Electrical circuit modeling of reversed field pinches
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Equations are proposed to describe the radial variation of the magnetic field and current
density in a circular, cylindrical reversed field pinch (RFP). These equations are used to
derive the electrical circuit parameters (inductance, resistance, and coupling coefficient) for a
RFP discharge. The circuit parameters are used to evaluate the flux and energy consumption
for various start-up modes and for steady-state operation using oscillating field current drive.
The results are applied to the MST device [Bull. Am. Phys. Soc. 32, 1830 (1987)].

I. INTRODUCTION

A reversed field pinch (RFP)"? can be modeled as a
nonlinear, two-port electrical circuit element®- in which the
ports represent, respectively, the poloidal-field and the toroi-
dal-field circuits as shown in Fig. 1. The existence of a close-
fitting conducting shell near the plasma boundary conve-
niently divides the internal (plasma) region from the
external region in which conventional electrical circuit anal-
ysis can be used. The shell typically has voltage gaps to allow
the magnetic fields to enter. These gaps represent the ports
across which the voltages ¥, and ¥V, are prescribed. The
turrents into the ports are given, respectively, by the net
plasma current J, encircling the major axis and by the net
current /, in the toroidal-field windings.

Some of the current in the poloidal-field winding con-
tributes to magnetizing the space through the hole in the
toroid and is thus not reflected in current in the plasma. This
magnetizing current, which is usually small in a device with
an iron core, is considered part of the external circuit. If the
shell has no gaps or if a resistive liner is inside but near the
shell, the resulting current can be included in the external
circuit.

We assume that the RFP has a circular cross section of
minor radius a and that the major radius R, is large com-
pared to a. In this cylindrical approximation, the subscript ¢
is associated with the toroidal direction (parallel to the axis
of the cylinder), p is associated with the poloidal (azi-
muthal) direction, and r is associated with the radial direc-
tion. The currents and fields are assumed to have poloidal
and toroidal symmetry. The toroidal-field current and vol-
tage are related to the internal fields by

1, =2aRB /o, (M
d(B,)

V,=ma* ——, 2

P =T — (2)

where B,,, is the toroidal field at the wall (» = a) and (B,) is
the average toroidal field (toroidal flux divided by 7a?),

(B, =%f rB, dr. 3
a b

It is customary to define two dimensionless parameters, the
field reversal parameter

F=B,,/{(B,) = puc,/2mRy(B,), (4)
and the pinch parameter
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0= B,,/(B,) = ol,/2ma(B,), (5)

where B,,,, is the poloidal field at the wall (» = a).

The goal of this paper is to provide simple formulas that
can be used as part of a circuit simulation to predict the
electrical performance of a RFP or to diagnose the plasma
from the easily measured external voltages and currents. The
electrical circuit parameters for the plasma are calculated
under the assumption that the plasma relaxes to a preferred
magnetic field profile and plasma current density profilein a
time fast compared to the rate at which the external currents
change. These profiles are calculated in Sec. II. From the
profiles, the plasma inductance, resistance, and the coeffi-
cient of coupling between the ports are calculated in Sec. II1.
For those cases in which the calculations lead to a complicat-
ed expression, the result is displayed graphically and ap-
proximated to within a few percent by a simple analytic func-
tion. The circuit parameters are then used to determine the
flux and energy requirements for both the poloidal-field and
toroidal-field circuits for various start-up modes in Sec. IV.
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FIG. 1. A toroidal plasma such as a RFP (a) can be represented as a two-
port electrical network (b) in which the toroidal-field and poloidal-field
circuits represent the two ports. The current /, is the net current in the
toroidal-field windings, and the current I, is the net current in the plasma
encircling the major axis.
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Also included in Sec. IV is a calculation of the oscillating
voltages required to maintain a steady-state current in the
presence of resistive losses. Finally, the results are applied to
the University of Wisconsin MST device® in Sec. V.

Il. RADIAL PROFILES

RFP plasmas are believed to relax on a relatively fast
time scale to a unique spatial profile that depends only on the
value of 8 (or F) and which presumably represents a mini-
mum energy state subject to some constraint. A number of
such profile models have been discussed in the litera-
ture.>*7-!* We consider here two models—the Bessel func-
tion model (BFM) which has the firmest theoretical base,
and the polynomial function model (PFM) which is a modi-
fication of the BFM to agree better with experiment and to
simplify calculations.

