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Abstract

A method is described for determining the optimal short-term predic-

tion time-delay embedding dimension for a scalar time series by training

an artificial neural network on the data and then determining the sensitiv-

ity of the output of the network to each time lag averaged over the data

set. As a byproduct, the method identifies any intermediate time lags

that do not influence the dynamics, thus permitting a possible further

reduction in the required embedding dimension. The method is tested

on four sample data sets and compares favorably with more conventional

methods including false nearest neighbors and the ‘plateau dimension’

determined by saturation of the estimated correlation dimension. The

proposed method is especially advantageous when the data set is small or

contaminated by noise. The trained network could be used for noise reduc-

tion, forecasting, and estimating the dynamical and geometrical properties

of the system that produced the data, such as the Lyapunov exponent,

entropy, and attractor dimension.

1E-mail address: amaus@a-ma.us
2Address: Physics Department, University of Wisconsin, 1150 University Ave., Madison,

Wisconsin, 53706, USA
Telephone: 16082634449
E-mail address: sprott@physics.wisc.edu

1



1 Introduction

When presented with an experimental time series from which one wants to

make a forecast or determine properties of the underlying dynamical system, the

starting point is usually to embed the data in a time-delayed space of suitable

dimension [1]. If this embedding dimension is chosen too small, distant points

on the attractor will coincide or overlap in the embedding space like the 2-

dimensional shadow of a 3-dimensional object. However, if it is chosen too large,

the space may be poorly sampled, noise will be more problematic, and more

computation is required. Consequently, it is important to choose an optimal

embedding dimension. For the purposes of this paper, the optimal embedding

is the one that gives best next-step predictability. However, for other studies

another ‘optimal’ embedding may be more suitable, such as for the estimation

of various metrics like the Lyapunov exponent.

A sufficient condition for the embedding dimension was provided by Tak-

ens [2] who showed that complete unfolding is guaranteed if the time-delayed

embedding space has a dimension d greater than the dimension of the original

state space D by an amount d > 2D. Sauer et al. [3] later showed that under

most conditions, the embedding dimension need only be greater than twice the

fractal dimension of the attractor. However, it is important to recognize that

for many purposes, such as estimation of the correlation dimension [4], overlaps

are of little consequence if their measure is sufficiently small, and in such cases,

the necessary embedding dimension may be as small as the next integer larger

than the dimension of the attractor.

A closely related issue is determining the extent to which each time lag in-

fluences the future. It is easy to imagine situations in which intermediate time

lags are of no consequence, for example in biological systems where seasonal,

gestation, or maturation delays are present [5]. In such cases the relevant ‘lag
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space’ may in fact be smaller than the embedding dimension estimated by con-

ventional methods since the attractor may be negligibly thin in some of the

intermediate dimensions. Therefore, the dimension of the lag space indicates

the number of variables needed to model the dynamics. Methods developed for

linear systems such as the autocorrelation function and autoregressive moving

average (ARMA) models [6] naturally provide such information, but our interest

here is in more general methods that work for nonlinear systems, and in par-

ticular, ones that exhibit chaos for which the linear methods would miserably

fail.

One of the earliest methods for determining an optimal embedding dimension

is to estimate the correlation dimension in increasing embeddings and to declare

that the proper embedding has been found when that dimension saturates. This

‘plateau dimension’ by its nature is optimal for determining the true correlation

dimension of the attractor, but it may not adequately remove overlaps for other

purposes. Furthermore, a good plateau is often lacking with real data, especially

when the data set is small and/or contaminated with noise.

A more recent and commonly used method involves calculation of false near-

est neighbors [7, 8] in successively higher embedding dimensions and its many

variants. Neighbors are considered false if their separation increases by more

than a factor of RT when the embedding dimension is increased from j to j+1,

where RT is typically taken as 15. In addition, a neighbor is considered false

if its separation increases by more than a factor of AT times the standard de-

viation of the data, where AT is typically taken as 2.0 [9]. In practice, as j is

increased, the fraction of neighbors that are false drops to near zero, and the

dimension where this occurs is the minimum embedding dimension required to

unfold the attractor.
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2 Neural Network Method

In this paper, we propose an alternate method using a single-layer, feed-forward

artificial neural network trained on time-delayed data and optimized for next-

step prediction based on d time lags, with d chosen large enough to capture

the relevant dynamics but much smaller than the number of data points in the

time-series c. Analysis of the trained network then allows determination of the

optimal embedding for next-step predictability, lag space, and the sensitivity of

the output of the network to each time lag.

Artificial neural networks have shown great promise in modeling time-series

[10, 11], nonlinear prediction [12], and the analysis of underlying features of

the data [13]. Hornik, et al. [14] proved that neural networks are ‘universal

approximators’ because they can represent any smooth function to arbitrary

precision given sufficiently many neurons. Thus we believe the method is general

and applicable to most real-world systems.

