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Abstract—In this informal article, we describe simple approaches whereby a computer can automatically
select parameters and generate a large collection of diverse, aesthetically appealing fractal patterns based
on general quadratic map basins. Computational recipes are included to encourage reader involvement. In
essence, we describe methods for teaching a computer to be both an artist and a critic of its own art.

1. INTRODUCTION

An infinite number of monkeys with an infinite num-
ber of typewriters (word processors, nowadays) will
eventually reproduce every work of Shakespeare. The
problem is that someone has to sort through all the
gibberish to find the occasional gem. On the other
hand, the criteria for visual art are much less con-
strained than for literary composition. A monkey with
a paintbrush has a reasonable chance of producing a
pattern that someone would consider artistic.

We have been experimenting with replacing the
monkey by a computer and having it generate a collec-
tion of visually interesting patterns. Unlike the mon-
key, the computer can be trained to select those images
that are likely to appeal to humans. The procedure
is to take some simple equations with adjustable coef-
ficients chosen at random, solve the equations with
the computer, and display those which meet criteria
that we have found to be strong indicators of artistic
quality.

One approach is to use equations with chaotic solu-
tions. Such solutions are unpredictable over the long
term yet exhibit interesting structures as they move
about on a strange attractor, a fractal object with non-
integer dimension. Our books show many examples
of computer art produced by these and related meth-
ods[1-3]. Here we propose another simple method
for producing fractal art.

2. GENERAL TWO-DIMENSIONAL QUADRATIC
ITERATED MAPS

Traditionally when physicists or mathematicians
saw complicated results, they often looked for compli-
cated causes. In contrast, many of the shapes which
follow describe the fantastically complicated behavior
of the simplest of formulas. The results should be of
interest to artists and nonmathematicians, and anyone
with imagination and a little computer programming
skill.
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One lesson of chaos theory is that simple, nonlinear
equations can have complicated solutions. The solu-
tions are most interesting if they involve at least two
variables, x and y, which can be used to represent
horizontal and vertical positions, and if the variables
are advanced step-by-step in an iterative process. The
simplest nonlinearities are quadratic (x” or xy). The
most general two dimensional quadratic iterated map
is:

Xpee = @ + bx + cx® 4+ dxy + ey + fy?

Voew = & + hx + ix? + jxy + ky + Iy’

where a through / are constants chosen at random but
held the same throughout the calculation. Think of this
as a mathematical feedback loop where new values for
x and y are used again in the next round of iteration
by setting x = X, and y = y,,,. The constants can
be considered as settings of a combination lock, each
revealing a different pattern for you to admire. They
open doorways to an infinite reservoir of magnificent
shapes and forms.

There are many ways to display the solution to our
general maps. One way is to plot successive values of
x and y as dots on the screen. Many of the solutions
will move toward a point and remain there. Others
will settle into a periodic orbit, or will move off toward
infinity. The interesting cases are the chaotic ones
which remain confined to a limited region but whose
orbits produce a strange attractor with intricate fractal
structure. You can choose the starting values of x and
v arbitrarily within the basin of attraction, but you
should discard the first few iterates since they probably
lie off the attractor.

Another way you can display the solution is to solve
the equations with many different starting values and
count the number of iterations required for the solution
to wander outside some region in the xy plane. You
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can use the final number of iterations to determine the
color for that point in the plane of initial xy values.
Plots produced in this way are called escape-time frac-
tals because the color contours indicate the time re-
quired for the orbit to escape from the region. Some
initial values may have orbits that never escape, and
so you need to have a ‘‘bailout condition”” beyond
which your program stops iterating and moves on to
test the next initial condition.

Some of the most artistic examples of escape-time
fractals explored in the past have been Julia sets of
the map Z,.. = z° + ¢, where z and ¢ are complex
numbers [4,5]. In terms of x and y this map is

2 2
Xpew = X" —y"+ a

and the test escape region is normally taken as a circle
of radius of 2 centered on the origin. These traditional
Julia sets are a special case of the more general maps
we propose in this article.

3. COMPUTER ART CRITIC

Visually interesting escape-time fractals are those
for which the orbits escape slowly. We have found that
escape times between about a hundred and a thousand
produce the most fascinating maps. We start by choos-
ing the twelve coefficients randomly over the range
—1.2 to 1.2 in increments of 0.1, and then we iterate
the equations for our generalized quadratic map with
initial conditions of x = y = 0. If we find a group of
coefficients that result in the initial point escaping
beyond a circle of radius 1000 centered at the origin

Vpew = 2Xy + b within 100 to 1000 iterations, then we save the param-
DIM a(12) ‘Array of coefficients
RANDOMIZE TIMER 'Reseed random numbers
SCREEN 12 'Assume VGA graphics
n% =0

WHILE INKEY$ = "
IF n% = 0 THEN CALL setparams(x, y)
CALL advancexy(x, y, n%)

CALL testsoln{x, y, n%)
IF n% = 1600 THEN CALL display: n% = 0

WEND

END

SUB advancexy (X, y, n%)
SHARED a()

"Loop until a key is pressed

'Advance {x, y) at step n%

xnew = a(l) + x * (a(2) + a(3) * x + a(4) *y) +y * (a(5) + a(6) * y)
y =a(7) +x * {a(8) +a{9) * x +a(10) *y) +y * (a(1l) + a(12) * y)

X = Xnew
n% = n% + 1

END SUB
SUB display ()