A. Bessel function model

In a classic paper,” Taylor showed that the minimum
energy state of a pressureless plasma bounded by a perfectly
conducting shell and subject to conservation of the total
magnetic helicity has a plasma current density j parallel to
and proportional to the magnetic field B. Under the usual
conditions (8 < 1.56), the lowest energy state is axisymmet-
ric, and in the cylindrical approximation the fields are given
by

B, = B,,Jo(26r/a), B, =B,,J,(26r/a), (6)
where B,, is the toroidal field on axis (» =0) and @ is the
pinch parameter given by Eq. (5). Here J, and J; are Bessel
functions of zeroth and first order, respectively. The field
reversal parameter is given in the Bessel function model by

F=6J,(20)/J,(20). )]

For what follows, it is useful to expand the Bessel function
expressions for the fields, current density j and F as power
series in G, the first few terms of which are

B./B,, =1— (6r/a)?
+ (6r/a)*/4 — (6r/a)’/36 + - - -,
B,/B,, = 6r/a— (6r/a)*/2
+ (0r/a)’/12 — - - -,
Hodj, /B,y =20 —20(6r/a)?
+ 6(0r/a)/2 — 6(6r/a)®/18 + - - -,
(8)
Ko j,/B,o =26%r/a — B(6r/a)’
+ 0(0r/a)’/6— - - -,
(B,)/B,, =1—-6%/2+0%12—-60%/144 4 - - -,
F=1—-0%2—-6%12—-6%48 —6%/180— - - -.

The tokamak limit has §<1 (F~1), and the RFP state has
0> 1.202 (F <0). For 8> 1.202, the field reversal surface is
at a radius of r; = 1.202a/6.

B. Polynomial function model

The difficulty with the BFM is that it assumes a pres-
sureless plasma with a finite plasma current density at the
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wall in contrast to experiment in which the plasma pressure
is typically 109%-20% of the magnetic pressure and the cur-
rent density approaches zero at the wall.""'*'® The usual
modified Bessel function model (MBFM) approach®* is to
assume j and B are parallel with j/B constant out to some
radius (typically 0.7a) beyond which it falls linearly to zero
at r = a. We here propose a heuristic model whose primary
virtue is its algebraic simplicity, although it is seen to agree
with experiment as well as any of the other models. The
strategy is to express the magnetic fields and current density
as polynomial functions of radius subject to the following
conditions:

VXB=u,j, j=0 at r=a,

s, 2

dUB/BY o o g ©
dr

205 2

4°GB/BY) _ g . r=o.
ar

Enough terms in the polynomials are kept to satisfy these
conditions exactly, leading to unique profiles for j and B,

B,/B,, =1—0%(r/a)> + 0%(r/a)*/2,
B,/B,, = 6yr/a — 03 (r/a)*/2
+ 6,(82 — 1) (r/a)3/3,
fodi/B,o =20, — 203 (r/a)?
+26,(05 — 1) (r/a)?,
Mo, /B, =20%r/a — 20} (r/a)?,

where 6, ( = paj,/2B,,) is the value that 8 would have if
j*B/B? were a constant with the same value that it has at
r =0. In terms of F, 6, is given by

(10)

o= [(6—6F)/(3 —2F)]'". (11)
The pinch parameter is

0=0,(4—03)/(6—20}), (12)
and the average toroidal field is

(B,)/B,, =1—-86%/3. (13)

It is interesting to note the similarity of Eqgs. (10) and (13)
to Eq. (8). Note also that F = 0 occurs when & and 6, are
1.414 in the PFM in contrast to the value of 1.202 in the
BFM.

The PFM radial profiles of B and j are shown in Fig. 2
for a typical RFP value of 6= 1.5 corresponding to
F= —0.1232, along with the BFM at & = 1.441 (giving the
same &, for each). The differences are not extreme, but be-
come more so as |F | increases.

In contrast to the BFM, j is not precisely parallel to B in
the PFM. This fact is illustrated in Fig. 3(a) in which the

quantities
Ay =jB/B*=(j,B, +jB,)/(B:+ B?), (14)
A, =|iXB|/B*= (B, —j,B,)/(B; + B})

normalized to 1/uya, are plotted versus radius. The exis-
tence of a small A4, is equivalent to assuming the plasma has
finite pressure. From jXB = Vp, the equivalent pressure
calculated from
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FIG. 2. Radial profiles of the toroidal and poloidal components of the mag-
netic field B and current density j for the polynomial function model
(PFM) at 8 = 1.5. Also shown are the profiles for the Bessel function mod-
el (BFM) for the same value of j/B at r = 0.

