude Parameter (AP)
 - PAC: Partial Amplitude Control, only some variables controlled
 - TAC: Total Amplitude Control, all variables controlled.

3. Piecewise linear systems
 - The constant term can realize TAC.

4. Polynomial systems
 - There is no single AP for TAC in chaotic systems of polynomial nonlinearity with constant terms.
 - Only a few examples with a constant term can provide AP for PAC.
 - For a single nonlinearity without constant terms, the AP for TAC can always be obtained.
 - For chaotic systems even with a constant term, two or more nonlinear terms can allow AP for PAC.

5. Examples
 - Example 2. Moore and Spiegel System (TAC)
 \[\ddot{x} = -9x + 5x - 9\dot{x}^2 \]
 - Example 3. Lorenz System (PAC)
 \[\begin{align*}
 \dot{x} &= y - x, \\
 \dot{y} &= -xz, \\
 \dot{z} &= fxy - R.
 \end{align*}\]