The single-layer, feed-forward network shown schematically in Figure 1 uses

a layer of n hidden neurons to perform next-step prediction x̂k on a scalar

time-series xk according to

x̂k =

n∑
i=1

bi tanh(ai0 +

d∑
j=1

aijxk−j), (1)

where aij is an nÖd matrix of coefficients, and bi is a vector of length n. The

aij matrix represents the connection strengths to the input of the network, and

the bi vector is used to control the contribution of each neuron to the output of

the network. The vector ai0 is an offset that facilitates training on data whose

mean is not zero.

The weights in a and b are updated using a method similar to simulated

annealing in which a Gaussian neighborhood of the current best solution is ran-
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domly searched, with the size of the neighborhood slowly shrinking as training

progresses. In practice, the Gaussian is taken to have an initial standard de-

viation of 2−j centered on zero to give preference to the most recent time lags

(small j values) in the search space. The connection strengths are chosen to

minimize the average one-step mean-square prediction error:

e =

∑c
k=d+1(x̂k − xk)2

c− d
(2)

Once the network is trained, the sensitivity of the output to each time lag

is determined by calculating the partial derivatives of the output with respect

to each time lag xk−j averaged over all the points in the time-series:

Ŝ(j) =
1

c− j

c∑
k=j+1

| ∂x̂k
∂xk−j

| (3)

For the network in Equation 1 the partial derivatives are given by

∂x̂k
∂xk−j

=

n∑
i=1

aijbisech2(ai0 +

d∑
m=1

aimxk−m) (4)

The optimal embedding dimension is assumed to be the largest value of j

for which Ŝ(j) has a significant value, much like the method of false nearest

neighbors. The individual values of Ŝ(j) quantify the importance of each time

lag, much like the terms in the autocorrelation function or the coefficients of an

ARMA model for a linear system.

3 Numerical Results

The method was tested on four time-delayed chaotic maps of increasing dimen-

sion and complexity. One advantage of using data generated in this way is that

the expected sensitivities to each time lag S(j) can be readily determined either
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by inspection of the equation that generated the data in cases where the depen-

dence is linear or by a simple numerical averaging of the nonlinear terms over

the points on the attractor using Equation 3. For these results, the attractor

produced by many iterations of the trained network is visually indistinguishable

from the one that produced the time series. The next-step, in-sample prediction

error calculated from Equation 2 for all these noise-free cases is on the order of

e ∼ 10−5. For each map, ten different instances of the time series were taken,

and the neural networks’ sensitivities to each time lag were calculated. This

resulted in an average normalized root mean square error in the calculated sen-

sitivities, Equation 9, less than 0.0354 with a variance less than 0.0210 for each

map, with the figures representing the average of the ten trials. In addition, the

finite-size Lyapunov exponent [15, 16] for the trained network is in agreement

with the expected value within 5% over the range of scale sizes from 10−12 to

10−1.

The network parameters n and d, and the number of data points c used to

model the cases to be shown were chosen for their ability to produce an accurate

model of the system. There is a tradeoff between accuracy and the time required

to train the network. If n, d, or c are too small, the network will train poorly

and give inaccurate sensitivities. For n, d, or c too large, degradation in the

model will result from insufficient training or from over-fitting. Except as noted,

we use the values of n = 4, d = 5, and c = 512, which appear adequate for the

cases studied, but are not necessarily optimal for short-term prediction even for

these cases. In particular, we note that the number of neurons required to get

good agreement in the sensitivities is smaller than the number required for the

smallest training error e, presumably because the goal is not to get the best fit

to the data but only to determine the sensitivity to each time lag. In practice,

one should try different values of the parameters for each time series, but we
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find the method is tolerant of a wide range of choices.

The simplest example considered here is the Hénon map [17], given in time-

delayed form by

xk = 1− 1.4x2k−1 + 0.3xk−2, (5)

with a strange attractor as shown in Figure 2a. From Equation 5 it is evident

that this map has an optimal embedding and lag-space dimension of 2 since two

time lags uniquely determine each value of xk. The expected sensitivities to the

two lags are S(1) = 1.8959 and S(2) = 0.3, respectively.

Figure 3a shows that the values of Ŝ(j) predicted by the neural network are in

near perfect agreement with the expected values. In particular, Ŝ(j) < 2Ö10−3

for j > 2. Error bars representing the standard deviation of the ten cases that

were evaluated are not shown because they are negligibly small, typically about

1%. Figure 3b shows values of F (j), defined as the fraction of neighbors that

were false in dimension j − 1, plotted in this unconventional way so that the

fraction reaches zero when the optimal embedding is obtained to simplify the

comparison with Ŝ(j). Figure 3c shows the difference in calculated correlation

dimension ∆D2 = D2(j) − D2(j − 1), which is expected to fall to zero once j

exceeds the optimal embedding dimension, indicating that a plateau in the cal-

culated D2 has been reached. All three methods accurately predict an optimal

embedding of 2.