p= f (j,B, —j,B,)dr (15)

and normalized to B 2,,/2u, is plotted in Fig. 3(b) for several
values of 8. Normalized in this way, the curves represent

p,ouj/B

(a) A

2
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FIG. 3. Radial profiles of 1, and 4, for the polynomial function model
(PFM) at € = 1.5 (a) and the normalized plasma pressure implied by the
nonzero A, for various values of & (b). The Bessel function model (BFM)
by definition has A constant and A, = 0 at all radii. The modified Bessel
function model (MBFM) has 4 constant for 7<0.7a and 4, = 0 every-
where. :
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FIG. 4. F-6 curve for the polynomial function model (PFM), the Bessel
function model (BFM), and the modified Bessel function model (MBFM)
with a breakpoint at = 0.7a. Also shown is a simple analytic function that
closely fits the PFM and MBFM.

values of B,. The § = 1.5 case has a pressure on axis about
21% of the poloidal-field magnetic pressure at » = a, and
thus the PFM fortuitously mimics real, finite-pressure RFP
devices.

A major point of comparison of the models with one
another and with experiment is the F-8 curve as shown in
Fig. 4. The PFM curve is given by

0=03-FP[Q2-2F/09—-6F]"? (16)

and the BFM curve by Eq. (7). Also shown is the numerical-
ly evaluated MBFM result for a breakpoint at 7 = 0.7a. The
PFM result can be fit to within 5% over the range of
0 < 8 < 1.7 by the simple function

PFM

a/q,
(=)

BFM

-1 1 ] 1 1
Radius (r/a) !

FIG. 5. Radial profile of safety factor ¢ for the polynomial function model
(PFM) at @ = 1.5 and the Bessel function model (BFM) for the same value
of j/B at r = 0, normalized to g,, the value of ¢ at = 0 (a). The value of ¢,
as predicted by the PFM is relatively independent of & in the RFP state (b).
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F=1-6%, (17)
which is just the first two terms of the BFM series in Eq. (8).
With the PFM, reversal occurs at 82 = 2 in good agreement
with experiment.

The q profile given by

q=rB,/R,B, (18)

normalized to g, (the value of ¢ on axis) is plotted in Fig.
5(a) for the BFM at § = 1.441 and the PFM at 6 =1.5. A
curious feature is the near constancy of g, for the PFM for
62 1.4 as shown in Fig. 5(b). The value is

go=[(3—=2F)/(6 — 6F)]"%a/R,, (19)

or approximately 2a/3R, in the RFP (F <0) state in good
agreement with experiment.'? The value of g, is asymptotic
to 0.577a/R, at large 6.

Ill. ELECTRICAL CIRCUIT PARAMETERS
Applying power balance to the electrical circuit of Fig. 1
gives

du,,
Vp1p+VtIt=7+POh’ (20)

where U, is the inductive energy stored in the magnetic
field,

U, = 2n2Rof (B2 + B)rdr, @1
Ho Jo
which for the PFM evaluates to
U, = mR@*B% (1 —1702/54 — 04/270
+ 3168/2160) /1, (22)

and P, is the Ohmic power dissipated by the plasma,

Poy, =41°R, J nj,’rdr, (23)
0
where 7 is the resistivity and j; denotes the component of j
parallel to B. Included in P, is the power that goes into
increasing the stored thermal energy in the plasma as well as
the energy lost from the plasma by radiation and other trans-
port processes. To the extent that the plasma maintains a
given F-0 relation, the magnetic energy can be written as a
function of I, and of (B, ) whose derivative is related to ¥, by
Eq. (2), and Eq. (20) can then be divided by 1, and rear-
ranged to give
di,

Vp=L—d—t+AV, +R,1,, 24)
where L, 4, and R, are functions of 8 (or F). Note that the
quantity R, 1,, which in the steady state is just the measured
loop voltage, does not correspond to the integral of the elec-
tric field around any simple loop when the fields are chang-
ing. It is, nevertheless, a useful quantity for determining the
net Ohmic input to the plasma and the conductivity tem-
perature. In the following sections, these functions will be
evaluated assuming PFM profiles.

A. Plasma inductance

Consider first a plasma confined in a flux-conserving
shell (¥, = 0). The inductance can then be calculated from
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FIG. 6. Normalized plasma inductance with a flux-conserving shell as a
function of @ along with a simple analytic fit.

au,
L=1Zn

= . (25)
Ip aIp (B,) = const

The analytic expression is cumbersome, but the result is dis-
played as a function of @ in Fig. 6 along with an empirical fit
good to within 5% for 0 <2,

L =9uRy(2 +36%)/8(6 + 62). (26)

A fit of this type was chosen rather than a polynomial so that
the inductance is well behaved at large 6 as will be required
for the calculation in Sec. IV D. The increase of inductance
with @ s partly a result of the helical current path and partly
a result of the peaking of the current density profile. Note
that the inductance defined by Eq. (24) is only one of several
inductances that one can define. It is useful for the calcula-
tion of the flux and energy requirements (Sec. IV) and for
electrical circuit modeling (Sec. V).

