strange Attractors:
Creating Patterns in Chaos

Dy
Julien C. Sprott

Converted to PDF by Robert Coldwell
8/1/2000
coldwell@earthlink.net

Contents

Why This Book Is for You

Chapter 1: Order and Chaos
1.1 Predictability and Uncertainty
1.2 Bucks and Bugs
1.3 The Butterfly Effect
1.4 The Computer Artist

Chapter 2: Wiggly Lines
2.1 More Knobs to Twiddle
2.2 Randomness and Pseudorandomness
2.3 What'sin a Name?
2.4 The Computer Search
2.5 Wiggles on Wiggles
2.6 Making Music

Chapter 3: Pieces of Planes
3.1 Quadratic Map in Two Dimensions
3.2 The Butterfly Effect Revisited
3.3 Searching the Plane
3.4 The Fractal Dimension
3.5 Higher-Order Disorder
3.6 Strange Attractor Planets
3.7 Designer Plaids
3.8 Strange Attractors that Don't
3.9 A New Dimension in Sound

Chapter 4: Attractors of Depth
4.1 Projections
4.2 Shadows
4.3 Bands
4.4 Colors
4.5 Characters
4.6 Anaglyphs
4.7 Stereo Pairs | Stereo Pairs
4.8 Slices

Chapter 5: The Fourth Dimension
5.1 Hyperspace
5.2 Projections
5.3 Other Display Techniques
5.4 Writing on the Wall
5.5 Murals and Movies
5.6 Search and Destroy

Chapter é: Fields and Flows
6.1 Beam Me up Scotty!
6.2 Professor Lorenz and Dr. Rdssler
6.3 Finite Differences
6.4 Flows in Four Dimensions
6.5 Strange Attractors that Aren't
6.6 Doughnuts and Coffee Cups

Chapter 7: Further Fascinating Functions
7.1 Steps and Tents
7.2 ANDs and ORs
7.3 Roots and Powers
7.4 Sines and Cosines
7.5 Webs and Wreaths
7.6 Swings and Springs
7.7 Roll Your Own

Chapter 8: Epilogue
8.1 How Common is Chaos?
8.2 But Is It Arte
8.3 Can Computers Critique Arte
8.4 What's Left to Do?
8.5 What Good Is Itg

Appendix A: Annotated Bibliography
Appendix B: BASICProgram Listing
Appendix C: Other Computers and BASIC Versions
BASICA and GW-BASIC
Turbo BASICand PowerBASIC
VisualBASIC for MS-DOS
VisualBASIC for Windows
QUICckBASICfor Apple Macintosh Systems
Appendix D: C Program Listing

Appendix E: Summary of Equations

Appendix F: Dictionaries of Strange Attractors

322
322
326
329
352
368
384

397
397
408
418
428
438
448
459

460
460
467
468
470
476

480
491
514
514
514
515
515
521
528
566

576

Why This Book Is for You

Art and science sometimes appear in juxtaposition, one aesthetic, the other
analytical. This book bridges the two cultures. | have written it for the artist who is
willing to devote a modicum of effort to understanding the mathematical world of
the scientist and for the scientist who often overlooks the beauty that lurks just
beneath even the simplest equations.

If you are neither artist nor scientist, but own a personal computer for which
you would like to find an exciting new use, this book is also for you. Fractals
generated by computerrepresent anew art formthat anyone can appreciate and
appropriate. You don't have to know mathematics beyond elementary algebra,
and you don’t have to be an expert programmer. This book explains a simple, new
technique for generating a class of fractals called strange attractors. Unlike other
books about fractals that teach you to reproduce well-known patterns, this one will
let you produce your own unlimited variety of displays and musical sounds with a
single program. Almost none of the patterns you produce will ever have been seen
before.

To get the most out of this book, you will need a personal computer, though
itneed notbe afancy one. It should have a monitor capable of displaying graphics,
preferably in color. Some knowledge of BASIC is useful, although you can just type
in the listings even if you don’t understand them completely. For those of you who
are C programmers, | have provided an appendix with an equivalent versionin C.
You may find the exercises in this book an enjoyable way to hone your program-
ming skills. As you progress through the book, you will gradually develop a very
sophisticated computer program. Each step is relatively simple and brings exciting
new things to see and explore. Alternately, you can use the accompanying disk
immediately to begin making your own collection of strange attractors.

Strange Attractors

How to find them, those regions
Of space where the equation traces
Over and over a kind of path,
Like the moth that batters its way
Back toward the light
Or, hearing the high cry of the bat,
Folds its wings in a rolling dive?

And ourselves, fluttering toward and away
In a pattern that, given enough
Dimensions and point-of-view,
Anyone living there could plainly see—
Dance and story, advance, retreat,

A human chaos that some slight
Early difference altered irretrievably?

For one, the sound of her mother
Crying. For this other,

The hands that soothed
When he was sick. For a third,
The silence that collects
Around certain facts. And this one,
Sent to bed, longing for a nightlight.

Though we think this fime to escape,
Holding a head up, nothing wrong,
Finding a way to beat the system,
Talking about anything else—
Travel, the weather, time
At the flight simulator—for some
The journey circles back

To those strange, unpredictable attractors,
Secrets we can neither speak nor leave.

—Robin S. Chapman

Chapter 1

Order and Chaoos

This chapter lays the groundwork for everything that follows in the book.
Nearly all the essential ideas, mathematical techniques, and programming tools
you need are developed here. Once you've mastered the materialin this chapter,
the rest of the book is smooth sailing.

1.1 Predictability and Uncertainty

The essence of science is predictability. Halley's comet will refurn to the
vicinity of Earth in the year 2061. Not only can astronomers predict the very minute
when the next solar eclipse will occur but also the best vantage point on Earth from
which to view it. Scientific theories stand or fall according to whether their predic-
tions agree with detailed, quantitative observation. Such successes are possible
because most of the basic laws of nature are deterministic, which means they allow
us to determine exactly what will happen next from a knowledge of present
conditions.

However, if nature is deterministic, there is no room for free wil. Human
behavior would be predetermined by the arrangements of the molecules that
make up our brains. Every cloud that forms or flower that grows would be a direct
and inevitable result of processes set info motion eons ago and over which there
is no possibility for exercising control. Perfect predictability is dull and uninteresting.
Such is the philosophical dilemma that often separates the arts from the sciences.

One possible resolution was advanced in the early decades of the 20th
century whenitwas discovered that the quantum mechanicallaws that govern the
behavior of atoms and their constituents are apparently probabilistic, which means
they allow us to predict only the probability that something will happen. Quantum
mechanics has been extremely successful in explaining the submicroscopic world,
but it was never fully embraced by some scientists, including Albert Einstein, who
until his dying day insisted that he did not believe that God plays dice with the
Universe.

Since the 1970s science has been undergoing an intellectual revolution that
may be as significant as the development of quantum mechanics. It is now widely
understood that deterministic is not the same as predictable. An example is the
weather. The weatheris governed by the atmosphere, and the atmosphere obeys

deterministic physical laws. However, long-term weather predictions have im-
proved very little as aresult of careful, detailed observations and the unleashing of
vast computer resources.

The reason for this unpredictability is that the weather exhibits extreme
sensitivity to initial conditions. A tiny change in today's weather (the initial condi-
tions) causes a larger change in tomorrow’s weather and an even larger change
in the next day’s weather. This sensitivity to initial conditions has been dubbed the
butterfly effect, because itis hypothetically possible for a butterfly flapping its wings
in Brazil to set off tornadoes in Texas. Since we can never know the initial conditions
with perfect precision, long-term prediction is impossible, even when the physical
laws are deterministic and exactly known. It has been shown that the predictability
horizon in weather forecasting cannot be more than two or three weeks.

Unpredictable behavior of deterministic systemshas been called chaos, and
it has captured the imagination of the scientist and nonscientist alike. The word
"chaos" wasintroduced by Tien-Yien Liand James A. Yorke in a 1975 paper entitled
"Period Three Implies Chaos." The term "strange attractors," from which this book
takes its title, first appeared in print in a 1971 paper entitled "On the Nature of
Turbulence," by David Ruelle and Floris Takens. Some people prefer the term
"chaotic attractor," because what seemed strange when first discovered in 1963 is
now largely understood.

It'snot hard toimagine thatif a systemis complicated (with many springs and
wheels and so forth) and hence governed by complicated mathematical equao-
tions, then its behavior might be complicated and unpredictable. What has come
as a surprise fo most scientists is that even very simple systems, described by simple
equations, can have chaotic solutions. However, everything isnot chaotic. After all,
we can make accurate predictions of eclipses and many other things. An even
more curious fact is that the same system can behave either predictably or
chaotically, depending on small changes in a single term of the equations that
describe the system. For thisreason, chaos theory holds promise for explaining many
natural processes. A stream of water, for example, exhibits smooth (laminar) flow
when moving slowly and irregular (furbulent) flow when moving more rapidly. The
transition between the two can be very abrupt. If two sticks are dropped side-by-
side info a stream with laminar flow, they stay close together, but if they are
dropped into a turbulent stream, they quickly separate.

Chaotic processes are not random; they follow rules, but even simple rules
can produce extreme complexity. This blend of simplicity and unpredictability also
occurs in music and art. A piece of music that consists of random notes or of an
endless repetition of the same sequence of notes would be either disastrously

discordant or unbearably boring. Likewise, a work of art produced by throwing
paint at a canvas from a distance or by endlessly replicating a pattern, as in
wallpaper, is unlikely to have aesthetic appeal. Nature is full of visual objects, such
as clouds and frees and mountains, aswell as sounds, like the cacophony of excited
birds, that have both structure and variety. The mathematics of chaos provides the
tools for creating and describing such objects and sounds.

Chaos theory reconciles our intuitive sense of free will with the deterministic
laws of nature. However, it has an even deeper philosophical ramification. Not only
do we have freedom to control our actions, but also the sensitivity to initial
conditions implies that even our smallest act can drastically alter the course of
history, for better or for worse. Like the butterfly flapping its wings, the results of our
behavior are amplified with each day that passes, eventually producing a com-
pletely different world than would have existed in our absence!

1.2 Bucks and Bugs

Enough philosophizing—it's time to look at a specific example. This example
requires some mathematics, but the equations are not difficult. The ideas and
terminology are important for understanding what is to follow.

Suppose you have some money in a bank account that provides interest,
compounded yearly, and that you don’t make any deposits or withdrawals. Let’s
let X represent the amount of money in your account. When the time comes for the
bank to credit yourinterest, its computer does so by multiplying X by some number.
With aninterest rate of 10%, the numberis 1.1, and your new balanceis 1.1 X. If your
balanceinthe nthyearis X, (where nis 1 after the first year, 2 after the second, and
so forth), your balance in the yearn +1 is

Xn +1 =R Xp (Equation 1A)
where R is equal to 1.0 plus your interest rate. (R is 1.1 in this example.)

You probably know that such compounding leads to exponential growth. In
terms of the initial amount X, the amount in your account after n years is

Xpy = XoR" (Equation 1B)

After 50 years at 10% yearly interest, you willhave $117.39 for every dollar you
initially invested. The bank can afford to do this only because of inflation and

because money is loaned at an even higher interest rate.

Equation TAis applicable to more than compound interest. It's how many of
us have our salaries determined. It also describes population growth. Imagine some
species of bug that lives for a season, lays its eggs, and then dies (thus avoiding the
confusion of overlapping generations). The next year the eggs hatch, and the
number of bugs is some constant R times the number in the previous year. If R is less
than 1, the bugs die out over a number of years; and if R is greater than 1, their
number grows exponentially.

You also know that exponential growth cannot go on forever, whether it be
bucks in the bank, bugs in the back yard or people on the planet. Eventually
something happens, such as the depletion of resources, to slow down or even
reverse growth. Mass starvation, disease, crime, and war are some of the mechao-
nisms that limit unbridled human population growth. Thus we need to modify
Equation TA in some way if it is to model growth patterns in nature more closely.

Perhaps the simplest modification is to multiply the right-hand side of Equa-
tion 1A by atermsuch as (1 -X), whose value approaches 1 as X gets smaller (much
less than 1) but is less than 1 as X increases. Since the population dies abruptly as X
approaches 1, we must think of X = 1 as representing some large number of dollars
or bugs (say a million or a billion); otherwise we would never get very farl So our
modified equation, called the logistic equation, is

Xn +1 =R X (1-Xp) (Equation 1C)

Now you're going to get your first homework assignment. Take your pocket
calculator and start with a small value of X, say 0.1. To reduce the amount of work
you have to do, use a fairly large value of R, say 2, corresponding to a doubling
every year. Run X through Equation 1C a few times and see what happens. This
process is called iteration, and the successive values are called iterates. If you did
it right, you should see that X grows rapidly for the first couple of steps, and then it
levels off at a value of 0.5. The first few values should be approximately 0.1, 0.18,
0.2952, 0.4161, 0.4859, 0.4996, and 0.5. Compare your results with the unbounded
growth of Equation TA.

You might have predicted the above result, if you had thought to set X, 4
equal to X, in Equation 1C and solved for Xp. This value is called a fixed-point
solution of the equation, because if X ever has that value, it remains fixed there
forever. Such a fixed-point solution is sometimes called a point attractor, because
everyinitial value of X between0and 1 is attfracted to the fixed pointuponrepeated
iteration of Equation 1C. Try initial values of X = 0.2 and X = 0.8. A fixed point is also

called a critical point, a singular point, or a singularity.

If you're curious, you might wonder what happens if you start with a value of
Xless than 0, such as -0.1, or greater than 1, such as 1.1. You should verify that the
iterates are negative and that they get larger and larger, eventually approaching
minus infinity. We say that the solution is unbounded and that it aftracts to infinity.
Thus the values of X =0 and X = 1 are like a watershed. Between these values the
solution is bounded, and outside these values it is unbounded.

The region between X =0 and X = 1 is called a basin of atftraction because
it resembles a bathroom basin in which drops of water find their way to the drain
from wherever they start. X =0is also a fixed point, but it is unstable because values
either slightly above or slightly below zero move away from zero. Such an unstable
fixed point is sometimes called a repellor. Chaos can result when two or more
repellors are present; the iterates then bounce back and forth like abaseballrunner
caught in a squeeze play.

Equations that exhibit chaos have solutions that are unstable but bounded;
the solution never settles down to a fixed value or even to arepeating pattern, but
neitherdoesit move off toinfinity. Sometimeswe say that such equations are linearly
unstable but nonlinearly stable. Small perturbations to the system grow, but the
growth ceases when the nonlinear terms become important, as eventually they
must. Anotherway to say itis that the fixed points are locally unstable, but the system
is globally stable. In this case initial conditions are drawn to a special type of
attractor called asfrange attractor, whichis not a point or even afinite set of points
but rather a complicated geometrical object whose properties constitute the
subject of this book.

See what happens if you substitute X =0 or X = 1 into the logistic equation. As
a check on your calculations, or in case you didn't do your homework, Table 1-1
shows the successive iterates of X for each of the cases we have discussed.

Table 1-1. Iterates of the logistic equation for various initial values of X with R=2

n=20 n=1 n=2 n =3 n =4 n=>5 n==~o6
0.1 0.18 0. 2952 0. 4161 0. 4859 0. 4996 0.5
0.2 0.32 0. 4352 0. 4916 0. 4999 0.5 0.5
0.8 0.32 0. 4352 0. 4916 0. 4999 0.5 0.5
-0.1 -0.22 -0.5368 -1. 6499 -8. 7442 -170. 41 -58421
1.1 -0.22 -0.5368 -1. 6499 -8. 7442 -170. 41 -58421
0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0

10

An equation, such as the logistic equation, that predicts the next value of a
quantity from the previous value is called aniterated map because it is like aroad
map in which each point on the earth is mapped to a corresponding point on a
piece of paper. The logistic equation is a one-dimensional map because the
various X values can be thought of as lying along a straight line that stretches from
minus infinity to plus infinity. Each iteration of the map moves every point along the
line to a new position on the line. For the example above with R = 2, all the points
between X =0 and X = 1 walk toward X = 0.5, where they stop and remain. Other
pointsrun faster and faster toward the end of the line that stretches to minus infinity.

