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A New Chaotic Jerk Circuit

J. C. Sprott

Abstract—Much recent interest has been given to simple chaotic
oscillators based on jerk equations that involve a third-time deriv-
ative of a single scalar variable. The simplest such equation has yet
to be electronically implemented. This paper describes a particu-
larly elegant circuit whose operation is accurately described by a
simple variant of that equation in which the requisite nonlinearity
is provided by a single diode and for which the analysis is particu-
larly straightforward.

Index Terms—Analog computers, chaos, differential equations,
feedback circuits, jerk functions, nonlinear systems, oscillators.

I. INTRODUCTION

HE DEVELOPMENT of Chua’s circuit in 1983 [1] and its
many variants [2], [3] launched a quest for other circuits
that chaotically oscillate. Some of the most elegant examples
of such circuits [4]-[14] were motivated by the discovery of
simple third-order ordinary differential equations of the form
& = J(&,&,x) whose solutions are chaotic [15], [16]. The
nonlinear function J is called a “jerk,” because it describes the
third-time derivative of =, which would correspond to the first-
time derivative of acceleration in a mechanical system [17].
Previous jerk circuits involved a nonlinearity only in the x term
of the jerk function.
The simplest autonomous dissipative ordinary differential
equation with a quadratic nonlinearity whose solutions are
chaotic is given by [18]

F+Ai+z+i’=0 (1)

which is a jerk equation with J = —Ai — = F £2, where A
is a bifurcation parameter leading to chaos over most of the
narrow range 2.0168... < A < 2.0577.... Its nonlinearity is
in the & term. It has been rigorously shown [19] that no simpler
case can exist. Unfortunately, the quadratic nonlinearity is not
easily implemented electronically with standard components.
In addition, such a circuit would be rather delicate since the
chaos exists over a very narrow range of component values.

Recently, Munmuangsaen et al. [20] have shown that (1) can
be generalized to

F+i+z+ f(2)=0 ()

in which chaos occurs for a wide variety of nonlinear func-
tions, including f(#) = o?exp(2/a) with o < 0.27, except
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Fig. 1.

Chaotic circuit schematic.

for many mostly small periodic windows. Of particular interest
is that the chaos persists in the limit of o — 0, where f (&) has
the characteristics of an ideal diode. In fact, the behavior can
be reproduced using a two-segment piecewise linear approxi-
mation in which f(&) = 0 for # < 1 and infinite otherwise, in
which case (2) can be solved exactly in the region = < 1, where
the equation is linear, subject to a boundary condition in which
Z reverses sign whenever £ = 1. The dynamics in the z — =
plane thus resembles a ball chaotically bouncing on a floor.
A number of other piecewise linear circuits have been studied
[21]-[25] with similar dynamics, although their representation
in terms of jerk functions tend to be rather complicated.

II. CIRCUIT REALIZATION

Equation (2) can be electronically implemented in a circuit,
as shown in Fig. 1. The circuit consists of three successive
active integrators in a feedback loop plus a second nonlinear
feedback loop involving only two of the integrators and an
inverter with a diode. It can be viewed as a chaotic phase-
shift oscillator with gain control or as an analog computer
solving (2).

Unlike many other chaotic circuits, the component values are
not critical, but all the resistors have the same arbitrary values,
which are here taken as R = 1 k€2, as do all the capacitors,
which are here taken as C' = 1 pF, with all components hav-
ing 10% tolerance. The nonlinear feedback is provided by a
IN4001 silicon p-n-junction diode, although the circuit works
equally well with germanium and other diodes.

The circuit was constructed in breadboard style using Tek-
tronix AM501 operational amplifier modules, as shown in
Fig. 2. The chaos is readily apparent in the oscilloscope trace,
which shows x on the horizontal axis and = on the vertical axis,
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Fig. 3. Frequency spectrum of the  output of the chaotic circuit.

both at 0.5 V/division. The x voltage can be connected to an
audio amplifier and speaker to hear the chaos. The diode can be
replaced with a light-emitting diode to display a chaotic flicker
resembling a candle flame.

As further evidence of chaos, the z voltage was digitized
using the sound card of a personal computer and stored as
a .WAV file, which is available at http://sprott.physics.wisc.
edu/chaos/newckt.wav. From the file, a frequency spectrum
was produced, as shown in Fig. 3, using the freeware Visual
Analyzer program available at http://www.sillanumsoft.com.
The broadband nature of the spectrum is clearly evident with
a dominant peak near 100 Hz and its harmonics but with
significant signal over the entire audio range.

The component values were chosen to make the circuit
oscillate in the audio range, so that the chaos can be easily
heard and displayed on an oscilloscope, although the frequency
can be scaled up or down as desired over several decades.
No attempt was made to find the upper frequency limit of
operation since that would largely depend on the choice of
components, but one should note that fast switching of the
diode is not essential for operation of the circuit but only for
ease of analysis. Furthermore, the circuit should more favorably
scale with frequency than circuits that use op-amp comparators
where slew rate is a serious limitation.

The circuit is robust to parameter variations and requires no
careful tuning of component values, although there are small
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Fig. 4. Numerically calculated phase space plot on the same scale as Fig. 2.

periodic windows that one must avoid. Almost any of the re-
sistors could be made variable to exhibit and study bifurcations
and routes to chaos. For example, the chaos persists when the
leftmost resistor in Fig. 1 is varied over the range of about
780-2080 €2, with period doubling of a limit cycle that is clearly
visible and audible at both ends of the wide range.