B. Coupling coefficient

Now consider a plasma with I, held constant by a high-
impedance power supply in the poloidal-field circuit, but
with a voltage ¥, applied in such a way as to cause (B,) to
change in time. The result is to induce a voltage V, propor-
tional to ¥, with a coefficient of proportionality given by

1 adu,

_ _RE
na’l, d(B,) )

I, = const ab

(27)

The first term represents I, dL /dt caused by modulation of
the inductance by the varying (B,), and the second term
represents a direct transformerlike coupling of the two cir-
cuits through the helical field lines which behave like con-
ducting wires. The terms are of the same order but of oppo-
site sign. The result of evaluating Eq. (27) as a function of 8
is shown in Fig. 7 along with an empirical fit,

A=4R,0(1 —0?%)/a(8 + 363). (28)

This coupling between the toroidal- and poloidal-field cir-
cuits is small for a tokamak (8« 1) but of considerable im-
portance for a RFP (%> 2).
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FIG. 7. Normalized coefficient of coupling between the poloidal-field and
toroidal-field circuits as a function of & along with a simple analytic fit.

C. Plasma resistance

Finally, consider a resistive plasma in steady state
(I, = const, ¥, = 0) at a given value of 6. If the perpendicu-
lar conductivity is negligible and the parallel resistivity 7 is
independent of radius, the resistance can be calculated from
R, = 4TRa ("B ALE)

1, o B}+B]
The result is displayed as a function of ¢ in Fig. 8 along with

an empirical fit good to within 10% for all 6,
R, =22Rn(5 + 66%)/54*(10 + 6°). (30)

The rise of resistance with 8 is caused partly by peaking of
the current density profile, but more importantly by the in-
creasing pitch of the field lines (the “screw-up factor”). This
factor has been calculated for the BFM'” and measured ex-
perimentally.'® The normalized resistance for the PFM at
@ = 0is 1.2, compared to 1.0 for a flat current density profile
and 4 for a parabolic profile.

The use of a spatially uniform resistivity is consistent
with limited observations that RFP temperature profiles are
relatively flat'>! but is not consistent with the observed

(29)
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FIG. 8. Normalized plasma resistance as a function of 8 along with a simple
analytic fit.
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current density profiles [Fig. 2(b) ], which in the presence of
a spatially uniform, toroidal electric field imply increasing
resistivity (proportional to 1/j,) as r—a. This discrepancy
has been discussed elsewhere? and is evidence of a non-Oh-
mic contribution to the resistivity (the “dynamo”).?223

One may define a “conductivity temperature” T, (in
€V) in such a way that the resistivity as defined above obeys
the classical relation,?*

7 =8X10"%Z 4 /T, (31)

where the Coulomb logarithm has been taken as about 15
and Z,4 is the effective ionic charge. The conductivity tem-
perature (with Z.; = 1.0) can thus be determined from ex-
perimentally measured voltages and currents by the relation,

T _( 8X107*R,1, )2/3.
© \n(V, —Ldl,/dt— AV,

The temperature calculated in this way represents a reason-
able lower bound on the actual electron temperature on the
axis of a RFP.

V. FLUX AND ENERGY REQUIREMENTS

The electrical circuit parameters of Sec. III can be used
to calculate the flux and energy requirements for both the
poloidal-field and toroidal-field sources in order to build the
plasma current from an initial value of zero up to some final
value I, with a final pinch parameter of ;. In this section,
external inductance and resistance and resistive losses in the
plasma will be neglected except as noted. The neglect of plas-
ma resistance is equivalent to assuming that the plasma cur-
rent reaches its maximum value in a time short compared to
7/[3, where 7 is the plasma energy confinement time and S is
the ratio of plasma pressure to magnetic pressure. The ne-
glect of resistance allows the problem to be cast in a time-
independent form.