The logistic equation is an example of a quadratic iterated map, so called
because if you multiply out the right-hand side of Equation 1C, ithasnotonly alinear
term RX, but also a quadratic (squared) term —Ran. Quadratic maps are
noninvertable because you can find X547 from X,, but can’'t go backward
because there are two values of X, that produce the same X4 7, and there is no
way of knowing from which it came. Forexample, Table 1-1 shows that Xy =0.2 and
Xp = 0.8 both produce X; =0.32. These are the two roofs of the quadratic equation
that you get if you try to solve for X, in Equation 1C in terms of X47.

The graph of X547 versus X, is a curve called a parabola. Because a
parabola is not a straight line, the map is said to be nonlinear. Chaos and strange
attractors require nonlinearity. The interesting and surprising behavior of nonlinear
iterated maps is the basis for much of this book.

The first surprising result occurs if you iterate Equation 1C with R = 3.2 and an
initial value of Xinthe range of 0 to 1. After a few iterations the solution will alternate
between two values of approximately 0.5130 and 0.7995. This is called a period-2
limit cycle. Like the fixed point, the limit cycle is another type of simple attractor. It
is sometimes called a periodic or cyclic attractor.

It'snot hard to see how cyclic behavior might arise in nature. If the population
of beetles grows too large, they deplete the plants on whom they depend for food.
With too few plants, the beetles die out, allowing the number of plants to recover,
leading to the next cycle of beetle growth, and so forth.

Increase R a bit more to 3.5, andrepeat the calculation. The resultis a period-
4 limit cycle with four values of approximately 0.5009, 0.8750, 0.3828, and 0.8269. If
you keep increasing R by eversmaller amounts, the period of the limit cycle doubles
repeatedly, finally reaching chaotic behavior (an infinite period) at about R =
3.5699456. This value is sometimes called the Feigenbaum point, after Mitchell J.
Feigenbaum, a contemporary mathamatician who discovered many of the inter-
esting properties of one-dimensional maps.

When chaos occurs, the successive iterates fluctuate in an apparently
random and irreproducible manner. The chaotic behavior persists up to R = 4
except for an infinite number of small periodic windows. For R greater than 4, the
solution is unbounded, and the iterates attract rapidly to minus infinity.

The behavior described above can be summarized in a bifurcation diagram,
as shown in Figure 1-1, in which the limiting iterated values of the logistic equation,
after discarding the first few hundred iterates, are plotted for arange of R from 2 to
4. This plot is called the Feigenbaum diagram, and it resembles a tree on its side.
("Feigenbaum," appropriately but coincidentally, is German for "fig tree.") You see
the fixed-point solution for R less than 3, the period-doubling route to chaos, and the
periodic windows at large R. The chaotic regions toward the right side of the figure
are characterized by values of X that span a wide range and eventually fill the
region densely with points.

Figure 1-1. Bifurcation diagram for the logistic equation, Xn4+1 = RXp (1 - Xp)

1

12

Each period doubling is called a bifurcation because a single solution splits
into a pair of solutions. These splittings are called pitchfork bifurcations for obvious
reasons. Note the period-3 window at about R = 3.84. The period-3 region begins
abruptly when R is increased slightly from within the chaotic region toits left in what
is called a fangent or saddle-node bifurcation. Careful inspection of the period-3
window shows that it also undergoes a period-doubling sequence at about R = 3.85.
Solutions with every period can be found somewhere between R =3 and R = 4.

Successive period doublings occur with ever-increasing rapidity as one
moves fromleft torightin Figure 1-1.Theratio of the width of eachregion to the width
of the previous region approaches a constant equal to 4.669201660910..., called
the Feigenbaum number. Even more remarkable is that this number arises in many
different chaotic systems in nature as well as in the solutions of equations. The
universality of the Feigenbaum numberin chaosisreminiscent of the ubiquity of the
number p in Euclidean geometry.

With R = 4 the solutions occupy the entire intervalfrom X=01o X = 1. Eventually
X takes on a value arbitrarily close to any point in that interval (a characteristic
called topological transitivity). Curiously, however, infinitely many initial values of X
don't lead to a chaotic solufion even for R = 4. For example Xp = 0.5 and X = 0.75
lead to unstable fixed points, while X =0.345491... and X = 0.904508... produce an
unstable period-2limit cycle. By unstable we mean thatif the initial values are wrong
by even the slightest amount, successive iterates will wander ever farther away.

Eventhough there are infinitely many nonchaotic initial values between zero
and one, the chance that you will find one by randomly guessing is negligible. For
every such value, there are infinitely many others that produce chaos. Such a
seemingly paradoxical entity is an example of a Cantor set, named after the 19th-
century Russian-born German mathematician Georg Cantor whois often credited
with developing a mathematically rigorous concept of infinity.

A Cantorset containsinfinitely many members (in fact, uncountably infinitely
many), but its members represent a zero fraction of the totall For example, infinitely
many points arerequired to cover completely the circumference of a circle, but this
number of points doesn’'t even begin to cover its interior. Such a collection (or set)
of points, although infinite in number, is said to comprise a set of measure zero,
because the points fill a negligible portion of the plane. An attractor is a set of
measure zero, but its basin of attraction has a nonzero measure.

Few people would have guessed that such complexity could arise from such

underlying simplicity. Furthermore, the logistic equation is only the simplest of an
endless variety of equations that can exhibit chaos. Itis this dichotomy of simplicity

13

and complexity that makes chaos beautiful to the mathematician and artist alike.
In the bifurcation diagram of the logistic equation, we have something with
aesthetic appeal, and it came from a simple quadratic equation!

1.3 The Butterfly Effect

If our goalis to seek chaotic behavior in the solution of equations, we need
a simple way to test for chaos. For this purpose we use the fact that chaotic
processes exhibit extreme sensitivity to initial conditions, in contrast to regular
processes in which different starting points usually converge to the same sequence
of points on a simple attractor.

Suppose we iterate the logistic equation with two initial values of X that differ
by only a tiny amount. Think of these values as representing two states of the
atmosphere that differ only by the flapping of the wings of a butterfly. If successive
iterates are attracted to a fixed point as they are forR = 2, the difference between
the two solutions must get smaller and smaller as the fixed point is approached. A
similar thing happens for alimit cycle. The difference between the two solutions will
on average decrease exponentially.

If the solution is chaotic, as is the logistic equation for R = 4, the successive
iterates for the two cases initially on average get farther apart; the difference
usually increases exponentially. If the difference doubles on average with every
iteration, we say the Lyapunov exponent is 1. If it is reduced by half, we say the
Lyapunov exponent is -1. The name comes from the late-19th-century Russian
mathematician Aleksandr M. Lyapunov (sometimes transliterated Liapunov or
Ljapunov).

You can think of the Lyapunov exponent as the power of 2 by which the
difference between two nearly equal X values changes on average for each
iteration. Thus the difference between the values changes by an average of 2L for
each iteration. If L is negative, the solutions approach one another; if L is positive,
we have sensitivity to initial conditions and hence chaos.

One way to detect chaos is to iterate the equation with two nearly equal
initial values and see if, after many iterations, the values are closer together or
farther apart. Anotherway is to make use of a principle of calculus that says that the
difference in the solutions after one iteration divided by the difference before the
iteration, provided the difference is small, is equal fo the derivative of the equation
for the map, which for the logistic equation is

14

DXn+1 / DX = R(1 - 2XR) (Equation 1D)

where DX is the difference between the two values of X. In Equation 1D, DX, is the
difference in the X values after n iterations, and DXp, 4 is the difference after n+1
iterations.

Since DXincreases by the factoron theright of EQuation 1D foreachiteration,
the proper way to calculate the average is to start with a value of 1 and multiply it
repeatedly by the right-hand side of Equation 1D at each iteration, then divide the
result by the number of iterations, and finally take the logarithm to the base 2 of the
absolute value of the result to get the Lyapunov exponent. If you prefer an
equation, the preceding description is equivalent to

L=&logy |R(1-2Xu)| /N (Equation 1E)

where the vertical bars mean that you are to disregard the sign of the quantity
inside, and & means to sum the quantity toits right from a value of n =1 to a value
ofn=N,whereNissomelarge number.The largerthe value of N, the more accurate
the estimate of L.

Suppose you knew the value of X to within 0.01 for an iterated map with L =
1. After one iteration the uncertainty would be about 0.02, and after two iterations
the uncertainty would be about 0.04, and so forth. After about seven iterations, the
errorwould exceed 1, and your prediction would be totally worthless. If the X values
are expressed as binary numbers, each iteration would result in throwing away the
rightmost (least significant) binary digit (bit). Thus the units of L are bits per iteration.
Sometimes Lis expressed in terms of the naturallogarithm (base e) rather thanlogy.
The Lyapunov exponent is the rate at which information is lost when a map is
iterated.

Itis asif asuccession of cartographers each copied maps from one another,
but every time one was copied it was only half as accurate as the previous one. If
the original map were accurate to 1%, the next copy would be accurate to 2%, and
the seventh generation copy would bear norelation to the original. If the Lyapunov
exponent were -1, one bit of information would be gained at each iteration. Even
a completely unknown initial condition would eventually be perfectly accurate as
itapproachedtheknownfixedpointorlimitcycle.Unfortunately, negative Lyapunov
exponents are not the rule in cartography; otherwise all our maps would be self-
correcting!

15

Figure 1-2. Lyapunov exponent for the logistic equation

3.5 4

Figure 1-2shows the Lyapunov exponent for the logistic equation using values
of R from 2 to 4. The Lyapunov exponentis 1.0 at R = 4 because that value causes
the interval of X from 0 to 1 to be mapped backed onto itself with a single fold at
X =0.5.Thus information is lost at a rate of 1 bit per iteration, because each iterate
has two possible predecessors. You can also see some of the periodic windows
where L dips below zero toward the right edge of the plot. Also note that L is zero
wherever a bifurcation occurs, for example at R=2. At these points the solution is
fraughtwithindecision overwhich branchto take, and the initialuncertainty persists
forever, neither increasing nor decreasing.

16

1.4 The Computer Artist

By now you have probably surmised that the operations we have described
are best carried out by a computer. The equations are simple, but they must be
applied repeatedly. This is precisely the kind of task at which computers excel.

There are dozens of computer types and programming languages to choose
from. Currently the most popular computers are those based on the IBM PC running
the MS-DOS or IBM-DOS operating system (hereafter simply called DOS). The most
widely available programming language is BASIC (Beginner’s All-purpose Symbolic
Instruction Code), which usually comes bundled with the operating system soft-
ware included with the computer. A version of BASIC called QBASIC has been
included with DOS since version 5.0. BASIC may not be the most advanced
computer language, but it is one of the easiest to learn and to use, its commands
are close to ordinary English, and it is more than adequate for our purposes.
Furthermore, modern versions of BASIC compare favorably with the best of the
other languages.

The American National Standards Institute (ANSI) has established a standard
forthe BASIC language, but itis somewhat limited, and most versions of BASIC have
many additions and embellishments. We will intentionally use a primitive dialect to
ensure compatibility with most modern implementations and to simplify the trans-
lation into incompatible versions. In particular, the programs in this book should run
without modification under Microsoft BASICA, GW-BASIC, QBASIC, QuickBASIC,
VisualBASIC for MS-DOS; Borland International Turbo BASIC (no longer available);
and Spectra Publishing PowerBASIC on IBM PCs or compatibles. You will be
happiest using a modern compiled BASIC such as VisualBASIC or PowerBASIC on a
fast computer with a math coprocessor.

Appendix Cincludes information on franslating the computer programs into
other, partially incompatible dialects of BASIC, as well as source code for use with
VisualBASIC for Windows and Microsoft QuickBASIC for the Macintosh. Appendix D
contains a translation into Microsoft QuickC. The BASIC programs use line numbers,
which have been obsolete since the mid-1980s, but they are harmless, and they
provide a convenient way to reference lines of the program and to indicate where
in the program a change is to be made.

If you follow sequentially through this book, you willneed to add and change
a only few lines of the program as you meet each new idea. Your program will
gradually grow more versatile as you work through the book. In the end you will
have a powerful program that can reproduce all the examples in this book as well
as an endless variety of new ones. Hence you should avoid the temptation to

17

eliminate or to change the line numbers, at least until you have a fully functional
program. You may prefer to jump to Appendix B where you will find the complete
final program, which is also provided on the accompanying disk along with source
listings in BASIC, Microsoft QuickC, Borland Turbo C++ and a ready-to-run execut-
able version of the program.

If you are an experienced programmer, you mightridicule some of the quaint
program listings. Many powerful programming structures such as block IF state-
ments, DO LOOPs, and callable subroutines with local variables that produce
beautifully structured programs are now standard, but they have been avoided to
allow backwards compatibility with more primitive versions of BASIC. They also often
impose a small speed penalty. The dreaded GOTO statement has been used
primarily to bypass blocks of code in deference to BASIC versions that don’t support
block IF statements. Lines of the program that are bypassed by a GOTO are usually
indented. Blocks of the program contained within FOR...NEXT loops have also been
indented. In the interest of structure and simplicity, the programs have been written
using numerous smallmodular subroutines, each with a single entry point beginning
with a comment line, and asingle exit point containing a RETURN statement, albeit
with global variables. The individual subroutines are separated with blank lines. It
should be relatively easy for an experienced programmer to rewrite the program
in a more modern format.

The program listing PROGO1 iterates the logistic equation for R = 4 with an
initial value of X =0.05 and makes a graph of eachiterate versusits predecessor. The
program looks more complicated thanit actually is because the various operations
have been relegated to subroutines to provide a template for the more versatile
cases to follow.

PROGO1. Program for iterating and graphing the logistic equation

1000 REM LCG STI C EQUATI ON

1010 DEFDBL A-Z "Use doubl e precision
1030 SMw = 12 " Assunme VGA graphics
1190 GOSUB 1300 "Initialize

1200 GOSUB 1500 'Set paraneters

1210 GOSUB 1700 "Iterate equations

18

1220

1230

1240

1250

1260

1300

1320

1350

1360

1420

1500

1510

1560

1570

1590

1630

1700

1720

2030

GosuB 2100 "Display results
GOsUB 2400 "Test results

ON T% GOTO 1190, 1200, 1210

CLS

END

REM I nitialize

SCREEN SM© ' Set graphics node
WNDOW (-.1, -.1)-(1.1, 1.1)

CLS

RETURN

REM Set paraneters

X = .05 “Initial condition
R=4 "Gowh rate

T% =3

LINE (-.1, -.1)-(1.1, 1.1), , B

RETURN

REM | terate equati ons
XNEW= R * X * (1 - X)

RETURN

19

2100 REM Di spl ay results
2300 PSET (X, XNEW "Plot point on screen

2320 RETURN

2400 REM Test results
2490 | F LEN(I NKEY$) THEN T% = O ' Respond to user key stroke
2510 X = XNEW "Updat e val ue of X

2550 RETURN

If, whenyou firstrun the program, yourcomputerreports an error, itis probably
in one of the following lines:

Line 1010: Be sure your version of BASIC supports double-precision (four-byte)
floating-point variables. If it doesn’t, you may omit this line, but then you probably
will have to change the 4 in line 1560 to 3.99999 to avoid overflow resulting from
round-off errors. With modern versions of BASIC and a computer with a math
coprocessor, there is no penalty, and considerable advantage, in using double
precision. Because of the finite precision of computer arithmetic, all cases will
eventually repeat, but with double precision the average number of iterations
required before this happens is acceptably large.

Line 1320: Either your version of BASIC doesn’t require this command or your
computerorcompilerdoesn’tsupport VGA graphics. Tryreducing the 12inline 1030
to a lower number until you find one that works. If none works, try eliminating line
1320 altogether.

Line 1350: The WINDOW command defines the coordinates of the lower-left
and upper-right corners of the graphics window for subsequent PSET and LINE
commands. If your version of BASIC doesn’t support thiscommand, you must delete
this line and convert all the parameters in the PSET and LINE commands to address
screen pixels. In this case try replacing line 2300 with PSET (200 * X, 200 - 200 * XNEW).
One advantage of using the WINDOW command is that when a version of BASIC
comes along that supports higher screen resolutions, the program can be easily
recompiled to take advantage of it.