Since the Hénon map is a relatively trivial example, the method was tested

on several additional cases of increasing dimension and complexity. The first of

these is the three-dimensional chaotic map from the preface of Ref. [18] whose

form

xk = x2k−1 − 0.2xk−1 − 0.9xk−2 + 0.6xk−3, (6)
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gives the strange attractor shown in Figure 2b with an optimal embedding

dimension of 3. The expected sensitivities are S(1) = 1.1502, S(2) = 0.9, and

S(3) = 0.6. Figure 4 compares the three methods, and they show reasonable

agreement, except that the plateau for the correlation dimension appears to be

closer to 2 than to 3 as expected since the attractor has a dimension less than

2, and hence the overlaps are a set of measure zero.

A four-dimensional example in which the lag space is less than the optimal

embedding dimension is the delayed Hénon map [19],

xk = 1− 1.6x2k−1 + 0.1xk−4, (7)

with an attractor shown in Figure 2c. The dynamics of the map only depend

on the first and fourth time lags. The expected sensitivities are S(1) = 1.9018,

S(2) = S(3) = 0, and S(4) = 0.1.

Figure 5 shows that only the neural network method identifies the gap in

the time lags where the sensitivities that should be zero; Ŝ(2) and Ŝ(3), are

an order of magnitude smaller than Ŝ(4). Unlike the saturation of the corre-

lation dimension, false nearest neighbors accurately identifies 4 as the optimal

embedding dimension. Another case (not shown) is a delayed Hénon map with

an extremely long delay of 80, having expected sensitivities S(1) = 1.9018 and

S(80) = 0.1. The sensitivities predicted by the trained network are Ŝ(1) =

1.6985 and Ŝ(80) = 0.1035, with all intermediate lags on the order of 10−3 or

less. For this case, the neural network had 4 neurons, 80 dimensions, and a

training error of 2.6212 Ö10−3, although more accurate sensitivities are likely

with further training.

The final example is a four-dimensional variation of the Hénon map studied

by Goutte [20] and given by
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xk = 1− 1.4x2k−2 + 0.3xk−4, (8)

which, like the delayed Hénon map, has gaps in its lag space. Its strange attrac-

tor as shown in Figure 3d consists of two coexisting and non-interacting Hénon

maps, one for odd k and the other for even k. The expected sensitivities are

S(2) = 1.8959 and S(4) = 0.3, the same as for the simple Hénon map but with

different lags.

Figure 6 shows that the neural network method works very well, while the

other two methods predict an incorrect embedding of 3. Only the neural network

method correctly identifies the gaps in the time lags. It is remarkable that with

only four neurons, the neural network is able to accurately model two co-mingled

two-dimensional nonlinear maps.

4 Data Requirements and Noise

In the real world, data records are often short and contaminated with noise.

The performance of the various methods was tested using time series for the

simple Hénon map of different lengths and with added noise. The performance

was compared by calculating the normalized root mean square error for each

method. For example, the error for the neural network method is given by

E =

√√√√∑d
j=1(Ŝ(j)− S(j))2∑d

j=1 S
2(j)

, (9)

and similarly for the other two methods. For false nearest neighbors, the ex-

pected values were determined from a calculation using 6,000 noise-free data

points from the simple Hénon map. For the correlation dimension, the expected

values were determined from an estimation using 10,000 data points from the

simple Hénon map.
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Figure 7 shows the performance of the three methods for varying amounts

of data. The neural network method works almost perfectly even with as few as

32 data points, whereas the other methods seriously degrade when the number

is less than several hundred.

In all the previous examples, the neural network had fixed values of n and d,

chosen to be adequate for the cases studied. With experimental data, one would

not typically know in advance how to choose d in particular. In such a case,

one could train the network with increasing values of d, looking for a knee in

a plot of the error e versus d, signifying that an adequate embedding had been

achieved, much as one does for false nearest neighbors and for the correlation

dimension. Figure 8 shows such a plot for a variant of the delayed Hénon map

in Equation 7, but with a delay of 5,

xk = 1− 1.6x2k−1 + 0.1xk−5, (10)

This modification results in expected sensitivities S(1) = 1.9018 and S(5)

= 0.1. Figure 8 shows that as d is increased with n = 4 and c = 512, the root

mean square error e falls by a factor of 100 at d = 5 and remains at that level,

signifying that the optimal embedding for next-step prediction was reached. The

normalized root mean square error E in the sensitivities S(j) increases slightly

and then falls by a factor of 2 at d = 5. The knee would have been even more

pronounced for a map with a larger value of S(5), which in this case is only

about 5% of S(1).