For the poloidal-field circuit, the flux swing A®, and
the net energy consumed AU, can be determined by integra-
tion of Eq. (24):

I d(B
Ad, =f v, dt=f (L + maPA ——51—») dl,,
o P
33
a8y,

(32)

Ior
AU, =J VI, dz=f (L + ma*A

0 P

For the toroidal-field circuit, the flux swing A®, and the net
energy consumed AU, can be determined similarly:

Iy
20, = [ V,dt=ma | A

d
o2 I’; S (34)
pf
AU,=fV,I,dt=mJ FB)y 22 ar
IJ’O 0 de

To these values must be added the flux and energy require-
ments to achieve the initial toroidal field (B,), which in
general is not zero when the plasma current begins to in-
crease:

Aq)ti = ﬂ.az <Bti ) >

(35)
AU, = ﬂzazRo(Bu’ >2/:u'0'
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The integrands in Eqs. (33) and (34) are not unique
functions of I, but rather involve the variation of (B,) with
I, over which one has some experimental control. In the
sections to follow, five special cases will be considered. The
first three cases will involve a current increase at a relatively
low value of 6, and thus Egs. (26) and (28) can be expanded
to give the approximate values

L=@G + 6%/2)uoRo,
A= —-8*0R,/ 2a.

With F(8) from Eq. (17), these expressions simplify the
integrations.

(36)

A. Ramped mode

Consider first the case in which (B, ) is a linear function
of 1,, corresponding to a ramp-up at a constant value of 6.
Equations (33) and (34) give

AD, = (3 + 07/4) R0l ,

AU, = (% + 0}/8)/1’0R0112>f9

A¢, - ﬂoalpf/zof,

AU, = (1/40} — DRl .

Note that AU, is positive for 67 <2 and negative for
6%>2 and that 0% =2 is the value for which F= 0. This
means that the external toroidal-field circuit must supply
energy for a nonreversed ramp-up and must sink energy for a
reversed ramp-up. A ramp-up at F = 0 involves no energy
flow and could in principle be accomplished with the toroi-
dal-field winding open circuited as with a spheromak. A
ramp-up at negative Frequires an external inductance in the
toroidal-field circuit with a value given by

37

i _ _ na

L,=— = (38)
dl,/dt 2R,F
or in terms of the internal toroidal inductance L,,, in the
absence of plasma, L.,, = — L,,,/F. Alternately, note that
3 T T T Lm— T T 7T
as2
e AIDED ZEVERSAL
d 2
X as1.5
o
v "
& NONREVERSED l/—’
E 1 MATCHED MODE (a=1) T —
~ "
2222 d REVERSED
eeo
o 1 1 1 i I 1 | 1 1
0] | 2
HoRolp /A,

FIG. 9. Summary of RFP start-up modes showing trajectories through
(B,)-1, space, all of which end at the same value of §, = 1.5, Note that fora
fixed value of poloidal flux swing Ad,, one can reach successively higher
final plasma current values with matched mode and with aided reversal.
Within limits, the higher the initial toroidal field, the higher plasma current
that can be reached. Plasma resistance and external circuit losses have been
neglected.
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I1,/1, = RyF /a8 is a constant for ramped mode; and thus a
single power supply could drive the two circuits in series
through appropriate transformers to produce the desired
current ratio. In practice, it may be different to start up a
RFP without an initial toroidal field, but the result repre-
sents an ideal limit.

Figure 9 shows the trajectory through (B, )-I, space for
this ramped mode case for 8, = 1.5. In the figure, 7, is nor-
malized to A®,/u,R, and (B,) is normalized to
A®,/2maR, so as to make the plot device independent with
axes whose ratio is 6.

B. Matched mode

Consider now the case in which the toroidal flux is held
constant as the plasma current increases. Constant (B,) im-
plies ¥, = 0 (toroidal winding perfectly crowbarred) and all
the flux swing and energy flow in the toroidal-field circuit
occur before the plasma current begins to increase. Equa-
tions (33) and (35) give

AP, = (3 + 9}/6)/"0R01pf’
AU, = ( + 02/B)uoRol Y,
A¢t = #Oalpf/zaf,

AU, = puoRoI % /463,

As compared with ramped mode at the same 7 and 6,
this matched mode requires less poloidal flux and poloidal-
field source energy but more toroidal-field source energy.
Thus for a given poloidal flux swing, a higher plasma current
can be reached as shown in Fig. 9. The toroidal flux swing
and the total energy,

AU= (1/407+ & + 0 7/8)uoRol 3, (40)

are the same for the two cases since they depend only on the
final state and not on how it was reached. Equation (40)
overpredicts the energy requirement by 8% at 6, = 1.5 and
24% at 6, = 2.0 as compared with Eq. (22) because of the
approximations used. Note that for a fixed plasma current,
the magnetic energy has a minimum of 0.541u,R,/ ; at
#* = 2, corresponding to F = 0.302.