20

Other errors: Look carefully for typographical errors, or consult your BASIC
manual to determine compatibility.

The correct program should produce a plot of the logistic parabola, as shown
in Figure 1-3. Try different inifial values of X (line 1510) and different values of R (line
1560) to confirm the behavior predicted for the logistic equation.

Figure 1-3. The logistic parabola from PROGO1

AMu F=8.8 L =1.84

The logistic parabola comes from a chaotic solution, but it doesn’t look very
complicated, and it would hardly qualify as art. With one small change we can
make things more interesting and, at the same time, illustrate sensitivity to initial
conditions. Instead of plotting each iterate versus its immediate predecessor, we
could plot it versus its second or third or fourth predecessor. Let's save the last 500
iterates and provide the option to plot X versus any one of them.

21

The changes that you need to make in the program PROGO01 to accomplish
this are shown in the listing PROG02. You can either go through the program and
change or add lines as necessary or type the listing and save it in ASCIlI format and
then use the MERGE command supported by many (mostly old) versions of BASIC
to update the previous version of the program.

PROGO02. Changes required in PROGOT1 to plot the fifth previous iterate
1000 REM LOG STI C EQUATI ON (5th Previous lterate)
1020 DI M XS(499)

1040 PREV% = 5 "Plot versus fifth previous iterate

1580 P% = 0

2210 XS(P% = X
2220 P% = (P% + 1) MOD 500
2230 1% = (P% + 500 - PREV9) MOD 500

2300 PSET (XS(19%, XNEW "Plot point on screen

Ifyou set PREV% = 1inline 1040, the resultis the same as for PROGO1. However,
if you set PREV% equal to 2, you see the logistic parabola change into a curve with
two humps. Each time you increase PREV% by 1, you double the number of humps
in the curve. Thus PREV% = 5 results in 16 oscillations, as shown in Figure 1-4.

22

Figure 1-4. The logistic parabola after five iterations from PROG02

AMuw:: F=8.8 L =1.84

Figure 1-4 provides a good graphical illustration of the sensitivity to initial
conditions. The horizontal axis represents all possible initial conditions from zero to
one. The vertical axis shows the value from zero to one corresponding to each initial
condition after five iterations. It's not hard to see that two nearby points on the
horizontal axis usually translate into two very different values along the vertical axis
after five iterations. Try using PREV% = 10, and convince yourself that information
about the initial condition is almost completely lost after ten iterations.

This exercise provides a good insight info the way a strange attractor is
formed geometrically. The logistic parabola, which began as a line (a one-
dimensional object), is stretched and folded with each iteration, eventually filling
the entire plane (a two-dimensional object) after many iterations. Perhaps it
reminds you of those taffy machines that repeatedly stretch and fold the taffy,
causing two nearby specks in the taffy after a while to be nowhere near one

23

another. On average the distance between the specks initially increases at an
exponential rate.

You should be able to think of many other examples of sensitivity to initial
conditions. When you stir your coffee to mix in the cream, you're relying on a
chaotic process. Two sticks dropped into the water close together just above a
waterfall eventually end up far apart. Try laying two identical garden hoses side by
side, and turn on the waterin each one at the same time without holding the ends.
Chaotic processes are all around us. Their mathematical solutions usually produce
chaotic strange attractors, whose diversity and beauty we are about to explore.

24

Chapter 2

Wiggly Lines

In this chapter we will teach the computer to search for chaotic solutions of
simple equations with a single variable. The solutions are segments of lines, but the
lines can wiggle in an incredibly complicated manner.

2.1 More Knobs to Twiddle

The logistic equation (Equation 1C) is an example of a dynamical system.
Such systems are described by deterministic initial-value equations. This particular
system has asingle parameter R whose value determines the solution’s behavior for
allinitial values of X within the basin of attraction. This parameter is like a knob on a
radio or on a stove that you can turn up or down to conftrol the sound emitted by
the radio or the convection in a pot of boiling soup.

You can do a simple experiment to observe the period-doubling route to
chaos. Go into your bathroom or kitchen and turn on the tap, only slightly, to
produce a regular periodic pattern of drips. Now slowly open the tap until the
pattern becomes chaotic. Just before the onset of chaos, if you are sufficiently
careful and patient, you should observe one or more period doublings where the
sound changes to something like "drip drip—drip drip—drip drip." The knob that
conftrols the flow rate corresponds to the parameter R in the logistic equation. The
dripping faucet has been extensively studied by Robert Shaw and discussed at
length in his book The Dripping Faucet as a Model Chaotfic System.

Usually a dynamical system has more than one knob. Your kitchen faucet
probably has independent control of the flow rate and the temperature of the
water. With more knobs, you might expect to increase the variety of ways the
system can behave. Such knobs are called control parameters.

The formula for the most general one-dimensional quadratic iterated map is

Xp+1 = a7 + AoXpy + azXng (Equation 2A)
where aj, ap, and az are three control parameters. By exploring all combinations

of their values, we expect eventually to observe every possible peculiar solution
that the equation can have.

25

You might think that the initial condition Xy is a fourth knob, but if the system
ischaotic, the solutionis generally astrange attractor, and allinitial conditions within
the basin of attraction look the same after many iterations. Of course there is no
guarantee that a particular choice of X lies within the basin, but values of X close
to zero are within the basin about half the time, and there are so many chaotic
solutions over the range of the other three parameters that we can well afford to
discard half of them.

The search for strange attractors proceeds as follows. Choose values for ay,
ap, and aj arbitrarily. Start with a value of Xy near zero. Iterate Equation 2A
repeatedly until the solution either exceeds some large number, in which case it is
presumably unbounded, or until the Lyapunov exponent becomes small or negao-
tive, inwhich case the solutionis probably a fixed point or limit cycle. In either event,
choose a different combination of a;, ap, and a3, and start over. If, after a few
thousand iterations, the solution is bounded (X is not enormous) and the Lyapunov
exponent is positive, then it is likely that you have found a strange attractor.

2.2 Randomness and Pseudorandomness

To choose values of ay, ag, and a3, we can use the random-number
generator provided with most computer languages. The random numbers thus
produced are usually uniformly distributed between zero and one. You may
wonder how a computer, the epitome of determinism, could ever produce a
random number. This question deserves a digression because the answer provides
yet another example of the very issues we have been discussing.

One way to produce arandom number is to start with a value of X (the seeq)
between zero and one and iterate the logistic equation with R = 4 a few dozen
times. The result is a new number in the range of zero to one that is related to the
seed in a complicated and sensitive way. This number is then used as the seed for
the next random number, which is produced in the same way. A given seed will
produce the same sequence of random numbers, but the sequence may not be
the same on different computers or with different languages or even with different
versions of the same language because of the way the numbers are rounded.

However, this method of producing random numbers is not optimal. First, the
numbers are not uniformly distributed over the range. They tend to cluster near zero
and one as the darkness of the right-hand side of Figure 1-1 suggests. Also,
multiplying a non-integer number by itself many times is arelatively slow process on
a computer.

26

Instead, computers usually get their random numbers using the linear
congruential method:

Xn+1 = (0Xy +b) mod ¢ (Equation 2B)

Inthe mod (modulus) operation, the quantity to the left of the mod (aX, + b)
is divided by the quantity to its right (c), and the remainder is kept rather than the
quotient. Allthe quantities in EQuation 2B are integers. The constants a, b, and c are
carefully chosen to maximize the number of steps required for the sequence to
repeat, which in any case can never exceed c. The numbers are uniformly
distributed from zero to c - 1, but they can be transformed to the range zero to one
by simply dividing X, + 1 by c. The numbers appear to be random, but since they are
produced using a deterministic procedure, they are often called pseudorandom.
Equation 2Bis anotherexample of a one-dimensional chaotic map, whichisrelated
to the shift map.

Truly random numbers should satisfy infinitely many conditions. Not only must
the numbers be uniform over the interval, but there should be no detectable
relation between the numbers and any of their predecessors. In particular, the
sequence should repeat only after a very large number of steps. Most random-
number generators are deficient in certain ways. For example, the random num-
bers produced by Microsoft QBASIC 1.0, QuickBASIC 4.5, and VisualBASIC for DOS
1.0 repeat after 16,777,216 steps, and this number is too small for some of our
puUrposes.

The situation can be greatly improved by shuffling the numbers. Suppose we
maintain a table of a hundred or so random numbers. When we want one, we
randomly take an entry from the table and replace it with a new random number.
With this simple modification, the pseudorandom numbers generated by the
computer are sufficiently random for our purpose.

You should alwaysremember that the sequence of random numbers gener-
ated by adigital computerwilleventually repeat. You must take care to ensure that
over the duration of a calculation, such a repetition does not occur. You must also
reseed the random-number generator using a truly random seed, such as one
based on the time of day the program is started, if you are to avoid repeating the
same sequence each time you run the program.

27

2.3 What's in a Name?

When we begin to choose random values for the coefficientsa;, ap, andag,
we are immediately confronted with two issues. The first is the range of values that
the coefficients may have, and the second is the amount by which two values of
a coefficient must differ to produce attractors that are visibly different.

We can address the first issue by referring to the logistic equation (Equation
1C). When the value of R is too small (less than about 3.5), there are no chaotic
solutions, and when the value of R is too large (greater than 4), all the solutions are
unbounded. A similar situation occurs for the more general one-dimensional
quadratic map in Equation 2A. Thus we want to limit the coefficients to values
whose magnitudes (positive or negative) are of order unity. That is, 0.1 is probably
too small a value and 10 is probably unnecessarily large. This assumption can be
verified by numerical experiment.

The second issue requires a subjective judgment of how dissimilar two
attractors must look before we consider them to be different. In practice, achange
in one of the coefficients by an amount of order 0.1 generally produces an object
that is noticeably different. If we let each coefficient take on values ranging from
-1.2to 1.2instepsof 0.1, we willhave 25 possible values. We can associate each with
a letter of the alphabet, A through Y, and have a convenient way to catalog and
replicate the attractors. Limiting the coefficients to 25 values may seem excessively
restrictive, but since there are three coefficients for one-dimensional quadratic
maps, there are 253 or 15,625 different combinations.

The coefficients that correspond fo the logistic equation withR =4 area =
0, ap = 4, and a3 = -4, and they fall outside the range of -1.2 to 1.2. Thus for some
purposes, it is convenient to take a larger range. A convenient way to extend the
range is to use the ASCIlI (American Standard Code for Information Interchange)
character set summarized in Table 2-1.

Table 2-1. ASCII character set and associated coefficient values

Char Dec Coeff Char Dec Coeff Char Dec Coef f

32 -4.5 # 64 -1.3 ° 96 1.9
! 33 -4.4 A 65 -1.2 a 97 2.0
34 -4.3 B 66 -1.1 b 98 2.1

28

Char Dec Coef f Char Dec Coef f Char Dec Coef f
35 -4, 67 - 1. 99 2.2
$ 36 -4, 68 -0. 100 2.3
% 37 -4, 69 -0. 101 2.4
& 38 - 3. 70 - 0. 102 2.5
‘ 39 - 3. 71 - 0. 103 2.6
(40 - 3. 72 - 0. 104 2.7
) 41 - 3. 73 - 0. 105 2.8
* 42 -3. 74 -0. 106 2.9
+ 43 - 3. 75 - 0. 107 3.0
, 44 - 3. 76 - 0. 108 3.1
- 45 - 3. 77 0. 109 3.2

46 - 3. 78 0. 110 3.3
/ 47 -3. 79 0. 111 3.4
0 48 - 2. 80 0. 112 3.5
1 49 - 2. 81 0. 113 3.6
2 50 - 2. 82 0. 114 3.7
3 51 -2. 83 0. 115 3.8
4 52 -2. 84 0. 116 3.9
5 53 - 2. 85 0. 117 4.0
6 54 - 2. 86 0. 118 4.1
7 55 - 2. 87 1. 119 4.2
8 56 -2. 88 1. 120 4.3

29

Char Dec Coeff Char Dec Coeff Char Dec Coef f

9 57 -2.0 Y 89 1.2y 121 4.4

58 -1.9 Z 90 1.3 z 122 4.5

59 -1.8 | 91 1.4 { 123 4.6
< 60 -1.7 \ 92 1.5 | 124 4.7
= 61 -1.6] 93 1.6 } 125 4.8
> 62 -1.5 A 94 1.7 ~ 126 4.9
? 63 -1.4 95 1.8 127 5.0

ASCIl codes from 0 to 31 are reserved for control codes—things like back-
space, carriage return, and line feed. Codes from 128 to 255 can also be used, but
there is no universal character set associated with them. By making use of all the
ASCIl characters from 0 to 255, we can accommodate coefficients in the range of
-7.7 to 17.8. The characters listed in the table will suffice for most of our needs,
however.

Withsuch acodingscheme, we canrepresent each attractorby asequence
of characters, with each character corresponding to one of the coefficients. The
sequence can be thought of as the name of the attractor. We preface the name
with a character that indicates the type of equation. Let's use the letter A to
represent one-dimensional quadratic maps. Thus the logistic equation coded in this
way is AMu%. Note that the letters in the name are case sensitive (u and U are
different), so you should be careful when typing them. Such names may look
strange, which is perhaps appropriate for strange attractors, and you shouldn’t fry
to pronounce them! However, they do provide a convenient and compact
method for saving everything you need to reproduce an attractor.

2.4 The Computer Search
Before embarking on a search for strange attractors, we need to generalize

the formula givenin Equation 1E forthe Lyapunov exponent of the logistic equation.
The generalization is easily obtained using differential calculus, and the result is

30

L=4&logy |ag+ 203X, | /N (Equation 2C)

The program changes that are required to perform a search for strange

attractors in one-dimensional quadratic iterated maps are given in the listing
PROGO3.

PROGO03. Changes required in PROGO02 to search for strange attractors in one-dimensional qua-

dratic maps

1000 REM ONE- D MAP SEARCH

1020 DI M XS(499), A(504), V(99)

1050 NMAX = 11000 " Maxi mum nunber of iterations
1160 RANDOM ZE TI MER ' Reseed random nunber generator
1360 CLS : LOCATE 13, 34: PRINT "Searching..."