To compare the methods in the presence of noise, Gaussian white noise

of varying amounts was added to a time-series with c = 512 from the simple

Hénon map using Equation 9 to compare the three methods, where the expected

values were taken from a noiseless case with 512 data points from the simple

Hénon map. The results in Figure 9 show that the neural network method
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is considerably more robust to noise than are the other methods, but as the

signal-to-noise ratio approaches unity, it too fails.

Since it is well known that colored noise can masquerade for low-dimensional

chaos [21], the same experiment was performed with integrated white noise

(also known as Brownian or 1/f2 noise) with the results shown in Figure 10.

The superiority of the neural network method over the other methods is even

more evident than for the case with white noise, probably because the noise is

concentrated at low frequencies and is relatively small in the band of frequencies

occupied by the signal. Presumably, this result would also hold for other forms

of colored noise.

The typical error bars in Figures 9 and 10 at a signal-to-noise ratio of 7 dB

indicate the standard deviation from the mean of ten different instances of the

time series (different signal and different noise) for each of the indicated cases.

It is not surprising that the neural network completely removes the noise and

gives a low-dimensional attractor since it is entirely deterministic, but at the

expense of some distortion of the signal. Any method that fits a deterministic

model to data by its nature will be noise-free, and thus noise reduction is a

byproduct of the method proposed here.

With real-world data, it is not usually clear what is signal and what is noise,

and thus one can never be confident how much of the difference between the

model and the data is really noise. For that purpose, a number of additional

metrics have been proposed including the (ε, τ)-entropy [22, 23], which gener-

alizes the Kolmogorov-Sinai entropy, the finite-size Lyapunov exponent [15, 16],

which reduces errors due to low-level noise, and the scale-dependent Lyapunov

exponent [24], which extends the finite-size Lyapunov exponent to a range of

sizes and is especially useful for short time series. These metrics may sometimes

be useful for avoiding errors in the embedding caused by noise and to optimize
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the noise reduction, but they are not required for the systems studied in this

paper since we have the luxury of knowing the correct embedding directly from

the form of the maps that were used to test the method.

5 Conclusions

A proposed neural network method for determining the optimal embedding di-

mension for short-term predictability and lag space was tested for time series

generated from various chaotic time-delayed maps and was found to work al-

most perfectly, even with a very small number of neurons. This method performs

much better than false nearest neighbors and the plateau in the correlation di-

mension, neither of which are capable of determining gaps in the embedding

dimension. Furthermore, the neural network method gives quantitative infor-

mation about the relative importance of each time lag in next- step prediction,

which the other methods do not. When the time series is short and/or contam-

inated by noise, the neural network method degrades more gracefully than the

other methods.

We further remark that the method does not require that the model be a

neural network or that it use a hyperbolic tangent basis function. Additionally,

this method could use other universal approximators such as support vector

machines [25], by perturbing the inputs to the network one at a time and mea-

suring its affect on the output. If one has the luxury of having a physically

based model for the system under study, it is almost always a good idea to use

that model rather than a general one such as a neural network, but it must

be a model of sufficiently high dimension with a corresponding large number of

parameters.

It remains to be seen how well the method works for more complicated data

that have been processed by an arbitrary transformation or those obtained from
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sampling a continuous-time system where more complicated network architec-

tures may be required. Even more interesting is to apply the method to time

series records from experimental or observational data. These studies are be-

yond the scope of this paper and will be the subject of future publications.
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[17] M. Hénon, A two-dimensional mapping with a strange attractor, Comm.

Math. Phys. 50 (1976) 69–77.

[18] J.C. Sprott, Chaos and Time-Series Analysis, Oxford, New York, 2003.

14



[19] J.C. Sprott, High-dimensional dynamics in the delayed Hénon map, Elec-
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Figure Captions
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Figure 1: Single layer, feed-forward neural network

Figure 2: Strange attractors of maps studied
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Figure 3: Embedding calculations for simple Hénon map using (a) Neural net-
work sensitivities (b) False nearest neighbors (c) Correlation dimension
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Figure 4: Embedding calculations for Eq. (6) using (a) Neural network sensi-
tivities (b) False nearest neighbors (c) Correlation dimension
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Figure 5: Embedding calculations for delayed Hénon map using (a) Neural
network sensitivities (b) False nearest neighbors (c) Correlation dimension
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Figure 6: Embedding calculations for Goutte map using (a) Neural network
sensitivities (b) False nearest neighbors (c) Correlation dimension

Figure 7: Comparison of three methods for calculating embedding dimension
versus length of the time series c for the Hénon map
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Figure 8: Change in neural network training error and sensitivities while varying
dimensions for the delayed Hénon map

Figure 9: Comparison of three methods for calculating embedding dimension in
the presence of varying degrees of White noise for the Hénon map
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Figure 10: Comparison of three methods for calculating embedding dimension
in the presence of varying degrees of Brownian noise for the Hénon map
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