(3%

C. Aided reversal

Consider now the more general case in which the aver-
age toroidal field is held fixed at a{B,) until the plasma
current reaches its final value and then is readjusted to (B, )
while the plasma current is held constant. Matched mode is
thus a special case of this aided reversal case in whicha = 1.
For a1, the maximum toroidal flux swing and energy con-
sumption occur before the plasma current begins to increase.
For a less than about exp( 0}/ 2), the poloidal flux swing and
energy consumption are maximum when the final state is
reached. For a within this range, Eqs. (33) and (35) give

AD, = (3 + 03/8 + 03/24a” — In a/4)puoRol ¢,
AU, = (& + 0%/8 — In a/4)uR I %,

AD, = aual /26,

AU, = a®uoRol /463

(41)
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Aided reversal further reduces the flux swing and ener-
gy requirements of the poloidal-field source as Fig. 9 shows
for & = 1.5 and a = 2. The reduction is at the expense of a
considerably increased toroidal flux swing and energy con-
sumption, however.

A number of other start-up cases have been investigated
numerically, but the results are unremarkable. Equation
(41) predicts zero net poloidal flux swing and energy con-
sumption for sufficiently large a, but this is because the po-
loidal flux and energy supplied during the rising I, is re-
moved when (B, ) is reduced to its final value.

D. Theta pinch mode

It is interesting to ask whether there is a trajectory
through (B, )-I, space for which the voltage ¥, is always
zero. Such a case would correspond to putting all the flux
and energy in through the toroidal-field circuit as in a theta
pinch. From Eq. (24) with ¥, and R, equal to zero using
Eq. (2), we obtain

dl, _ ma’A . (42)

d(B,) L
Since A and L depend on , and (B, ) in a complicated way,
Eq. (42) is not easily integrated, but note that since 4 is zero
at @ = 1, I, is maximum there. For small 8, the solution has
I,(B,)*? constant. Equation (42) has been solved numeri-
cally using Eqgs. (26) and (28), and the result is shown in
Fig. 10. The result suggests that it is not possible to reach the
RFP state in this way starting with zero plasma current.
However, if one could produce a seed current in a toroidal
device with a large initial toroidal magnetic field, the RFP
state can apparently be reached by ramping the toroidal field
down while the plasma current increases and then decreases
slightly.

E. Oscillating field current drive

Consider now a case in which the toroidal-field and po-
loidal-field circuits are driven with voltages that are sinusoi-
dal functions of time but with phases that differ by ¢:

T 1 T )
»®
o
E
-t
{ —
~
<
) 4
4 NONREVERSED
E -
L N
REVERSED
i ] [ ]
2

Ip/Tmax

FIG. 10. Trajectory through normalized {B, )-I, space for a case in which
no poloidal-field driving voltage is used. The RFP state is reached by de-
creasing the average toroidal field from a large (infinite) initial value.
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V, = v, cos wt, (43)
V, =, cos(wt — ¢).

The frequency o is arbitrary except that it is assumed suffi-
ciently small that the plasma remains on the -8 curve dur-
ing an oscillation period. The field (B, ) averaged over any
integral number of cycles of the oscillation is constant, and
no net flux is supplied by either circuit. However, because of
the nonlinearity of the equations, it is possible to rectify the
alternating voltages and to compensate for resistive losses or
even increase the current over time.>?->* Such a technique is
variously called oscillating field current drive, #-@ pumping,
or helicity injection. We consider here the case of maintain-
ing a constant current in the presence of plasma resistance.
Integrating Eq. (2) and Eq. (24) with o> R, /L gives

(B,) = (B,)o + v, sin ot /md’w,

1, = I, + v, sin(wt — ¢)/wL, — Av, sin wt /oL,
(44)

where the subscript O denotes the unperturbed
(v, = v, = 0) values. Treating the oscillation as a small per-
turbation and using /, from Eq. (4), one can average I, V,
and I, ¥, over a cycle to obtain the power input to the plasma
from each circuit:

P, = — Av,v, sin ¢/2wL,
dF /do
2awL

Summing these powers and equating to the plasma Ohmic
dissipation /2R, one can calculate the rectified voltage,

P p?
A+ R,dF/df /a
20LI, '

An equivalent result can be obtained by averaging Eq. (24)
over a cycle of oscillation,

6dA /d6 + 202 dL /dO /u.a
20L1 ’

P
from which a nonobvious but possibly useful relation
between L, A4, and F can be deduced,

a!F/dH__= _eiii_deL/de_
dg Mod

Since the empirical fits for L, 4, and F were not constructed
to satisfy this constraint and since Egs. (46) and (47) in-
volve derivatives with respect to 6, the quantities cannot be
accurately calculated from the fits but require an exact nu-
merical evaluation from which Eq. (48) is verified.