1560

1580

1590

1720

2020

2110

2120

2130

GOsuUB 2600 "Get coefficients
P%=0: LSUM=0: N=0: NL =0

XM N = 1000000!: XMAX = -XM N

XNEW = A(1) + (A(2) + A(3) * X) * X

N=N+1

IF N< 100 OR N > 1000 THEN GOTO 2200
IF X < XMN THEN XM N = X
IF X > XMAX THEN XMAX = X

31

2140 YMN = XM N YMAX = XMAX
2200 |F N = 1000 THEN GOSUB 3100 ' Resi ze the screen

2250 | F N < 1000 OR XS(1% <= XL OR XS(1% >= XH OR XNEW <= XL OR XNEW>= XH THEN
GOTO 2320

2410 I F ABS(XNEW > 1000000! THEN T% = 2 " Unbounded

2430 GOSUB 2900 ' Cal cul ate Lyapunov exponent
2460 |F N >= NMAX THEN T% = 2 "Strange attractor found
2470 I F ABS(XNEW - X) < .000001 THEN T% = 2 ' Fi xed poi nt

2480 IF N > 100 AND L < .005 THEN T% = 2 "Limt cycle

2600 REM Get coefficients

2660 CODE$ = "A"

2680 Mb = 3

2690 FOR 1% =1 TO Mst " Construct CODE$

2700 GOsuUB 2800 " Shuffl e random nunbers
2710 CODE$ = CODE$ + CHR$(65 + INT(25 * RAN))

2720 NEXT | %

2730 FOR 1% = 1 TO Wb " Convert CODE$ to coefficient values
2740 A(1% = (ASC(M D$(CODE$, 1%+ 1, 1)) - 77) / 10

2750 NEXT | %

2760 RETURN

2800 REM Shuffl e random nunbers

32

2810 IF V(0) = 0 THEN FOR J% = 0 TO 99: V(J% = RND: NEXT J%
2820 J% = I NT(100 * RAN)

2830 RAN = V(J%

2840 V(J% = RND

2850 RETURN

2900 REM Cal cul ate Lyapunov exponent

2910 DF = ABS(A(2) + 2 * A(3) * X)

3030 IF DF > 0 THEN LSUM = LSUM + LOGDF): NL = NL + 1
3040 L = .721347 * LSUM/ NL

3070 RETURN

3100 REM Resi ze the screen
3120 | F XMAX - XM N < . 000001 THEN XM N = XM N - . 0000005: XMAX = XMAX + . 0000005
3130 I|F YMAX - YM N < . 000001 THEN YM N = YM N - . 0000005: YMAX = YMAX + . 0000005

3160 MX

1 (XMAX - XMN): MY = .1 * (YMAX - YMN)

3170 XL

XMN - MG XH = XMAX + MK YL = YMN - MY: YH = YMAX + MW
3180 WNDOW (XL, YL)-(XH, YH): CLS
3310 LINE (XL, YL)-(XH YH), , B

3460 RETURN

Here are six points fo note about PROGO03:

1. The maximum number of iterations (NMAX in line 1050) has been set

33

arbitrarily to 11,000. This is the number of iterations after which a strange
attractor is assumed to have been found if the magnitude of X never
exceeded one million and the Lyapunov exponent is positive (actually
greater than 0.005). You can decrease NMAX to speed the rate at which
attractors are found, or you can increase NMAX if you have a very fast
computer or want to give the displays more time to develop. The number of
iterations is a parameter that you can adjust for the most visually appealing
result. Most of the figures in this book were made with NMAX set at between
about 500,000 and 10 million, and they required between about a minute
and an hour to produce.

2. The seed for the random-number generator is taken in line 1160 as the
number of seconds lapsed since midnight (TIMER). This choice ensures that a
new sequence of random numbers is produced each time the program is
run, except in the unlikely event that it is run at exactly the same time each
day.

3. After 1000 iterations (line 2200), the screen is resized and erased by the
subroutine in lines 3100 through 3460 using the minimum and maximum
values of X between the 100th and 1000th iteration, allowing a 10% border
around the aftractor.

4.To save time, the difference between each value of X and its predecessor
is evaluated in line 2470, and if the difference is less than one millionth, the
solution is assumed to be a fixed point even if the Lyapunov exponent is still
positive.

5. The Lyapunov exponent is not used as a criterion until after 100 iterations
(line 2480) to ensure that its value is reasonably accurate.

6. The coefficients of the equation are chosen in line 2710 using random
numbers that have been shuffled by the subroutine in lines 2800 through 2850
to minimize the chance of repeating the same search sequence.

The criterion for detecting a strange attractor is somewhat subjective. There
will always be borderline cases for which no amount of computing will suffice to
distinguish between a strange attractor and a periodic solution with a very long
period. However, our interest here is in finding visually interesting attractors quickly,
and so we can afford to make occasional mistakes. Such mistakes account for only
a small fraction of cases.

34

Ofthe 15,625 combinations of coefficients, exactly 364 (2.3%) are chaotic by
these criteria. Some of the more visually interesting ones are shown in Figures 2-1
through 2-4, in which the values are plotted versus their fifth previous iterate. For
each case, the code and the Lyapunov exponent are shown at the top of the

graph.

Figure 2-1. One-dimensional quadratic map

AXEBH F=8.46 L = B.H6

35

Figure 2-2. One-dimensional quadratic map

ABDU F=8.87 L=8.14

36

Figure 2-3. One-dimensional quadratic map

ACAY

H.88

L

= .78

37

Figure 2-4. One-dimensional quadratic map

AXDA F=8.8 L =8.89

The search for strange attractorsis potentially time-consuming if you have an
old computer without a math coprocessor or if you are using a BASIC interpreter
rather than a compiler. Even if the search is reasonably fast on your computer, be
forewarned that it will slow down considerably as you advance to the more
complicated equations later in the book. Perhaps this is a good time to summarize
some of your options for making the program run faster.

When comparing calculation speeds of various computers and compilers,
you must do the comparison with the actual program or a benchmark that
accurately reflects its mix of instructions, graphics, and disk access. With computer
speeds doubling approximately every two years, speed willeventually cease to be
a consideration for the calculations described in this book. Meanwhile, you need

38

to consider the alternatives.

Table 2-2lists the average number of strange attractors found by PROGO3 per
hour using various versions of BASIC on a 33-MHz 80486DX-based computer with
and without a math coprocessor. The exact numbers are less important than the
relative values. They provide a good indication of how the various versions of BASIC
compare on calculations of the type that are used throughout this book.

Table 2-2. Strange attractors found per hour by PROGO03 with various versions of BASIC
Publ i sher Program Ver Type Attractors/hour

No copro Copr oc

M crosoft GW BASI C 3.2 Interpreter 92 92
M crosoft QBASI C 1.0 Interpreter 73 73
M crosoft Qui ckBASI C 4.5 Interpreter 78 396
M crosoft Qui ckBASI C 4.5 Conpi | er 98 390
M crosoft VB for DOS 1.0 Interpreter 72 393
M crosoft VB for DCS 1.0 Conp (alternate) 315 316
M crosoft VB for DOS 1.0 Conmp (enul at e) 139 418
Bor | and Turbo BASI C 1.1 Conpi | er 96 400
Spectra Power BASI C 3.0 Conp (procedure) 246 1419
Spectra Power BASI C 3.0 Conp (enul ate) 123 1683

QUuIckBASIC and VisualBASIC for MS-DOS can be run from the editor environ-
ment, where they function much like aninterpreter, or they can be used to compile
a stand-alone executable program. VisualBASIC can be compiled with either of
two floating point math packages; the alternate package is faster for machines
without a coprocessor, and the emulate package is faster for machines with a
coprocessor. Turbo BASIC is now obsolete and has been replaced by PowerBASIC.

39

PowerBASIC, like VisualBASIC, can be compiled with either of two floating point
math packages; the procedure package is similar to the VisualBASIC alternate
package. A third math package, NPX (87) is the same as emulate, exceptit cannot
work on a machine without a math coprocessor. The tests were done with all error
trapping turned off, which is inadvisable until you have a thoroughly debugged
program.

If you launch the program from Microsoft Windows, you might find the
computation speeds considerably different from those in Table 2.2. In one test, the
PowerBASIC speeds were cut in half, and the QuIckBASIC speeds were increased
slightly from the values obtained when the program was run directly from DOS. You
should do your own speed tests to see what configuration provides the optimum
performance on your computer and operating system.

The executable program on the disk that accompanies this book was
compiled with PowerBASIC using the procedure package. If you have PowerBASIC
and amath coprocessor, you canrecompile the program using the emulate or NPX
(87) package to achieve a slight improvement in speed.

2.5 Wjg9lgs on Wiggles

The preceding figures consist of segments of wiggly lines, so they are not very
arfistic. To make things more interesting, we can consider one-dimensional maps of
higher order. By this we mean that we will not stop with quadratic (Xp) maps, butwe
will consider equations containing cubic (X3), quartic (X4), quintic (X5), and even
higher terms.

In one sense, considering higher-order terms is equivalent to plofting each
iterate versus an iterate earlier than the immediately previous one. For example,
two successive iterations of the second-order Equation 2A yields

Xn+2 = aq(1+ap+ajas) + (azap+2a103)Xp

+ az(an+2ay 03+C‘22)Xn2 + 202032Xn3 + 033Xn4 (Equation 2D)

whichis a fourth-order polynomial. However, there are only three parameters—ay,
ay, and az—from which the five coefficients are uniquely determined.

A simpler and more general procedure is to allow each term in the polyno-
mial fo have its own coefficient, which for fifth order gives

40

Xp+1 = Q1 + QX + azXn2 + agXpn3 + asXp? + agX® (Equation 2E)

With six coefficients, each with 25 possible values, there are 256 or about 244
million different combinations. Even if only a small percentage of them is chaotic,
we would have to look at one every second for about a year before we would see
them all.

The generalization of the expression for the Lyapunov exponent for a fifth-
order map is given by

L=& logy | Oy + 203X + 3a4Xn2 + 405X, + 504Xn*| /N (Equation 2C)

With these equations in hand, we can easily modify the program in PROG04
to search for one-dimensional attractors of up to fifth order. In our coding scheme,
a first letter of B represents third order, C represents fourth order, and D represents
fifth order. The program is written so that even higher orders can be produced by
changing the quantity OMAX% in line 1060.

PROGO04. Changes required in PROGO3 to search for strange attractors in one-dimensional maps of
order up to OMAX%

1000 REM ONE- D MAP SEARCH (Pol ynom als up to 5th Order)

1060 OVAX% = 5 " Maxi mum order of pol ynoni al

1720 XNEW = A(O% + 1)
1730 FOR 1% = O% TO 1 STEP -1
1830 XNEW= A(1% + XNEW* X

1930 NEXT |1 %

2650 O% = 2 + | NT((OVAX% - 1) * RND)
2660 CODE$ = CHR$(63 + O%

2680 Mo= O+ 1

41

2910 DF = 0
2930 FOR 1% = O% TO 1 STEP -1

2940 DF = 1%* A(1%+ 1) + DF * X
2970 NEXT | %

3000 DF = ABS(DF)

PROGO04 produces an interesting array of shapes, samples of which are
shown in Figures 2-5 through 2-10. The objects are still segments of lines, but the
wiggles themselves have wiggles, and the underlying determinism is less obvious
than before.

Figure 2-5. One-dimensional cubic map

BZEZK F=8.8 L =8.497

! !

42

43

Figure 2-7. One-dimensional quartic map

CCCCCC

44

45

Figure 2-9. One-dimensional quintic map

DFEBIEUW F=8.87 L =8.78

46

Figure 2-10. One-dimensional quintic map
DOOYRIL

47

2.6 Making Music

If the preceding figures don’t qualify as art, perhaps they qualify as music.
Since the quantity X behaves in a deterministic yet unpredictable way, it may be
that a sequence of musical notes determined by X will mimic the order and
unpredictability that characterize music. It's easy to test.

Suppose we allow the notes to span three octaves from A-220 to A-1760. The
letter refers to the musical note, and the numbers refer to the frequency in cycles
persecond (called Hertz). We'll allow the notes to take one of twelve distinct values
corresponding to the even-tempered scale, and for simplicity we'll assume all the
notes to be of the same duration. Thus the range of possible values of X is divided
into 36 intervals, and each successive iterate of X is converted into the correspond-
ing musical note. PROGO05 shows the changes necessary to accomplish this.

PROGOS. Changes required in PROGO04 to produce chaotic music

1000 REM ONE-D MAP SEARCH (W't h Sound)

1100 SND% = 1 "Turn sound on
2310 IF SND% = 1 THEN GOSUB 3500 " Produce sound
2490 Qb = I NKEY$: | F LEN(Q@) THEN GOSUB 3600 " Respond to user command

3500 REM Produce sound

3510 FREQo= 220 * 2 ~ (CINT(36 * (XNEW- XL) / (XH - XL)) / 12)
3520 DUR = 1

3540 SOUND FREQ¥ DUR | F PLAY(0) THEN PLAY "M

3550 RETURN

48

3600 REM Respond to user comrand

3610 T% =0

3630 | F ASC(B) > 96 THEN Q6 = CHRS(ASC(Q$) - 32)
3770 |F @ = "S" THEN SND% = (SND% + 1) MOD 2: T% = 3

3800 RETURN

The program allows you to toggle the sound on and off by pressing the S key.
Pressing any other key exits the program. You might wish to experiment with the
duration DUR of the SOUND statement in line 3520. Increasing its value from 1
(corresponding to approximately 0.055 seconds) makes the sounds more musical,
but then the calculation takes longer.

The use of sound to help interpret data generated by a computer is a
technique thatisrelatively unexplored.The methodissometimes calledsonification.
In some cases, patterns and structure in data can be more readily discerned
audibly than visually. This technique was used to advantage in interpreting data
from the Voyager spacecraft as it detected plasma waves near Jupiter and
micrometeorites as it crossed through the rings of Saturn. The repetitive sound of a
simple limit cycle contrasts sharply with the nonrepetitive waverings of a chaotic
time series.

49

Chapter 3

Pieces of Planes

Whereas the last chapter discussed one-dimensional maps whose graphs
are segments of lines, this chapter deals with two-dimensional maps whose graphs
are pieces of planes and which thus produce much more interesting displays. This
chapter provides the minimum tools for creating attractors that genuinely qualify
as art. Armed with only the information contained here, you have such a great
variety of available patterns that you hardly need to proceed beyond this chapter.
But if you do stop here, you miss some delightful surprises.

3.1 Quadratic Maps in Two Dimensions

In the discussion so far, the maps have involved a single variable X whose
value changes with each iteration of the equation. Such maps are said to be one-
dimensional because the values of X can be thought of as lying along a line, and
a line is a one-dimensional object. By plotting each value of X versus a previous
value of X, the line can be made to wiggle with considerable complexity; but it
always remains a line, and lines are of limited interest and beauty.

The situationis more interestingwhen you consideriterated maps thatinvolve
two variables, X and Y. In such a case, each iterate produces a point in a plane,
where X, by convention, represents the horizontal coordinate of the point, and Y
represents the vertical coordinate. With successive iteration, the poinfts fill in some
portion of the plane. The visually interesting cases, as usual, are the chaotic ones.

Such two-dimensional maps might arise, for example, from an ecological
model only slightly more complicated than the logistic equation. A classic example
is the predator-prey problem in which X represents the prey and Y the predator. In
a simple linear model, the solution is a fixed point (a unique number of both
predators and prey) or alimit cycle (both the number of predators and the number
of prey oscillate, reaching their maximum values at different times, but eventually
repeating). When nonlinear terms are introduced into the model, the population of
each species can behave chaotically. You can think of each point that makes up
such an attractor as the population of predators and prey in successive years. Since
such complexity arises from these very simple models, it's easy to understand why
ecologists might have trouble predicting the fate of biological species!

50

Perhaps the best known chaotic two-dimensional map is the Hénon map
(proposed by the French astronomer Michel Hénon in 1976), whose equations are

Xnt1 =1+ 0Xp2 + bYp,
Yn+1 = Xn (Equation 3A)

The quantities a and b are the control parameters, analogous to R in the logistic
equation. Hénon used the values a =-1.4 and b = 0.3. The necessary nonlinearity is
provided by the X2 termin the first equation. The HEnon map is special because the
net contraction of aset of initial points covering an area of the XY plane is constant
with each iteration. The area occupied by the points is 30% of the area at the
previous iteratfion (from the bY,, term). Other values of b can be used, but not all
values produce chaotic solutions. Unlike the logistic map, the HéEnon map is
invertable; there is a unique value for X, and Y, corresponding to each X4 and
Ynh+1- YOU may have seen an alternate form of the H&non equations in which the
factor b appears instead in the second equation and the sign preceding the X2
term is negative. The result of repeated iteration of Equation 3A is shown in Figure
3-1.

51

Figure 3-1. The Hénon map
EWM?MPMMUMMMM F=1.28 L = 8.608

Theresulting graphis more than aline butless than a surface. Whatresembles
a single line is a pair of lines, each of which is, in turn, another pair of lines, and so
forth to however close you look or whatever magnification you choose. This self-
similarity is a common characteristic of a class of objects that are called fractals.

Fractals are to chaos what geometry is to algebra—the visual expression of
the mathematical idea. Approaching an understanding of chaos through such
visual means is appealing to those with an aversion to conventional mathematics.
The Euclidean geometry we learned in high school originated with the ancient
Greeksandwas developed more fully by the French mathematician Descartes and
others in the 1600s. It deals with simple shapes such as lines, circles, and spheres.
Euclidean geometry is now being augmented by fractal geometry, whose father
and champion is the contemporary mathematician, Benoit Mandelbrot. Fractals
appearedinart, such asin the drawings of the Dutch artist Maurits C. Escher, before

52

they were widely appreciated by mathematicians and scientists.