FOR i% = 0 TO 639
FOR j% = 0 TO 479

CALL advancexy(x, y, n%)

WEND
PSET (i%, j%), n% MOD 16
NEXT j%
NEXT i%
END SUB
SUB setparams (X, y)
SHARED a()
X =0:y =20

'Plot escape-time contours

WHILE n% < 128 AND x * x + y * y < 1000000

"Set a() and initialize (x,y)

FOR i;/a =170 12: a(i%) = (INT(25 * RND) - 12) / 10: NEXT i%

END SUB

SUB testsoln (x, y, n%)

IF n% = 1000 THEN n% = 0

IF x * x +y *y > 1000000 THEN
IF n% > 180 THEN n% = 1000 ELSE n% = O

END IF

END SUB

'Test the solution
'Solution is bounded
'Solution escaped

Fig. 1. ESCAPE.BAS: A BASIC program for automatically producing an unlimited number of escape-time
fractals similar to those shown.
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Fig. 2. Escape-time fractal for parameters EHPLWTDJRCAP.

eter set and compute an escape-time fractal for a par-
ticular region of the x-y plane. The choice of 1.2 for
the coefficient range is about optimal for speeding the
search, and it allows the coefficients to be compactly

represented as letters of the alphabet (A = —1.2, B
= —1.1, through ¥ = 1.2) for easy reference and
replication.

The listing ESCAPE.BAS (Fig. 1) shows a BASIC
program for producing an endless succession of es-
cape-time fractals by this method. It should run with-
out modification under QBASIC, QuickBASIC, Visu-
alBASIC for MS-DOS, or PowerBASIC on the IBM
PC. It assumes VGA graphics (640 X 480 pixels X
16 colors). When run on a 486DX33 under PowerBA-
SIC 3.0, the program takes on average about ten sec-
onds to find each interesting case and about a minute

to plot it. In the process of searching for what we call
“‘beautiful parameters,”” it discards about 300 sets for
every one it saves for plotting. This still leaves about
200 trillion cases, nearly all of which are different. If
you view them at the rate of one per second, it would
take over six million years to see them all, and thus
it is very unlikely that any of the patterns you produce
will ever have been seen before. We often run the
program overnight and capture the screens to graphics
files, which can be rapidly examined the next morning.

4. SAMPLE ARTWORK
Although the programs and methods we have de-
scribed work well with personal computers and pro-
duce good-quality patterns within VGA screen limits,
we became curious as to how our approach could be

Fig. 3. Mount Fractalia, a three-dimensional representation of Fig. 1.
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extended to higher resolutions (Figs. 2-8). Naturally,
high-resolution, high-iteration computations would
take longer to perform. To overcome these problems
and push our method to the limit, we made use of
‘IBM’s Power Visualization System, a graphics super-
computer which can compute our general quadratic
iterated map in parallel using up to 32 Intel i860XP
processors. This means that the computer can simulta-
neously work on different portions of the artwork and
therefore greatly reduce the time needed to explore a
large number of images to find interesting structures.
With our software and special hardware we can com-
pute and view images at VGA resolution in under a
second. The images in this article were computed at
a resolution of 1600 X 2400 pixels using 1000 itera-
tions for each pixel. Computation and display required
less than a minute for each high-resolution image.
The final step in aesthetic presentation involves the
mapping of escape times to colors. Although beautiful
images result from simple color mappings, such as the
one used in the BASIC code, we used custom software
which permits the algorithmic or mouse selection of
colors from a palate of 22 colors in a convenient
fashion. It is also possible for us to render the maps
in three dimensions, representing escape time as
height. The Power Visualization System enables us to
fly-by the 3D maps in real-time, permitting us to make
video-tape animations characterizing the intricate be-
havior of these functions.

Fig. 4. The Fractal Curtain, an escape-time fractal for
parameters WBMLNRQMNRAA.

Fig. 5.

Escape-time fractal for parameters
FVMKUVFK.

MWRQ-

Fig. 6. Escape-time fractal for parameters KUONOVSV-
FLAR.
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fractal for

Fig. 7. Escape-time
XPQMMTWRI.

parameters EMXI-

In the future, high-end methods such as these will
be accessible to everyone as PC power increases, cost
decreases, and Internet collaborations such as ours be-
come commonplace[2]. In our own collaboration, in-
put parameters were generated on a personal computer
in Wisconsin, electronically sent over the Internet to
New York, at which point they were read by the Power
Visualization System and rendered.

To artists and computer graphics programmers, the
automated generation of our generalized quadratic-
map representations has great appeal because the
speed allows the human analyst the freedom to experi-
ment with many parameters. Students and teachers
will enjoy such an approach as they explore and dem-
onstrate the complexity and chaos associated with sim-
ple formulas. Mathematicians may find the approach
useful because the sheer number of different structures
they can generate has the potential for making com-
plex behaviors apparent which might have been over-
looked using traditional approaches.

5. FURTHER SUGGESTIONS
The method we have described is simple and effec-
tive, but we do not claim it is the final word on auto-

JLLG-

Fig. 8. Escape-time fractal for
JTKDCRWY.

parameters

mated computer art. You can explore other criteria for
selecting the patterns and other ways to display them.
We chose a generalized two dimensional quadratic
map to emphasize the complexity and variety that
arises from simple equations. You can easily extend
the technique to other mathematical functions and to
higher dimensions. The same ideas can be used for
automatic generation and evaluation of computer mu-
sic. We would like to hear of any interesting results
obtained by readers using our approach.
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