For an appropriate choice of ¢ (optimum of 7/2), it is
possible to overcome the plasma resistive losses with such
oscillating voltages and to maintain a constant average plas-
ma current. The voltage 7, R, thus produced, normalized to
v,V, sin ¢/uqawl,, is plotted in Fig. 11 as a function of &
along with an empirical fit good to within 5% for 6 <2,
IR, =9%,v, sin ¢ 67/(5 + 100 *)peawl,. (49)

P

(45)
P, = — Ry, sin ¢

LR,= —v,v,sing (46)

LR, =v,v, sin ¢

(47)

A+R, (48)

The plot illustrates the difficulty of using the technique for a
tokamak (8<€1), although the low resistance of a tokamak
discharge helps somewhat.

Note from Eq. (45) with sin ¢ > 0 that the toroidal-field
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Hoow RpI:/ VVpsing

FIG. 11. Dimensionless coefficient that allows calculation of the value of
I, R, that can be sustained in steady state by oscillating field current drive
with voltages v, and v, at frequency  with phase difference ¢.

circuit always has to supply power since dF /d@ is negative,
but that the poloidal-field circuit supplies power for £> 1
(where 4 <0) and sinks power for € < 1. Thus for applica-
tion to a tokamak, one needs an active circuit only for the
toroidal field, and the poloidal-field circuit can be connected
to a passive element. For ¢ = 7/2, such an element consists
of an inductor, capacitor, and resistor all connected in paral-
lel with values given by

L,>L,
C.p = /0L,
R

The inductor provides a dc path for the unperturbed plasma
current, the capacitor sets the phase, and the resistor allows
one to adjust the ratio of v, /v,. The tokamak case is even less
inherently efficient than the RFP case because some of the
power supplied by the toroidal-field circuit is wasted in R, .
The efficiency, defined by I2R,/P,, is predicted to be about
50% in the limit of small 8.

(50)

ext = wLv,/Av,.

V. APPLICATION TO MST

In this section, the previous results will be applied to the
Madison symmetric torus.® MST is a circular cross section
RFP with R, = 1.5 m and ¢ = 0.52 m. The poloidal flux is
coupled by an iron core with a 2.0 Wb maximum flux swing.
The toroidal magnetic field is produced by currents in the 5
cm thick, aluminum vacuum vessel wall which has a single
toroidal and poloidal gap to allow the respective fields to
enter. Protrusions of diagnostics and gap protectors are lim-
ited to a 1 cm thick region adjacent to the wall. There is no
resistive liner.

A. Ultimate performance

The ultimate performance of the device occurs when the
plasma resistance contributes negligibly to the flux and ener-
gy consumption. The capacitor banks and toroidal-field
transformer can be upgraded arbitrarily, but the poloidal
flux swing is limited to 2.0 Wb by the available space through
the center of the toroid. Initial operation will approximate
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TABLE 1. Summary of ultimate performance parameters for various start-
up modes of MST for A¢, = 2.0 Wb and 6, = 1.5.

Aided reversal
Ramp mm a=15 a=20
y " 0.89 1.41 1.78 2.10 MA
(B,) 0.00 3.63 6.84 10.75 kG
(By:) 2.29 3.63 4.56 5.37 kG
U, 0.89 1.77 2.19 2.44 MJ
U, —0.02 042 1.49 3.68 MJ
Ag, 0.20 0.31 0.87 1.83 Wb

the ramped mode condition, but matched mode and aided
reversal are future possibilities. From Eqgs. (37), (39), and
(41), Table I summarizes the ultimate performance for var-
ious start-up modes in which the pinch parameter reaches
0, = 1.5 at the peak of the plasma current.

B. Waveforms

The time-dependent waveforms for MST were deter-
mined by a numerical simulation of the plasma connected to
a simplified representation of the external circuitry. More
complicated and realistic simulations of the actual circuit
have been performed, but the essence of the model is con-
tained in Fig. 12. For convenience and in order to illustrate
the numerical method, the basic equations are collected be-
low:

Initialize I, (B,), V,,
0 = pol,/2ma(B,),
L =9u0R,(2 +362)/8(6 + 62),
A=4R0(1 - 6% /a(8 +36°),
R, = f(1,),
F=1-6%2,
I, =27R(B,)F /1,

dl,
ext

A ——

31

V,= —L

s

d(B)

dr
av, I,
d  C
dl, V,—AV,—LR,

dt L

The iniﬁal values were taken as I, =0, (B,)=875G
(to allow for electron cyclotron resonance preionization at
2.45 GHz), and ¥V, = 125 V (5 kV/40 turns). The param-