Some fractals are exactly self-similar, which means that they look the same
no matter how much you magnify them. Others, such as most of the ones in this
book, only have regions that are self-similar. There is no part of the HEnon map
where you canzoomin and find aminiature replica of the entire map. Other fractals
are only stafistically self-similar, which means that a magnified portion of the object
has the same amount of detail as the whole, butitis not an exactreplica of it. Nearly
all strange attractors are fractals, but not all fractals arise from strange attractors.

The HEnon map produces an object with afractal dimension thatis a fraction
intermediate between one and two. The fractal dimension is a useful quantity for
characterizing strange attractors. Isolated points have dimension zero, line seg-
ments have dimension one, surfaces have dimension two, and solids have dimen-
sion three. Strange attractors generally have noninteger dimensions.

Some authors make a distinction between strange attractors, which have
non-interger dimension, and chaotic attractors, which exhibit sensitivity to initial
conditions.

Since the HEnon map has X2 as its highest-order term, it is a quadratic map.
The most general two-dimensional iterated quadratic map is

X1 = Q1+ 0dgXpy + A3Xn? + agXpYp + a5Yp + ag¥p?

Y41 = Q7 + 0gXp + G9XnZ + Q10XnYp + a1 Y + Q19Y2 (Equation 3B)

The two equations in Equation 3B have 12 coefficients. For the Hénon map, a; =1,
a3z=-1.4,a5=0.3,ag=1,andthe othercoefficients are zero.If we use the initial letter
E to represent two-dimensional quadratic maps, the code for the HéEnon map
according to Table 2-1 is EWM2MPM2WM4, where we have introduced the short-
hand M2 for MM and M4 for MMMM.

Values of a in the range of -1.2 to 1.2 are sufficient to produce an enormous
variety of strange attractors. Withincrements of 0.1, there ore 2512 orabout 6x1016
different cases, of which approximately 1.6% or about 1019 are chaofic. Viewing
them all at a rate of one per second would require over 30 million years! Stated
differently, if each one were printed on an 81/2-by-11-inch sheet of paper, the

53

collection would cover nearly the entire land mass of Earth.

Note that not all the cases are strictly distinct. For example, if you replace X
with Y and Y with -X in Equation 3B, you produce an attractor rotated 90 degrees
counterclockwise from the original. When you do this, be sure fo change X, 47 and
Ynh+1 aswellas X, andYy,. Thusthe code EMACMWJIM32 produces arotated version
of the HéEnon map. In the same fashion, you can rotate an attractor through 180
degrees by replacing X with-X and Y with -Y and through 270 degrees by replacing
X with -Y and Y with X. Perhaps it's easier just to rotate your computer monitor!

Besides rotations, there are cases that correspond to reflections. When
viewed in a mirror, the attractors have left and right reversed, but up and down
remain the same. A transformation in which X is replaced with -X accomplishes this.
Thus the code for a reflected Hénon map is ECM[MJMQCM4. In addition, the
reflections can berotated. Thus there are atleast eight so-called degenerate states
foreach attractor, corresponding torotations andreflections. Such symmetries and
degeneracies play an important role in science; they often reduce the amount of
work we have to do and provide relations between phenomena that initially
appear different.

Additional degenerate cases correspond to scale changes. For example, if
you replace X by mX and Y by nY withm =n, the attractorremains the same except
itisreduced in size by a factor of m. Some of the coefficients are likely to be outside
the allowedrange, however. The HEnon map withm =n =2 can be generated with
the code ERMTMPM2WM4. With m not equal to n, the horizontal and vertical
dimensions are scaled differently, but since the computer rescales the attractor to
fit the screen, the visual result is the same.

These degeneracies show that there are many ways to code a particular
attractor. Although thisis true, there are so many different possible combinations of
coefficients that it is very unlikely that two degenerate cases will be found sponta-
neously. Thus the examples displayed in this chapter represent but a tiny fraction of
the possibilities, and you will be generating many other cases, almost none of which
have been seen before.

3.2 The Butterfly Effect Revisited
Two-dimensional chaotic iterated maps also exhibit sensitivity to initial con-

ditions, but the situation is more complicated than for one-dimensional maps.
Imagine a collection of initial conditions filling a small circularregion of the XY plane.

54

After one iteration, the points have moved to a new position in the plane, but they
now occupy an elongated region called an ellipse. The circle has contracted in
one direction and expanded in the other. With each iteration, the ellipse gets
longer and narrower, eventually stretching out into along filament. The orientation
of the flament also changes with each iteration, and it wraps up like a ball of taffy.

Thus two-dimensional chaotic maps have not a single Lyapunov exponent
but two—a positive one corresponding to the direction of expansion, and a
negative one corresponding to the direction of contraction. The signature of chaos
is that at least one of the Lyapunov exponents is positive. Furthermore, the
magnitude of the negative exponenthasto be greaterthan the positive one so that
initial conditions scattered throughout the basin of attraction contract onto an
attractor that occupies a negligible portion of the plane. The area of the ellipse
continually decreases even as it stretches to an infinite length.

There is a proper way to calculate both of the Lyapunov exponents. For the
mathematically inclined, the procedure involves summing the logarithms of the
eigenvalues of the Jacobian matrix of the linearized tfransformation with occasional
Gram-Schmidt reorthonormalization. This method is slightly complicated, so we will
instead devise a simpler procedure sufficient for determining the largest Lyapunov
exponent, which is all we need in order to test for chaos.

Suppose we take two arbitrary but nearby initial conditions. The first few
iterations of the map may cause the points to get closer together or farther apart,
depending on the initial orientation of the two points. Eventually, the points will
come arbitrarily close in the direction of the confraction, but they will confinue to
separate in the direction of the expansion. Thus if we wait long enough, the rate of
separation will be governed only by the largest Lyapunov exponent. Fortunately,
this usually takes just a few iterations.

However, because the separation grows exponentially for a chaotic system,
the points quickly become too far apart for an accurate estimate of the exponent.
This problem can be remedied if, after each iteration, the points are moved back
to their original separation along the direction of the new separation. The Lyapunov
exponent is then determined by the average of the distance they must be moved
for each iteration fo maintain a constant small separation. If the two solutions are
separated by adistance dp, afterthe nthiteration, and the separation after the next
iteration is dp+ 7. the Lyapunov exponent is determined from

L=4alogy (dn+1/dp) /N (Equation 3C)

where the sum is taken over all iterations fromn =0 to n = N-1. After each iteration,

55

the value of one of the iterates is changed to make d, 4.7 = dj,. For the cases here,
dn equals 10°6. This procedure also allows us to deal with maps of three and even
higher dimensions in which there are more than two Lyapunov exponents.

3.3 Searching the Plane

We now have all the tools in hand to conduct a computer search for
attractors in two dimensions. The procedure is the same as for one-dimensional
maps, except the Lyapunov exponent calculationis done differently and the X and
Y variables are plotted as a point in the plane after each iteration. PROG06 shows
the changes needed to accomplish such a search.

PROGO06. Changes required in PROGOS to search for two-dimensional quadratic strange attractors

1000 REM TWO- D MAP SEARCH

1060 OVAX% = 2 " Maxi mum or der of pol ynomi al
1070 D% = 2 ' Di mrensi on of system

1100 SND% = 0 "Turn sound off

1520 Y = .05

1550 XE = X + .000001: YE =Y

1590 XM N = 1000000!: XMAX = -XM N YM N = XM N. YMAX = XMAX

1720 XNEW= A(1) + X * (A(2) + A(3) * X + A(4) * V)
1730 XNEW= XNEW+ Y * (A(5) + A(6) * Y)
1830 YNEW= A(7) + X * (A(8) + A(9) * X + A(10) * V)

1930 YNEW = YNEW + Y * (A(11) + A(12) * V)

56

2140

2150

2240

2250

2300

2410

2470

2520

2660

2680

2910

2930

2940

2960

2970

2980

2990

3000

3020

IFY<YMNTHEN YMN =Y
IF Y > YVMAX THEN YMAX =Y

IF D% =1 THEN XP = XS(19%9: YP = XNEWELSE XP = X: YP = Y

IF N < 1000 OR XP <= XL OR XP >= XH OR YP <= YL OR YP >= YH THEN GOTO 2320
PSET (XP, YP) "Plot point on screen

| F ABS(XNEW + ABS(YNEW > 1000000! THEN T% = 2 " Unbounded

| F ABS(XNEW - X) + ABS(YNEW- Y) < .000001 THEN T% = 2

Y = YNEW

CODE$ = CHR$(59 + 4 * D+ ON

Moo= 1. FORI1% =1 TOD®w Moo= Mo* (Oh+ 1%: NEXT |%

XSAVE = XNEW YSAVE = YNEW X = XEE Y=YE N=N-1
GosuB 1700 '"Reiterate equations
DLX = XNEW - XSAVE: DLY = YNEW - YSAVE

DL2 = DLX * DLX + DLY * DLY

I F CSNG DL2) <= 0 THEN GOTO 3070 "Don't divide by zero
DF = 1000000000000# * DL2
RS = 1 / SQR(DF)
XE = XSAVE + RS * (XNEW- XSAVE): YE = YSAVE + RS * (YNEW -

XNEW = XSAVE: YNEW = YSAVE

YSAVE)

57

3030 IF DF > 0 THEN LSUM = LSUM + LO DF): NL = NL + 1

3040 L = .721347 * LSUM/ NL

3110 IF D% =1 THEN YM N = XM N. YMAX = XMAX

This program produces an incredible variety of interesting patterns, a small
selection of which is shown in Figures 3-2 through 3-17. Admire the beauty and
variety of these figures, and then make some of you own by running the program.
If your computer has a printer, use the Print Screen key to print any that you find
especially appealing.

Figure 3-2. Two-dimensional quadratic map

EAGHNFODUNJCE F=136 L =8.27

58

Figure 3-3. Two-dimensional quadratic map

EBCAFMFUPXEK(] F=1.31 L =8.13

59

Figure 3-4. Two-dimensional quadratic map

= B.83

F=142 L

EDSYUECINGINV

60

Figure 3-5. Two-dimensional quadratic map

EELXAPXMPOBT

61

Figure 3-6. Two-dimensional quadratic map

EEYYMETUMXUUC F=1.54 L =8.88

62

Figure 3-7. Two-dimensional quadratic map

EJTTSMBOGLLQF F=1.3¢ L =8.23

63

Figure 3-8. Two-dimensional quadratic map

ENNMJRCTUUTYG F=1.87 L =8.81

64

Figure 3-9. Two-dimensional quadratic map

EOUGFJEDHSAJU

F=1.33 L =8.24

65

Figure 3-10. Two-dimensional quadratic map

= B.34

L

1.6

EQROCSIDUTPGY

66

Figure 3-11. Two-dimensional quadratic map

EQLOIARXYGHAJ F=1.47 L

67

Figure 3-12. Two-dimensional quadratic map

= H.16

L

1.42

ETJUBWEDNRORR

68

Figure 3-13. Two-dimensional quadratic map

ETSILUNDOSIFA F=1.45 L =8.17

69

Figure 3-14. Two-dimensional quadratic map

EUEBJLCDISIIL) F=1.25 L =8.24

70

Figure 3-15. Two-dimensional quadratic map

EVDUOTLREKTJD F=1.54 L = 8.84

/1

Figure 3-16. Two-dimensional quadratic map

EWLEWUPSMOGIGS F=1.38 L = 8.8

72

Figure 3-17. Two-dimensional quadratic map

EZPMSGCNFRENG

L

= B.29

73

If you are an experienced programmer, you might consider writing a screen-
saver program based on PROG0é6. Such a terminate-and-stay-resident (TSR) pro-
gram is run once when the computer is turned on and leaves a portion of itself in
memory, constantly monitoring keyboard and mouse activity. When there isno user
activity for, say, five minutes, it blanks the screen and begins displaying asuccession
of unique strange attractors to prevent screen burn-in. The original screenisrestored
whenever a key is pressed or the mouse is moved. PowerBASIC version 3.0 allows
you to do this easily by inserting the program between POPUP statements.

3.4 The Fractal Dimension

The previous figures differ considerably in how densely they fill the plane.
Some are very thin, others are thick. A good contrastis provided by Figures 3-16 and
3-17. Figure 3-16 resembles a piece of string that has been laid down in a
complicated shape on the page, whereas Figure 3-17 looks like a twisted piece of
paper with many holes in it. Thus the object in Figure 3-16 has a fractal dimension
close to 1, and the object in Figure 3-17 has a fractal dimension closer to 2.

It is possible to be more explicit and to calculate the fractal dimension
exactly. Consider two simple cases, one in which successive iterates lie uniformly
along a straight line that goes diagonally across the page, and the other in which
successive iterates gradually fill the entire plane, as if they were grains of pepper
sprinkled on the paper from a great height. The first case has dimension 1, and the
second has dimension 2. How would we calculate the dimension, given the X and
Y coordinates of an arbitrary collection of such pointse

One methodis to draw a small circle somewhere on the plane that surrounds
at least one of the points. We then draw a second circle with the same center but
with twice the radius. Now we count the number of points inside each circle. Let's
say the smaller circle encloses N; points and the larger circle encloses Ny points.
Obviously N» is greater than or equal to N because all the points inside the inner
circle are also inside the outer circle.

If the points are widely separated, then Ny equals N. If the points are part of
a straight line, the larger circle on average encloses twice as many points as the
smaller circle, but if the points are part of a plane, the larger circle on average
encloses four times as many points as the smaller circle, because the area of acircle
is proportional to the square of its radius. Thus for these simple cases the dimension
is given by

74

F=1logy (No /Ny (Equation 3D)

It is hardly surprising that if you do this operation for the cases shown in the figures,
the quantity F is neither O nor 1 nor 2 but rather a fraction.

With real data, a number of practical considerations determine the accu-
racy of the result and the amount of computation required to obtain it:

1. 1s a circle the best shape, or would a square, rectangle, triangle, or some
other shape be bettere

2. How large should the circle be?

3. Is doubling the size of the circle optimal, or would some other factor be
bettere

4. Where should the circles be placed, and how many circles are required to
obtain arepresentative average?

5. How many points are needed to produce a reliable fractal dimension?
Let’s address each of these questions in turn.

There is nothing special about circles. Arectangle, triangle, or any other two-
dimensional figure would suffice, because the area scales as the square of the
linear dimension in each case. However, a circle is convenient because it is easy to
tell whether a given point is in its interior by comparing the radius of the circle with
the distance of the point from its center.

The optimum size of the circle represents a compromise. Ideally, the circles
should be invisibly small, because the dimension is defined in the limit of infinite
resolution. However, if the circles are too small, they contain too few points to
produce a statistically meaningful result, unless an unreasonably large number of
iterations is performed. We somewhat arbitrarily use circles with a radius equal to
about 2% of the diagonal of the smallest rectangle that contains the attractor.

Similarly, doubling the radius of the circle is arbitrary. Small values degrade
the statistics, and large values miss too much of the fine-scale structure. We will use
a value of ten, with the smaller circle about 0.6% the size of the attractor and the
larger circle about 6% the size of the attractor. Thus in Equation 3D we will use
logarithms of base 10 (logy) instead of base 2 (logs).

75

Ideally, the circles should be placed uniformly or randomly over the plane.
However, if we were to do this, most of the circles would be empty, and a very long
calculation would be required to obtain an accurate estimate of the dimension.
Instead, we center the circles on the data points themselves. In this way the circles
tend to enclose many points. However, it represents a different type of average
because it weighs more heavily the portions of the attractor where the points are
most dense. Technically, what we are calculating is called the correlation dimen-
sion, because it involves the number of other points that are correlated with each
point in the data set. The correlation dimension is never greater than the fractal
dimension, but it tends not to be much smaller either.

The correlation dimension is only one of many ways to define the dimension
of an attractor. The various methods differ in how the regions of the attractor are
weighedinthe average.Itis probably the easiest method toimplement, andit gives
more reliable results than the fractal dimension when the dimension of the attractor
is greater than about two. The fractal dimension is also called the capacity
dimension, and itis closely related to the Hausdorff-Besicovitch dimension. Further-
more, the correlation dimension is probably a more meaningful measure of the
strangeness of the attractor, because itincludes information about its formation as
well as its final appearance.