III. ANALYSIS

Except for the brief instants in which the diode conducts, the
dynamics are governed by the linear equation

F+i+x=0 3)
whose eigenvalues satisfy the cubic characteristic equation
Bl =0 4)

and are given by A= —1.465571, 0.232786 + 0.7925521.
Thus, the origin is a saddle point with a 1-D stable manifold and
a 2-D unstable manifold. The dominant frequency of oscillation
is expected to be f = 0.792552/2rRC' = 126 Hz, which is
slightly higher than the 100 Hz experimentally observed, with
the difference resulting from the nonlinearity and perhaps from
the 10% components.

The nonlinear circuit was numerically analyzed by writing
(2) as three first-order differential equations

T =y
=2
t=—z—x—10"" [exp(y/0.026) — 1] )

using a fourth-order Runge—Kutta integrator with adaptive
step size [26]. The adaptive step size is important because of
the rapid variation in z(¢) when the diode briefly conducts.
The diode model is not critical but is here taken as f(y) =
IgRexp(y/a) — 1] with Iy = 10712 A and o = 0.026 V, giv-
ing a forward voltage drop of ~0.6 V (at room temperature),
as is typical for a silicon diode. The factor of R comes from
the fact that time is measured in units of RC, and it makes
f(y) have units of volts, as required. Initial conditions are not
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Fig.5. Numerically calculated waveforms of & and its successive derivatives.
critical, but values of (o, yo, 20) = (0,0.4,0) lie close to the
attractor. The resulting phase space plot (y versus x) is shown
in Fig. 4 on the same scale as the oscilloscope trace in Fig. 2
and shows good agreement.

Fig. 5 shows the time variation of the voltage = and its
successive derivatives y and z. Note that, for RC = 1073 s,
time is in units of milliseconds, and the dominant period is
approximately 10 ms, corresponding to a frequency of 100 Hz,
as expected.

The Lyapunov exponents are calculated [27] to be (0.0735, 0,
—1.0735), giving a Kaplan—Yorke dimension [28] of Dgy =
2.0685 for the resulting strange attractor. In real units, this
means that information about the initial state of the system,
or equivalently, the accuracy of the prediction of its future
state, exponentially decays, on average, with a time constant
of RC'/0.0735 ~ 13.6 ms.

Another way to display the dynamics is by means of a
Poincaré section, one example of which in Fig. 6 shows the
value of (z,y) every time y reaches a local maximum or,
equivalently, whenever z crosses zero in the downward di-
rection. This choice corresponds to the point of maximum
conduction of the diode. The resulting plot has a particularly
simple form, with three branches corresponding to the three
bounces that typically occur during each cycle. The underlying
fractal structure is evident by zooming into one of the lines by
a factor of 2 x 10%, revealing that it consists of a pair of closely
spaced lines, each of which presumably consists of a pair of
lines, and so forth, to arbitrarily small scale.

IV. BIFURCATIONS

To examine bifurcations and routes to chaos, a variable
parameter A can be added to the equations, e.g., in the damping
term to give

i+ Ai+z+ f(i) =0 (6)

which corresponds to varying the leftmost resistor in Fig. 1 such
that R(k2) = 1/A. A numerical solution of (6) using the diode
model previously described for f(4) leads to the bifurcation
diagram in Fig. 7. The period doubling at both large and small A
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Fig. 6. Poincaré section in the z—y plane at the instant of maximum diode
conduction.
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Fig. 7. Largest Lyapunov exponent and the value of z when & is a local
maximum versus the bifurcation parameter A in (6).

is evident, as well as narrow windows of various periods where
the largest Lyapunov exponent is zero. The maximum chaos
occurs at about A = 0.5 where the largest Lyapunov exponent
is about 0.19, the Kaplan-Yorke dimension is about 2.16, the
amplitude is large, and periodic windows are less evident.

For most values of A, the equilibrium at the origin (z =
z =& =0) lies off the attractor, but for five values given by
A =0.7043,0.5633,0.4823,0.4284, and 0.3890, the attractor
intersects the origin, and a homoclinic connection exists, as
shown in Fig. 8, for the two extreme cases, which correspond
to one and five bounces, respectively. For A = 0.7043, the
eigenvalues for the saddle point at the origin are given by A =
—1.2979, 0.2968 + 0.82614. Since | — 1.2979| > |0.2968|, the
Shilnikov condition [29] is satisfied as it is also for the other
four values, thereby constituting a proof of chaos in the system.
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Fig. 8. Homoclinic orbits, with the upper for A = 0.7043 and the lower for

A = 0.3890 in (6).

V. CONCLUSION

A new chaotic jerk circuit has been described, which was
motivated and well predicted by a variant of the simplest
differential equation whose solutions are chaotic. The circuit
uses no special components, can be scaled over a wide range
of frequencies, requires no careful tuning, and is strongly
and robustly chaotic. The only reactive components are three
identical capacitors, and the only nonlinear element is a diode
whose characteristics are not critical. The circuit is easily
amenable to numerical and theoretical analysis, particularly in
the ideal diode limit where the dynamics are linear subject
to a reflecting boundary condition when the diode briefly
conducts. It is thus an attractive candidate for all applications
of chaotic circuits. Further circuit simplifications might be
possible.
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