2,
C+|
=y Z#

FIG. 12. Simplified electrical circuit for numerical simulation of the time-
dependent response of a RFP plasma.

ma*V,,

+ +

RFP
Vo | pLasma | V¢ §lext
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eters chosen were C = 168 F (to give A<l>p = 2.0 Wb) and
L.,, =0.265 uH (to give ; = 1.5). Here R, was assumed
to be given by Eq. (30) with  from Eq. (31) withZ 4 =35
and T, = 1073], (OHTE scaling®®). To avoid a singularity
inR, att = 0, alower bound for T, was takentobe0.1eV,a
value that surely can be achieved with low-power electron
cyclotron resonance preionization.

One computational difficulty is the necessity of evaluat-
ing a derivative in order to calculate ¥, from dI,/dt. This
process leads to numerical instability unless L,, is very
small or I, (¢) is suitably smoothed. Such smoothing can be
accomplished by adding to the circuit a resistor R, in paral-
lel with L., chosen such that V,/I, €R.,, €L.,,/At, where
At is the step size of the iteration. The value is large enough
s0 as to draw negligible current but small enough so that the
time constant of the external circuit exceeds the iteration
time step. When simulating a device with a resistive liner,
such a resistance naturally exists, and the problem does not
occur.

The waveforms predicted by the simulation are shown
in Fig. 13. The case is intermediate between the ramped
mode and matched mode cases of Sec. IV. The plasma cur-
rent I, reaches a maximum of 1.16 MA at about 25 msec, at
which time R, I, is 4.32 V. Beyond about 50 msec, field
errors are expected to arise, raising the resistivity and even-
tually terminating the discharge. The total energy delivered
by the poloidal-field and toroidal-field sources is 1.38 MJ,
939 of which is stored inductively at the time of peak cur-
rent. The inductive energy consumed by the plasma agrees
within 7% with the stored magnetic energy calculated from

2 T T 3 T o
| J a i
I L ~ (B
(MA) | (kG) _
i
) ) ! ) L1
00 50 00 I : 50
2001 I 1 T T T T
B \
n twc
(kG) N
L ]
: ! - L1 L1
50 0 50

{Volts)
- 1 1 1 ]
205 50
10, T T T T | T T T T
I,Rp
sk F o—>
(Volts)
co ] W | | _‘0 1 1 1 ]
50
Time (msec) Time (msec)

FIG. 13. Results of numerical simulation of MST waveforms for maximum
flux swing (A¢, = 2.0 Wb) and an optimistically low plasma resistance.
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FIG. 14. Numerical simulation of oscillating field current drive applied to
MST to maintain a constant average plasma current for an optimistically
low plasma resistance.

Eq. (22) providing a check of many aspects of the calcula-
tion. This case represents a reasonable upper bound of the
initial performance that can be expected from MST.

C. Oscillating field current drive

If the loop voltage in MST can be reduced to the order of
4V as suggested above, the device might be useful for testing
oscillating field current drive. To simulate such a case, the
parameters of Sec. V B at the peak of the plasma current
were taken as initial values, and the toroidal-field and poloi-
dal-field voltages were taken according to Eq. (43) with
v, = v, =80V, w/2m = 200 Hz, and ¢ = 7/2 as required to
hold the average plasma current constant.

The plasma current for the following 100 msec is shown
in Fig. 14 along with the corresponding value for
v, = v, = 0. The onset of field errors might preclude such
long pulses, however. The variation in F is such that the
plasma barely goes out of reversal (F=0) at the peak of
each cycle, although this could have been prevented by oper-
ating at slightly larger average 6. In the simulation, R, is
allowed to vary with 8 according to Eq. (30), but no account
is taken of any resistance enhancement when reversal is lost.
If I, R, is larger than assumed, more oscillating voltage is
required, and it is difficult to maintain a reversed field state
throughout the oscillation. The 80 V value is in good agree-
ment with the 75 V predicted by Eq. (46). The average pow-
er required to maintain the plasma is 5.32 MW, 3.90 MW of
which comes from the toroidal-field source and 1.42 MW of
which comes from the poloidal-field source in rough agree-
ment with Eq. (45).

The poloidal-field circuit is primarily resistive, but the
toroidal-field circuit has an inductive reactance that is
roughly four times its resistance. This raises the possibility of
driving the two circuits in series from the same source and
letting the plasma provide the phase shift. Provision would
have to be made for the fact that the dc currents in the two
circuits are different, and in fact, opposite in sign for F<0.
This could easily be accomplished by inductors in parallel
with each circuit.
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