The number of data points required to provide an accurate estimate of the
dimension is a question still being debated in the scientific literature. Therefore, we
will use a heuristic approach and continually update the dimension estimate with
each iteration, giving you an opportunity to decide when it seems to have
converged to a unique value. To do this, we must modify the procedure slightly.
Rather than count the number of data points within a circle, which would require
that the calculation run to conclusion with the coordinates of all the points saved,
we use the equivalent method of determining the probability that two randomly
chosen points are within a certain distance of one another. To do this, the distance
of each new iterate from one of its randomly chosen predecessors is calculated.
Now you see why we bothered to save the last 500 iterates! We exclude the most
recent 20 points, because the iterates are likely to be abnormally highly correlated
with their recent predecessors. Thus, with each iteration, we have only one
additional calculationto doin whichwe compare the distance of the iterate to one
of its randomly chosen predecessors and increment N; and Ny, as appropriate.
PROGO7 shows the changes needed to calculate and display the fractal dimen-
sion.

PROGO7. Changes required in PROGO06 to calculate and display the fractal dimension

76

1000

1020

1580

1620

2210

2440

3030

3060

3170

3190

3400

3420

3900

3910

3920

3930

3940

REM TWO- D MAP SEARCH (Wth Fractal D nmension)

DI M XS(499), YS(499), A(504), V(99)

P%=0: LSUM=0: N=0: NL =0: NL =0: N2 =0

TWOD% = 2 N D%

XS(P% = X YS(P% =Y

GOSUB 3900 "Cal cul ate fractal dinmension

LSUM = LSUM + LOGDF): NL = NL + 1

IF N> 1000 AND N MOD 10 = 0 THEN LOCATE 1, 76: PRI NT USI NG "##. ##"; L;
XL = XMN - M XH = XMAX + MX; YL = YM N - MY: YH = YMAX + 1.5 * W
YH=YH- .5 * MW

LOCATE 1, 1: PRI NT CODE$

LCOCATE 1, 63: PRINT "F =": LOCATE 1, 73: PRINT "L ="

REM Cal cul ate fractal dimension

IF N < 1000 THEN GOTO 4010 "Wait for transient to settle
IF N = 1000 THEN D2MAX = (XMAX - XM N) A 2 + (YMAX - YMN) ~ 2
J%= (P%+ 1 + |NT(480 * RND)) MOD 500

DX = XNEW- XS(J%: DY

YNEW - YS(J%

77

3950 D2 = DX * DX + DY * DY
3960 |F D2 < .001 * TWOD% * D2MAX THEN N2 = N2 + 1
3970 |F D2 > .00001 * TWOD% * D2MAX THEN GOTO 4010
3980 NL = NL + 1

3990 F = .434294 * LOGN2 / (NL - .5))

4000 LOCATE 1, 66: PRINT USI NG "##. ##": F;

4010 RETURN

At this point you might want to examine the fractal dimension of the various
figures in this book as well as the dimension of those you create with PROG07. One
thing you will notice is that the dimension of objects that resemble lines is often less
than 1.0. One reason is that the points that make up the line are seldom uniformly
distributed along its length. Remember that the correlation dimension is usually
smaller than the fractal dimension. They are equal if the points are uniformly
distributed over the attractor. The correlation dimension of a line consisting of a
uniform distribution of points along its length would be exactly 1.0.

Also note that the dimension of most attractors varies considerably from one
part of the attractor to another. Figure 3-11 is a good example of one in which parts
of the attractor resemble thin lines and other parts resemble filled-in planes. It
obviously is simplistic to characterize such an object by asingle average dimension.

The dimension also depends on scale. Itis properly defined in the limit where
one zooms in very tightly on the attractor to observe its finest detail. However, a
calculation in this limit would take forever because an infinite number of iterations
would be required to collect enough points to reveal the detail. Figure 3-13 is an
example of an attractor that is nearly one-dimensional on a large scale but closer
to two-dimensional on a fine scale. Our calculation provides what might be called
a visual dimension because it is taken on a scale close to what the eye can visually
resolve. In any case, you should not ascribe undue significance to the calculated
dimension.

Also note that we are using the word "dimension" to mean several different

things. The maps that we are looking at are two-dimensional because they have
two variables, X and Y. However, the attractor has a smaller dimension. We say the

78

attractoris embedded in a two-dimensional space or that the embedding dimen-
sionis 2. A point or a line can be embedded in a plane, but a ball cannot.

An attractor usually fills a negligible portion of the space in which it is
embedded. That'swhyit's called an attractor! Points initially distributed throughout
the embedding space are drawn to the attractor after a number of iterations, and
theremaining spaceisleftempty.Thus the area of an attractorembeddedin atwo-
dimensional space is zero, and the volume of an attractor embedded in a three-
dimensional space is zero, and so forth.

It is also interesting that the fractal dimension and the Lyapunov exponents
are not entirely independent. It has been conjectured that the fractal dimension is
related to the two Lyapunov exponents by

F=1-17/0Ly (Equation 3E)

where L is the more positive of the two exponents and is the one we denote by L
in the figures. If both Lyapunov exponents are known, Equation 3E can be used to
define a dimension of the attractor, called the Lyapunov dimension. The Lyapunov
dimension is also called the Kaplan-Yorke dimension after the scientists who
proposed an extension of Equation 3E to higher dimensions.

This relation is reasonable because, if the two exponents are equal but of
opposite signs (Ly =- L), the contractionin one direction is just offset by expansion
inthe other. A set of initial conditions spread out over a two-dimensional region thus
maintains its area upon successive iteration. Such a mapping is said to be area-
preserving, symplectic, or Hamiltonian, after the 19th-century Irish astronomer,
William Rowan Hamilton. On the other hand, if the contraction is very rapid (Lp is
large and negative), the initial conditions quickly collapse to a very elongated
ellipse whose dimension is close to 1. Such a contraction is sometimes called
filamentation.

Armed with information about the fractal dimension, you can program the
computertobe evenmore selective. Forexample, the visually appealing attractors
tend to have fractal dimensions slightly greater than 1, and thus you could reject
those with smaller dimensions or those with dimensions close to 2. We return to this
intriguing possibility in Chapter 8.

79

3.5 Higher-Order Disorder

With one-dimensional maps, the attractors became more interesting when
we considered terms higher than quadratic. Itis straightforward to do the same with
two-dimensional maps. For example, the most general equations for two-dimen-
sional cubic maps are

X1 = + Xy + agXn? + agXpS + asXn?Yp,

+0agXnYn + A7XnYp? + ag¥p + Ag¥p? + agoYp?

Yne1 = Q11+ Q12X+ @13Xn2 + a1 4% + 015X Y

+a16XnYn + 017X Y2 + a1gYN + aj9Y 2 + dpg¥pS (Equation 3F)

Note that there are 20 coefficients, which vastly increases the number of
possible cases. The fourth-order case would have 30 coefficients, and the fifth-order
case would have 42 coefficients. If you prefer an equation, a two-dimensionalmap
of order O has (O + 1)(O + 2) coefficients. We will code the cubic, quartic, and
quintic cases with the letters F, G, and H, respectively.

The changes that must be made to the program to generate attractorsintwo
dimensions up to fifth order are given in PROGO08.

PROGO08. Changes required in PROGO07 to generate attractors in two dimensions up to fifth order
1000 REM TWO- D MAP SEARCH (Pol ynomi als up to 5th Order)
1020 DI M XS(499), YS(499), A(504), V(99), XY(4), XN(4)

1060 OVAX% = 5 " Maxi mum order of pol ynoni al

1720 Mo = 1: XY(1) = X XY(2) = Y
1730 FOR 1% = 1 TO D%
1740 XN(19% = A(MA

1750 M= Mo+ 1

80

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

FOR 11% =1 TO D%

XN(19 = XN(1% + A(MAJ *
Mo= Mo+ 1

FOR 12% = 11% TO D%
XN(1% = XN(1% + A(MA *
Moo= Mo+ 1

IF O%= 2 THEN GOTO 1970
FOR 13% = 12% TO D%
XN(1T9 = XN(19% + A(MAJ *
Mo= Mo+ 1

IF O% = 3 THEN GOTO 1960
FOR 14% = 13% TO D%
XN(1% = XN(19% + A(MA *
Mo= Mo+ 1

IF O%= 4 THEN GOTO 1950
FOR 15% = 14% TO D%
XN(19 = XN(1% + A(MAJ *
Mo= Mo+ 1

NEXT | 5%

NEXT | 4%

NEXT | 3%

NEXT | 2%

NEXT | 1%

XY(1 1%

XY(1 1%

XY(1 1%

XY(1 1%

XY(1 1%

*

*

*

*

XY(1 2%

XY(12% * XY(13%

XY(129% * XY(13% * XY(14%

XY(12% * XY(13% * XY(14% * XY(15%

81

2000 NEXT | %

2010 M= Mh- 1: XNEW= XN(1): YNEW = XN(2)

PROGO8 could have been written more compactly, but it is done this way to
simplify its extension to even higher dimensions. Examples of attractors produced by
this program are shown in Figures 3-18 through 3-41.

Figure 3-18. Two-dimensional cubic map

FIRPGUTF IDGCSXMFPKIDJ F=15 L =08.26

82

Figure 3-19. Two-dimensional cubic map

F ISMH(CHPDFRFBREALIFD F=145 L

= B.13

83

Figure 3-20. Two-dimensional cubic map

FJYCBMNFNYOEF YUGHHESU

84

Figure 3-21. Two-dimensional cubic map

FLGROKJFELDGEXSUEEWYE F=1.25 L

= B.15

85

Figure 3-22. Two-dimensional cubic map

FMGGNDPHUONKFQUI IHBUF F=1.29 L = H.86

86

Figure 3-23. Two-dimensional cubic map

FNHZBEETDORVLAOTUPENH

1.28

L

= B.84

87

Figure 3-24. Two-dimensional cubic map

FNUYLCURDUHQUQMRZQWQB F=1.35 L =8.15

88

Figure 3-25. Two-dimensional cubic map

FOUFKWKE IBPGNYPVRUCYU F=1.5¢ L =8.13

89

Figure 3-26. Two-dimensional quartic map

GFUXRRRUIRDYKDUBPHHOMOBRIRBINCS F=1.34 L = 8.83

I\

20

Figure 3-27. Two-dimensional quartic map

GGNXVYVUASWNMNFFQOFJTHRENRFWREJH F=1.4¢7 L =8.13

91

Figure 3-28. Two-dimensional quartic map

GLURFSRHUMSEHTOBRXJDXQSMFJBUUFG F=1.46 L =H.1H

92

93

Figure 3-30. Two-dimensional quartic map

GOD IDSBTPNDBSGOROKGARMCCONXFHUL) F=1.21 L =8.15

94

Figure 3-31. Two-dimensional quartic map

GRMJBCS0AFMBRRSSUHCHBWUSRICKAA F=1.43 L = 8.88

95

Figure 3-32. Two-dimensional quartic map

GTPMJEFSCUUMSHBUPCBUTBRRUXHSXIT F=1.25 L = 8.88

26

Figure 3-33. Two-dimensional quartic map

GUETJGI INOTHGF YLJOUVEEMXTEGDHLM

1.44

L

= B.8B6

97

Figure 3-34. Two-dimensional quintic map

HGE(QGOY IR)QPEUJBERPX TUUSJHOVIDUAY YPRN TXFLGAM F=1.36 L

98

Figure 3-35. Two-dimensional quintic map

HHUO IEG IDJCSFUFJCQGRUGMCLHEPWKRCCYF IR(P¥APH F=1.49 L = 8.84

99

Figure 3-36. Two-dimensional quintic map

HMSMTNCONSQJOTROPAOML YNDPUQWUQJUEGNUAYGDL I T F=1.68 L =8.13

100

Figure 3-37. Two-dimensional quintic map

HOQBESK IXOQMEEOVUNAHXLBOQQJXE YMBUMBOEFVDBAFPLUU F=1.3¢7 L =8.45

101

Figure 3-38. Two-dimensional quintic map

HODHFCHDPFUX0 IXKPUM IQJJFORCYELP TIJPBSPOFGAPL F=1.68 L = H.H5

102

Figure 3-39. Two-dimensional quintic map

HSARYDPNQ I YYBGSXBFOFLRRPSWDEQGOSMSCONFEBURE F=1.43 L =8.81

103

Figure 3-40. Two-dimensional quintic map

HUHDXLMSME IBUMCHNROCPSPJMTFHNPEDJ(LNFOBT THMP T F=1.32 L =8.88

104

Figure 3-41. Two-dimensional quintic map

HUNTBSGUWF IJIQF TJZ IGRJ TDXWLMDPWSVUNEFVSBMYFE F=1.52 L =8.35

Perhaps this is a good point to pause and reiterate in what sense these
objects are attractors. If you choose initial values of X and Y somewhere near the
attractor, within its basin of aftraction, and substitute these values into the equa-
tions that describe the attractor, the new values of X and Y represent a pointin the
plane that is closer to the attractor. After a number of iterations, the point works its
way to the attractor, and thereafter it moves around on the attractor in some
complicated manner, eventually visiting every part of the attractor. The next
position can always be simply and accurately predicted from the current position,
but the small, inevitable uncertainty in position continually increases so that along-
term prediction is impossible, except to say that the point is somewhere on the
attractor. You can think of the attractor as the set of all possible long-term solutions
of the equations that produced it.

Besides the error in knowing perfectly the initial conditions, there are also

105

computer round-off errors at each iteration. Given the extreme sensitivity to small
errors, you may wonder whether any computeris capable of calculating correctly
such a chaotic process. It is true that if the same chaotic equations are iterated on
two computers using different precision or round-off methods, the sequence of
iterates is almost certainly completely different after a few dozen iterations.
However, the appearance of the attractoris probably the same. Insuch acase, we
say that the solution is sfructurally stable or robust. Furthermore, according to the
shadowing lemma, an appropriate small change in initial conditions produces a
chaotic sequence that follows arbitrarily close to the computed one.

Since computers always round the results of calculations to a finite number
of digits (or more precisely, bits), a limited number of values is allowed. Thus
successive iteration of a map always eventually repeats a previously obtained
value, whereupon the solution reproduces exactly the same sequence of states as
it did before. Strictly speaking, every such solution is periodic, and true chaos
cannot be observed with a computer. However, with double-precision floating-
point variables, which are normally 64 bits, there are 264 or about 1017 possible
values. It can be shown that an average periodicity occurs after about the square
root of this number of iterations, which is about 3x 107. Until the number of iterations
approaches this value, there is little cause to worry. For maps higher than one
dimension, this problem is even less serious because all the variables have toreach
a previously existing state at the same time.

It is also interesting to realize that infinitely many periodic solutions are
embedded in each attractor. These solutions are called periodic orbits. From
wherever you start on the attractor, you eventually return to a point arbitrarily close
to the starting point. This result is called the Poincaré recurrence theorem, after
Jules-Henri Poincaré, a French mathematician who a hundred years ago por-
tended the modern era of chaos. Thus by making only asmallchange in the starting
point, it is possible, in principle, to return exactly to the starting point, which implies
a periodic orbit with a period equal to the number of iterations required to return.
Most of these orbits have very large periods, however.

Every point on the attractoris arbitrarily close to such a periodic orbit, but the
chance that a randomly chosen point on the attractor lies on such an orbit is
infinitesimal. We say that the periodic orbits are dense on the attractor. These orbits,
though infinite in number, constitute a Cantor set of measure zero. The periodic
orbits are unstable in the sense that if you get just slightly off the orbit, you continue
to get farther away with each iteration.

The strange attractors exhibited in this book are examples of orbital fractals.
They should be distinguished from escape-time fractals, which show the basin of

106

attraction and typically display with color the number of iterations required for
pointsoutside the basinto escape beyondsome predefinedregion.The Mandelbrot
and Julia sets are perhaps the best-known escape-time fractals. Escape-time
fractals require much longer computing tfimes to develop but provide dazzling
displays with exotic fine-scale structures.

