ES1 - Case A (one plane) f = x x' = fy y' = fz z' = f(-x + ay^2 - xz) a = 1.54 IC = (6, 0, -1) <-- NOTE CHANGE LE = (0.0071, 0, -1.0869) Dky = 2.0065 ES2 - Case F (one plane) f = x x' = fy y' = f(-x + az) z' = f(by^2 - xz) a = 1, b = 3 IC = (0.15, 0, 0.8) LE = (0.0644, 0, -0.8279) Dky = 2.0778 ES3 - Case G (one plane) f = x x' = f(y^2 + axy) y' = -fz z' = f(b + xy) a = 2, b = 1 IC = (0.87, 0.4, 0) LE = (0.0661, 0, -1.6644) Dky = 2.0397 ES4 - Case I (two planes) f = xy x' = -faz y' = f(b + z^2 - xy) z' = f(x^2 - xy) a = 0.4, b = 1 IC = (1, 1.44, 0) <-- NOTE CHANGE LE = (0.1242, 0, -1.8356) Dky = 2.0677 ES5 - Case J (three planes) <-- NOTE CHANGES f = xyz x' = f(y + ayz) y' = f(bz + y^2 + cz^2) z' = f(x^2 - y^2) a = 2, b = 8, c = 7 IC = (1, -1.3, -1) LE = (0.0294, 0, -0.4051) Dky = 2.0725 ES6 - Case D (sphere) f = 1 - x^2 - y^2 - z^2 x' = fay y' = fxz z' = -f(z + x^2 + byz) a = 0.4, b = 6 IC = (0, 0.1, 0) LE = (0.0113, 0, -0.9501) Dky = 2.0119 ES7 - Case H (sphere) f = 1 - x^2 - y^2 - z^2 x' = f(az + y^2) y' = f(-y + bx^2) z' = -fxy a = 1, b = 5 IC = (0.24, 0.2, 0) LE = (0.0323, 0, -0.9552) Dky = 2.0338 ES8 - Case B (circular cylinder) f = 1 - x^2 - y^2 x' = f(y^2 - axy) y' = fxz z' = f(1 - by^2) a = 5, b = 7 IC = (0.06, 0, 1) LE = (0.0388, 0, -1.2078) Dky = 2.0321 ES9 - Case C (hyperbolic cylinder) f = 1 + x^2 - y^2 x' = f(a - z^2) y' = fxz z' = f(y + bxz) a = 0.1, b = 1 IC = (0, -0.08, 0) LE = (0.0420, 0, -0.2230) Dky = 2.1883 ES10 - Case E (paraboloid) f = z + x^2 + y^2 x' = f*yz y' = f*(x - axz) z' = f*(x - bz^2) a = 1, b = 0.6 IC = (0.46, 0, 0.8) LE = (0.0283, 0, -0.6171) Dky = 2.0458 ES11 - Case K (saddle) f = z + x^2 - y^2 x' = fyz y' = -fax z' = f(-z + by^2 + xz) a = 0.1, b = 6 IC = (1, 0, 1) LE = (0.0068, 0, -0.4998) Dky = 2.0135 ES12 - Case L (one plane) f = z x' = -fy y' = -fxz z' = f(ay^2 + xz - b) a = 2, b = 0.35 IC = (0, 0.4, 1) LE = (0.0562, 0, -1.0860) Dky = 2.051