3.6 Strange Attractor Planets

The previous figures have obvious beauty, but they generally lack symmetry.
Nature mixes symmetry with disorder, and our sense of beauty has developed
accordingly. The Earth viewed from outer space is beautiful in part because the
iregular features of the clouds and continents are superimposed on a nearly
perfect sphere.

There are many ways to do the same with our attractors. Suppose, for
example, X and Y are not the horizontal and vertical positions in a plane but rather
the longitude and latitude on the surface of the Earth. The result is an object that
might resemble a strange planet with swirling clouds, oceans, canals, craters, and
other features.

Note that mapping a plane onto a sphere is a nonlinear transformation. You
can’'twrap apiece of paper around a globe without alarge nonuniform stretching.
That's why Greenland looks larger than South America on most flat maps. When a
sphere is projected onto a flat computer screen or onto the page of a book, it is
stretched so as to magnify the central portion of the attractor and compress the
edges.

If gis the longitude (measured from zero at the right edge) andf isthe latitude
(measured from zero at the top), the X and Y coordinates of the projection of a
sphere onto the screen are given by

XIO = COS _sin _

YIo =COS _ (Equation 3G)

We get q from X by a scaling that keeps qin the range of 0 to p radians (180
degrees), because there is no need to plot points that lie on the back side of the
planet. Similarly, we get f from Y by a scaling that keeps f in the range of 0 (atf the

North Pole) to pradians (at the South Pole). The program modifications required to
accomplish this tfransformation are given in PROGO09. This program allows you to

107

toggle back and forth between the two types of projection by pressing the P key.

PROGO9. Changes required in PROGO08 to project attractor onto a sphere

1000

1110

2260

3200
3310
3320

3330

3750

4100
4110
4120
4130
4140

4150

108

REM TWO- D MAP SEARCH (Projected onto a Sphere)

PIT% = 1 "Projection is spherical
IF PJT% = 1 THEN GOSUB 4100 "Project onto a sphere
XA = (XL + XH) / 2: YA=(YL+YH [/ 2

IF PJT% <> 1 THEN LINE (XL, YL)-(XH, YH), , B
IF PJT% = 1 THEN CI RCLE (XA, YA), .36 * (XH - XL)

TT = 3.1416 / (XMAX - XM N): PT = 3.1416 / (YMAX - YMN)

IF Q6 ="P" THEN PAT% = (PJT% + 1) MOD 2: T%= 3: IF N> 999 THEN N = 999

REM Proj ect onto a sphere

TH = TT * (XMAX - XP)

PH = PT * (YMAX - YP)

XP = XA + .36 * (XH - XL) * COS(TH) * SI N PH)
YP = YA+ .5* (YH- YL) * COS(PH)

RETURN

Figures 3-42 through 3-57 show some examples of two-dimensional attractors

projected onto asphere. Note that the features on the attractors tend to converge
at the poles at the tops and bottoms of the figures. This convergence could be
suppressed by using an area-preserving fransformation that stretches the Y values
near the poles by the same factor that the X values are compressed. The simplest
way to produce this effect is to delete line 4140.

Figure 3-42. Two-dimensional quadratic map projected onto a sphere

ECSRRVWLGFF3 F=179 L =822

109

Figure 3-43. Two-dimensional quadratic map projected onto a sphere

ECU(KGH()TPHTE F=1.78 L =8.14

110

Figure 3-44. Two-dimensional quadratic map projected onto a sphere

EKPNERVOTEYCH F=1.49 L =8.26

111

Figure 3-45. Two-dimensional quadratic map projected onto a sphere

EUUACKDE) IGEHF F=1.72 L =8.15

112

Figure 3-46. Two-dimensional cubic map projected onto a sphere

FEAWYMEAEUVRNBGXWUFKH

113

Figure 3-47. Two-dimensional cubic map projected onto a sphere

FLO)OBERSWKEDRNYRQ IRKDG F=1.53 L =8.18

114

Figure 3-48. Two-dimensional cubic map projected onto a sphere

FLUCBPUBOXRJREOFMUFDCH

115

Figure 3-49. Two-dimensional cubic map projected onto a sphere

FMEGUTLME(RFCSSTOYRH F=1.33 L =8.4

116

Figure 3-50. Two-dimensional quartic map projected onto a sphere

GJCPYDUBNJUMEBGJROU IHUXIDNDY IH

1.54

L

= H.12

117

Figure 3-51. Two-dimensional quartic map projected onto a sphere

GLO)GRLUFUCASAWSVRVEGGFFNP YHOKRM F=1.14 L = 8.87

118

Figure 3-52. Two-dimensional quartic map projected onto a sphere

GNUCAVUJOVL INUWMENHCHMQOJAD IWHT Y F=1.23 L =8.11

119

Figure 3-53. Two-dimensional quartic map projected onto a sphere

GTNS TDPRSONFJAHNC YFLDWFKSPDECY

120

Figure 3-54. Two-dimensional quintic map projected onto a sphere

HEAUYO I TEOD IBEQXW INWORKKLWJLEXGQUUULVF JUKUG

121

Figure 3-55. Two-dimensional quintic map projected onto a sphere

HFJFUEASKFNFGNFMSAUSHINGBJCD YUGFHPULWHSZG TI) F=1.48 L = 8.17

122

Figure 3-56. Two-dimensional quintic map projected onto a sphere

HLT(3SREWCLUGBNYOSUKE I IHLUDRJRKFJGTCHNXKYOMC F=1.38 L = 8.88

123

Figure 3-57. Two-dimensional quintic map projected onto a sphere

HOKEFWLHUMO IXLAEEGWTURMBTSJOSCJ IBARB YXSXLDJ F=1.35 L =8.17

If you are using PowerBASIC or its predecessor, Turbo BASIC, and VGA
graphics, you will notice a slight incompatibility with the CIRCLE command that
causes the size of the circle that surrounds the attractor to vary from case to case.
In these dialects of BASIC, the radius of the circle in SCREEN modes 11 and 12 is
specified in units of the screen height rather than its width. If you encounter this
problem, try replacing .36 * (XH - XL) in line 3320 with .5 * (YH - YL).

Planes and spheres are not the only two-dimensional surfaces onto which
attractors can be projected. A cylinder is another possibility. The cylinder can be
oriented with its axis either horizontal or vertical or tilted at some arbitrary angle. A
torus is another possibility. You may be able to think of other more exotic surfaces
onto which the attractors can be projected.

124

3.7 Designer Plaids

It is interesting that all the one-dimensional maps described in the previous
chapter are included in the two-dimensional cases. One needs only o set the
coefficients of the Y equation to zero. For example, a two-dimensional map
equivalent to the logistic equation is given by the code EMu%M?. However,
because Y doesn’t change with successive iterations, a graph of Y versus X is simply
a straight, horizontal line.

To display the logistic parabola, we need to replace X with the next iterate
of Xand Y with the second next iterate of X. Two successive iterations of a quadratic
map requires a fourth-order equation. A code that accomplishes this is
GMu%BM BNHUIMIO.

There are other examples of two-dimensional maps that are really one-
dimensional maps in disguise. Suppose X,4; depends only on Y, and Y4
depends only on X,. Then X, depends only on X,, and we have a one-
dimensional map for X in which Y is merely an intermediate value of X. The most
general fifth-order polynomial example of such a case is

Xn+1 = Q1 +017Yn + a1gYn2 + a9Y¥p3 + agg¥pt + g VP
Vi1 = Q90 + G93Xn + QpgXn? + GgsXn + ageXnd + agyXp® (Equation 3H)

This case can be achieved by setfting the remaining 30 coefficients to zero in
PROGO09 by adding the following line after line 2730:

2735 IF (1%>1AND 1 %< Mo/ 2 - O ORI%> Mo/ 2 + O%+ 1 THEN M D$(CODES,
1%+ 1, 1) ="M

The result is to produce a 25th-order, one-dimensional polynomial map displayed
in two dimensions.

Figures 3-58 through 3-61 show sample attractors obtained in thisway. Notice
that they fillin rectangular regions resembling a plaid tartan, in sharp contrast to all
the previous cases. These attractors are especially appropriate for projecting onto
spheres because the features line up east-west along parallels and north-south
along meridians. Figures 3-62 and 3-63 show some examples of plaid planetary
attractors.

125

Figure 3-58. Two-dimensional quadratic plaid map

ECMMMEWHXEMMM

126

Figure 3-59. Two-dimensional cubic plaid map

FNMMMMMMMFUF YXMMMMMMN F=1.33 L =8.18

127

laid map

icp

GEMMMMMMMMMMMMAJSSDJMMMMMMMMMMMM

I quart

Imensiona

Figure 3-60. Two-d

128

Figure 3-61. Two-dimensional quintic plaid map

HEMMMMMMMMMMMMMMMMMMLEX JLMMMMMMMMMMMMMMMMMY F=8.91 L =8.11

129

Figure 3-62. Two-dimensional quadratic plaid map on a sphere

ERMMMEAS YMMM F=1.82 L =8.23

130

Figure 3-63. Two-dimensional quintic plaid map on a sphere

HOMMMMMMMMMMMMMMMMMN YGSPPMMMMMMMMMMMMMMMMMN F=1.79 L =8.14

You might want to try adding colors to emulate a decorative cloth pattern.
One way to do this is to color the pixels according to the number of times they are
visited by the orbit. This is easily done by changing line 2300 in the program to

2300 PSET (XP, YP), (PONT (XP, YP) + 1) MD 16

which causes the color of the existing point at (XP, YP) to be tested and then plotted
with the next color in the palette of 16 colors. In Chapter 4, we discuss other ways
to produce colorful attractors.

131

3.8 Strange Atiractors that Don't

From the foregoing discussion, you might conclude that all chaotic equao-
tions produce strange attractors. Suchis not the case. Under certain conditions, the
successive iterates of an equation wanders chaotically throughout a region of the
plane. There is no basin of attraction, and initial conditions near but outside the
chaoticregion are not drawn to the region but ratherlie on closed curves. Although
the chaotic region is not a strange attractor, it may have considerable beauty.

For a chaotic solution not to attract, the area occupied by a cluster of nearby
initial conditions must remain the same with successive iterations. The cluster
generally contracts in one direction and expands in the other, but the contraction
and expansion just cancel, producing a long, thin filament of constant area. A
characteristic of such a case is that the two Lyapunov exponents are equal in
magnitude but of opposite signs. Such a system is area-preserving. An important
class of area-preserving systems are Hamiltonian systems with their corresponding
symplectic maps.

You might think that Hamiltonian systems are relatively rare in nature, be-
cause they require a special condition. However, there are many important
examples of Hamiltonian chaos. They arise because there are quantities in nature
such as energy and angular momentum that, in the absence of friction, remain
accurately constant no matter how complicated the behavior of the system. We
say these quantities are conserved or that they are constants of the motion. The
motion of a planet orbiting a binary-star system or the motion of an electron near
the nullin a magnetic field exhibits Hamiltonian chaos. A more familiar example is
the filamentation of milk when it is stirred into coffee, in which case the volume of
the milk is conserved because liquids are nearly incompressible.

With equations such as those we have been using with randomly chosen
coefficients, the chance of inadvertently finding an area-preserving solution is
essentially zero. However, by placing appropriate conditions on the coefficients,
we can guarantee such solutions. The following is an example of an area-preserv-
ing, two-dimensional polynomial map:

Xne1 = A7 + QoXpy + AaXn2 + AgXpS + asXd + agXn® £ Yy,
Yn+1 = Ao £ X, (Equation 3l)
This map is fifth order to provide seven arbitrary coefficients that ensure a

large number of solutions. The coefficient labels are consistent with the general two-
dimensional fifth-order map, in which 33 of the coefficients have been set to zero.

132

The two terms preceded with £ have coefficients (a;7 and ap3) of either +1 or -1,
and this feature guarantees an area-preserving solution. If the signs are the same
(both plus or both minus), chaotic solutions are not found. Hamiltonian chaos can
occurwhen the signs are opposite. The negative product of these two coefficients
is the Jacobian of the map (J = -a;7053). The Jacobian is a measure of the net
confraction, and it must equal 1.0 for a Hamiltonian system.

Hamiltonian cases can be produced by adding the following linesto PROG09
after line 2730:

2735 IF1%> O%+ 1 AND |1 % <> M/ 2 + 1 THEN M D$(CODES$, | % + 1, 1)
:llMl
2736 M D$(CODE$, MW/ 2 - Q%+ 2, 1) = "W: M D$(CODES, Mb/ 2 + 3, 1)
BN

Sample chaotic symplectic maps are shown in Figures 3-64 through 3-71.
Most of the cases resemble chains of islands in which each island contains a fixed
point surrounded by closed contours that are not shown. These cases were
produced using initial values of X =Y = 0.05. Other initial conditions would produce
completely different pictures because there is no attractor.

133

Figure 3-64. Two-dimensional quintic symplectic map

HDCEEYSMMMMMMMMMMUMMMMNCHMMMMMMMMMMMMMMMMMMM F=1.18 L = B.84

134

Figure 3-65. Two-dimensional quintic symplectic map

HFOWF ITPMMMMMMMMMMUMMMMRCHMMMMMMMMMMMMMMMMMMY F=1.88 L = 8.8

135

Figure 3-66. Two-dimensional quintic symplectic map

HHJJ¥YPHMMMMMMMHMMMUMMMMUCHMMMMMMMMMMMMMMMMMY F=1.49 L =8.89

136

Figure 3-67. Two-dimensional quintic symplectic map

HIOM¥NHMMMMMMMHMMHMCHMMMFWMMMMMMMMMMMMMMMMMMY F=1.82 L = 8.8

137

Figure 3-68. Two-dimensional quintic symplectic map

HROX TCGMMMMMMMMMMUNMMMMCCHMMMMMMMMMMMMMMMMMM F=1.15 L = H.83

138

Figure 3-69. Two-dimensional quintic symplectic map

HVEMBUMMMMMMMMMMHCHMMMNWMMMMMMMMMMMMMMMMMMM F=1.22 L = 8.83

139

Figure 3-70. Two-dimensional quintic symplectic map

HVUFM T TCMMMMMMMMMMCHMMMQUMMMMMMMMMMMMMMMMMMN F=1.35 L =8.8B

140

Figure 3-71. Two-dimensional quintic symplectic map
HUNSGEQMMMMMMMMMMUMMMMECMMMMMMMMMMMMMMMMMMY F=1.16 L = 8.83

These cases have a different look from non-symplectic strange attractors.
The difference is even more pronounced if you watch while they develop on the
computer screen. Whereas the regions of a strange attractor tend to be visited
uniformly and apparently randomly, the symplectic maps develop much more
slowly. The points often wander over a small region for tens of thousands of
iterations, and then they suddenly begin tofillin a new distinctregion that has never
beenvisited before. Consequently, many more iterations are required to determine
the stability and chaotic nature of the solution. You need to be patient while the
computer calculates.

The different tfime behavior of these cases raises an important issue. When
you view any of the figures in this book, you are seeing a static object. However, it
was produced by adynamic process. Information about the sequence inwhich the
points accumulated has been lost. This additional information is recovered when

141

you watch the attractors develop on your computer screen. Most of the attractors
fillin uniformly. Their contrast gets progressively greater, much like a photographic
print being developed.

However, the symplectic maps develop more slowly and in stages. If your
computerhas a color monitor, you might try exhibiting this sequence by plotting the
points in color and changing the color every few thousand iterations. Some
examples using this tfechnique are shown in Section 7.5. If you try this for the non-
symplectic attractors, the colors overlap and merge into a uniform gray, or you just
see the mostrecent color. For the symplectic maps, beautiful color patterns can be
produced. Otherwise, continue on to the next chapter, where various color
techniques are discussed.

3.9 A New Dimension in Sound

With one-dimensional maps, we tried to make music by letting successive
iterates control the pitch of the musical notes, all of which were of the same
duration. The same procedure can be used with two-dimensional maps. However,
we have a second variable at our disposal, so let’s use it to confrol the duration of
each note. With actual music, it turns out that there are many more notes of short
duration than of long duration. There are roughly twice as many half notes as whole
notes, and twice as many quarter notes as half notes, and so forth. This remarkable
result seems to hold for all types of music from different composers and cultures. It
is evidence of hidden determinism in music.

The program modification PROG10 uses the X value to control the pitch and
the Y value to control the duration of the notes. For convenience, we assume that
the longest note is a whole note and the shortest note is a sixteenth note. Dotted
notes and rests are not allowed.

PROG10 also adds to the program a menu screen that reminds you of the §
command, which toggles the sound on and off, and the P command, which
toggles the projection between planar and spherical. We also introduce an A
command to initiate the search for attractors, a D command to toggle between
one-dimensional and two-dimensional maps, an I command to let you input the
code of an attractor that you know, and an X command to exit the program.
Pressing any other key displays the menu screen.

142

PROG10. Changes required in PROGO09 to produce chaotic music and provide a menu screen

1000 REM TWO-D MAP SEARCH (Wth Misic and Menu Screen)

1100 SND% = 1 "Turn sound on
1110 PIT% = 0 "Projection is planar
1170 GOSUB 4200 ' Di spl ay nenu screen

1180 IF @ = "X'" THEN GOTO 1250 'Exit inmmedi ately on conmand

2450 I|F QWo > 0 THEN GOTO 2490 'Skip tests when not in search node

2640 IF Qwo > 0 THEN GOTO 2730 'Not in search node
2650 Q=2 + INT((OMAX% - 1) * RND)
2660 CODE$ = CHR$(59 + 4 * D+ ON

2680 GOSUB 4700 'Get value of Mh

3530 |F D%>1 THENDUR =2 A INT(.5 * (YH- YL) / (YNEW- 9 * YL/ 8 + YH/ 8))

3610 |F ASC(@) > 96 THEN @ = CHR$(ASC(@) - 32) 'Convert to upper case
3630 IF @ = "" ORINSTR("AD PSX',) = 0 THEN GOSUB 4200
3640 |F @& = "A" THEN T% = 1. QWo= 0

3680 |F @ ="D'" THEN D% =1 + (D%MD 2): T%=1

3730 IF QB ="1" THEN I F T% <> 1 THEN SCREEN 0: W DTH 80: COLOR 15, 1: CLS: LINE
| NPUT "Code? "; CODE$: |F CODE$ = "" THEN G =" ": CLS: ELSE T%= 1: QWo= 1:
GOSUB 4700

3790 IF @ = "X" THEN T% = 0

143

4200 REM Di spl ay nenu screen
4210 SCREEN 0: WDTH 80: COLOR 15, 1: CLS

0

4220 WHILE @& = "" OR INSTR("AI X',)
4230 LOCATE 1, 27: PRI NT "STRANGE ATTRACTOR PROGRAM'

4260 PRI NT : PRI NT

4270 PRI NT TAB(27); "A. Search for attractors"

4300 PRI NT TAB(27); "D:. Systemis"; STR$(D¥%; "-D pol ynom al
4370 PRI NT TAB(27); "l: Input code from keyboard"

4400 PRI NT TAB(27); "P: Projectionis ";

4410 IF PJT% = 0 THEN PRI NT "pl anar "

4420 IF PJT% = 1 THEN PRI NT "spherical "

4540 PRI NT TAB(27); "S: Sound is ";

4550 I F SND% = 0 THEN PRI NT "of f"

4560 IF SND% = 1 THEN PRI NT "on "

4600 PRI NT TAB(27); "X Exit progrant

4610 @& = | NKEYS

4620 IF @ <> "" THEN GOSUB 3600 ' Respond to user command
4630 V\END

4640 RETURN

4700 REM Get di nensi on and order

4710 D% = 1 + | NT((ASC(LEFT$(CODES, 1)) - 65) / 4)

144

map

4740 O% = 2 + (ASC(LEFT$(CODE$, 1)) - 65) MD 4

4750 Moo= 1: FOR 1% =1 TOD% Moo= Mo* (O%h+ 1%: NEXT | %
4770 | F LEN(CODE$) = Mo+ 1 OR QWo <> 1 THEN GOTO 4810

4780 BEEP "I'll egal code warning

4790 VWHI LE LEN(CODE$) < Mo+ 1: CODE$ = CODE$ + "M': VEND
4800 | F LEN(CODE$) > M¥% + 1 THEN CODE$ = LEFT$(CODE$, Mo + 1)

4810 RETURN

As you listen to the music produced by the various attractors, you may
discover relations between the quality of the music and the appearance of the
attractor. The cases that seem most musical tend to have certain visual character-
istics, which are left for you to discover. Do attractors that appeal to the eye also
appeal to the ear?

Afteryou have generated some music of your own, you may want to try some
of the casesin Table 3-1 using the | command to input them to the program. These
cases have been selected for their musical quality and are limited to quadratic
maps to simplify typing their codes. An interesting study would be to accumulate
your own longer list of musical attractors and to see if they preferentially have
certain fractal dimensions and Lyapunov exponents. If so, then it should be possible
to program the computer to be a music critic as well as an art critic.

145

Table 3-1. List of some musical attractors and their characteristics

Code F L Code F L

EDFLQJI GDGVBIV 1.17 0.35 EPLKONGALTVDD 1.03 0.20
EG TI KLINSKAT 1.19 0.04 EQVHVRXREMIED 1.50 0.19
EHXJ CQMYL ONDK 0.95 0.12 ERKKCUNHERKAV 1.51 0.47
EJETCOHRSI QFN 1.56 0.25 ESHKBEW FUCPJ 1.43 0.39
EKLVEVAGCSGYJ X 1.12 0.20 ETFIJINWMKESAFX 0.97 0.30
ELLNJNEAMPLDX 1.11 0.64 EUFLXKI ETROOO 0.90 0.40
ENI DATWFTPOSL 1.62 0.26 EVHEQLLDWVVBFP 1.47 0.49
EOKYEVNMDXXJ UP 0.84 0.22 EXINXAI FANNEN 1.60 0.17

After listening to the enormous variety of musical sequences that can be
generated by this technique, you might wonder whether your favorite musical
composition could be compressed into a short code and generated using iterated
maps. After all, even the simple cases in Table 3-1 are chosen from among about
6x 1016 different codes, and each code corresponds to a different piece of music.

However, a typical musical piece might have hundreds or thousands of
notes, each of which canrepresent dozens of pitches and many durations. Thus we
can be fairly confident using the principles of information theory that such extreme
compression is unlikely, unless music has considerably more structure than is
apparent. However, if you only want to generate a short tune with a few notes,
there might well be a way to do so using this technique. If you are mathematically
inclined, take it as a challenge to find a way to do this.

The generation of computer music using chaotic iterated mapsis a promising
technique sfill in its infancy. You may want to incorporate more sophisticated
musical rules into the program to generate music that is much more pleasing than
what results from this simple procedure. Furthermore, an interesting project would
be to turn the process around and see if music written by humans resembles a
strange afttractor, and if so, to measure its fractal dimension and Lyapunov
exponent. Perhaps music of different types or by different composers would have
different values of these quantities.

146

Chapter 4

Attractors of Depth

A two-dimensional world is a mere shadow of reality. The techniques de-
scribedin the previous chapters are easily extended to produce attractors embed-
dedinthe three-dimensionalspacein whichwe live. The challengeisin finding ways
to exhibit and visualize such three-dimensional objects within the limitations of the
computer screen and printed page. This chapter emphasizes new visualization
techniques and provides many new examples of strange attractors that have
depth as well as width and height.

4.1 Projections

The procedure for seeking attractors in three dimensions (which we might
whimsically call strange atfractors of the third kind) is just like the two-dimensional
case, except that we infroduce a third variable Z to accompany X and Y. You can
think of Z as representing the position in a direction out of the screen or page on
which the attractoris displayed. We assume the direction of positive Z is in front of
the page and the direction of negative Z is behind the page, asis customary for a
conventionalright-handed coordinate system. The termright-handed comes from
the convention that if you point the fingers of yourright hand in the direction of the
X-axis and curl them so that they point along the Y-axis, your thumb points in the Z
direction. This choice is purely arbitrary but widely accepted.

The simplest system of equations that produces strange attractors embed-
dedin athree-dimensionalspaceis a set of coupled quadratic equations, the most
general form of which is given by

Xn+1 =071 +apXp + OSXnQ T AgXnYn T O5Xnln + A4y

+a7Yp? + ag¥nZp + aglp + Ay oln?

Y+l = Q11 +Q10Xn +A13X02 + A1 X0 Y + 15XnZn + A6V

tap Y+ a18Ynin * a19ln + OQOZn2

Zn+1 = 0] + QooXpy + A93Xn2 + GogXn Yy + Go5XnZn + Gog¥n

147

+ 027Yn2 +apgYnlny + A9l + OSOZn2 (Equation 4A)

These equations have 30 coefficients, which allow an enormous variety of
attractors. The extension to equations with orders higher than two is straightforward.
Three-dimensional cubic equations have 60 coefficients, quartic equations have
105 coefficients, and quintic equations have 168 coefficients. The number of
coefficientsfororderOisgivenby (O +1)(O+2)(O+3) /2. We willcode the second-
order through fifth-order systems in three dimensions with the initial letters |, J, K, and
L, respectively.

Note that 168 coefficients allows 25168 or about 10234 combinations. This is
a truly astronomical number. Even if only a small fraction of them correspond to
distinct strange attractors, their number enormously exceeds the number of elec-
trons, protons, and neutrons in the entire universe—a mere 1077 Thus the number
of fifth-order three-dimensional strange attractors is essentially infinite. You can
have a large collection of your own, none of which are likely to be reproduced by
anyone else unless you give them the code you used to produce them. The code
is like a combination lock with 168 settings that all must be entered correctly and in
the proper order.

Now we must confront the issue of how best to display an object composed
of points in a three-dimensional space. Such problems are in the domain of a new
specialty called visualization, whichwe may define as the use of computerimagery
to gain insight info complex phenomena. The need for improved visualization
techniques has emerged from the rapidly growing use of computers as the primary
tool for scientific calculation and modeling. As computers become more powerful,
it is increasingly important to devise methods of dealing with large quantities of
data. The eye and brain are very efficient at discerning visual patterns, and these
patterns permit an intuitive understanding of complicated processes in a way that
equations often cannot. Scientists have recently developed impressive visualizo-
tion techniques, simple versions of which are presented here.

The simplest method is toignore one of the coordinates and to plot the points
in the remaining two dimensions. This method is equivalent to looking at the shadow
cast by an object when illuminated from directly above by a point-source of light
a large distance away. If the light source is on the Z-axis, we say the attractor is
projected onto the XY plane. The screen used in conjunction with a slide projector
is such a plane. Of course, considerable information about the attractor is lost in
such a projection, but the method is a convenient starting point, and it is simple to
program.

PROG11 provides the changes that must be made in PROG10 to extend the

148

attractor search to three dimensions with order up to five. Since the search slows
down considerably in three dimensions with such a large number of coefficients,
especially if you don't have a compiled version of BASIC and a fast computer, the
program saves, for each case found, the code, fractal dimension, and Lyapunov
exponent in a disk file with the name SA.DIC (Strange Attractor DICtionary). This
feature allows you to run the program unattended and to collect the attractors it
finds. We willlater modify the program to let you examine the cases that you collect.

PROG11. Changes required in PROGI10 to search for strange attractors in three dimensions
1000 REM THREE- D MAP SEARCH

1020 DI M XS(499), YS(499), ZS(499), A(504), V(99), XY(4), XN(4)

1070 D% = 3 " Di mensi on of system
1100 SND% = 0 "Turn sound off
1530 Z = .05

1550 XE = X + .000001: YE=Y: ZE =Z

1600 ZM N = XM N: ZMAX = XMAX

1720 Mo = 1: XY(1) = X XY(2) =Y. XY(3) = Z

2010 Mo = M- 1. XNEW= XN(1): YNEW= XN(2): ZNEW = XN(3)

2160 IFZ < ZMN THEN ZM N

z

2170 IF Z > ZMAX THEN ZMAX = Z

2210 XS(P% = X: YS(P% = Y: ZS(P% = Z

2410 | F ABS(XNEW + ABS(YNEW + ABS(ZNEW > 1000000! THEN T% = 2

149

2460 I F N >= NVAX THEN T% = 2: GOSUB 4900 "Strange attractor found
2470 | F ABS(XNEW - X) + ABS(YNEW- Y) + ABS(ZNEW- Z) < .000001 THEN T% = 2

2530 Z = ZNEW

2910 XSAVE = XNEW YSAVE = YNEW ZSAVE = ZNEW
2920 X = XE: Y=YE Z=ZE N=N-1

2950 DLZ

ZNEW - ZSAVE
2960 DL2 = DLX * DLX + DLY * DLY + DLZ * DLZ
3010 ZE = ZSAVE + RS * (ZNEW - ZSAVE)

3020 XNEW = XSAVE: YNEW = YSAVE: ZNEW = ZSAVE

3140 I F ZMAX - ZM N < . 000001 THEN ZM N = ZM N - . 0000005: ZMAX = ZMAX + . 0000005
3400 LOCATE 1, 1: |F LEN(CODE$) < 62 THEN PRI NT CODE$

3410 | F LEN(CODE$) >= 62 THEN PRI NT LEFT$(CODE$, 57) + "..."

3680 |F @ ="D'" THEN D% =1 + (D% MDD 3): T%=1

3920 | F N = 1000 THEN D2MAX = (XMAX - XM N) A 2 + (YMAX - YMN) A 2 + (ZMAX - ZM N)
)

3940 DX = XNEW- XS(J%: DY = YNEW- YS(J%: DZ = ZNEW- ZS(J%

3950 D2

DX * DX + DY * DY + DZ * DZ

4760 |F D% =3 THEN Mo = Mo/ 2

150

4900 REM Save attractor to disk file SA D C

4910 OPEN "SA. DI C' FOR APPEND AS #1

4920 PRI NT #1, CODES$; : PRINT #1, USING "##. ##"; F, L
4930 CLCSE #1

4940 RETURN

Some examples of the attractors produced by PROG11 are shown in Figures
4-1 through 4-16. Note that the fractal dimension shown for each case is the
dimension of the actual attractor and not the dimension of its projection. Thus the
fractal dimension can be as large as 3 even though the projection has dimension
of at most 2. The projection of a point (zero dimensions) onto a surface is a point,
the projection of a line (one dimension) is a line, the projection of a surface (two
dimensions) is a surface, but the projection of a solid (three dimensions) onto a
surface is only a surface (two dimensions).

151

Figure 4-1. Projection of three-dimensional quadratic map

IJKRADSXGDEHIJTQJJDICEJKYSTXFNU F=152 L =8.17

152

Figure 4-2. Projection of three-dimensional quadratic map

ILURCEGOHOIQFJKBSNYGSNRUKK IK THUY F=154 L =8.1Z

153

Figure 4-3. Projection of three-dimensional quadratic map

IMT ISVBKHOIJFWS YEKEG YLWJKEOGULM F=1.5% L =8d.88

154

Figure 4-4. Projection of three-dimensional quadratic map

INRRXLCEYLFHYAPFSTPHHJMYRYJFBNM F=1.32 L =8.84

155

Figure 4-5. Projection of three-dimensional quadratic map

IOHGWF IHJPSGWTOJBXWJKPBLEFRUKKL F=1.5¢ L =H.85

156

Figure 4-6. Projection of three-dimensional quadratic map

IOLORGSFDOYL ISYPS)GJJRG INXURKJPE F=1.53 L =8.83

157

Figure 4-7. Projection of three-dimensional quadratic map

INQWGBEJQUSSKYETDTOSVLEHICIWJRTS F=1.35 L =8.83

158

Figure 4-8. Projection of three-dimensional quadratic map

IWDWOGDGWGORJOBTUHF(BPRNTCE Y (JHP T T F=1.41 L = H.83

159

Figure 4-9. Projection of three-dimensional cubic map

JIXLHCRXHALLAQUJOYVATLXKTSALY