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Outline

I Bio

I Three statistical questions
1. What is the polyclonal fraction?

I estimation

2. Is random collision plausible?
I testing

3. What is the spatial extent of interactions?
I spatial modeling
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Multiple Intestinal Neoplasia (Min) mouse

I Inherits mutation in the tumor suppressor gene Apc
(adenomatous polyposis coli)

I Presents X intestinal tumors (quantitative trait)

I Provides an animal model of intestinal cancer

I Biology of tumor initiation not well understood

I Full Apc inactivation is an early event in tumor formation

I Distribution of X is affected by modifier genes
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Clonal or polyclonal origin?

clonal cells of a tumor descend from a single initiated
aberrant cell

polyclonal cells descend from multiple initiated cells
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Aggregation chimeras enable detection of polyclonality
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Intestinal epithelium of B6 chimera: patchwork, tumor

B6 ApcMin/+ Mom1R/R ←→ B6 ApcMin/+ Mom1R/R ROSA26/+
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Section shows tumor cells from both embryonic lineages
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Heterotypic tumors not infrequent at low tumor multiplicity

Counts of small intestinal tumors
Mouse %blue Total Heterotypic Pure blue Pure white Ambiguous

1 20 19 5 5 6 3
2 85 24 3 13 6 2
3 20 9 2 2 5 0
4 60 19 3 2 10 4
5 30 24 2 0 21 1
6 50 9 2 2 3 2
7 40 8 5 0 3 0

Total 112 22 24 54 12
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Heterotypic ⇒ polyclonal, but, polyclonal ; heterotypic

Clonality
Phenotype monoclonal (C = 1) polyclonal (C > 1)
blue (B) P {B ∩ (C = 1)} P {B ∩ (C > 1)} P(B)

white (W ) P {W ∩ (C = 1)} P {W ∩ (C > 1)} P(W )
heterotypic (HET) 0 P {HET ∩ (C > 1)} P(HET)

P(C = 1) θ = P(C > 1) 100%
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Q1: What fraction θ of tumors are polyclonal?

I HET ⊂ (C > 1)⇒ P(HET) ≤ θ

I 22/(22 + 24 + 54) = 22%

I Is there a better estimate or lower bound?

I Novelli et al. 1996 proposed the lower bound

β =
P(HET)

P(HET ∪HOMmin)

I 22/(22 + 24) = 48%
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Novelli’s bound β is not valid

Theorem: Depending on system, either β ≥ θ or β ≤ θ.

Sketch: Novelli’s β is ok if θ = θ∗ = P(C > 1|HET ∪HOMmin),
but there is a gap θ < θ∗, under some regularity. �

Problem: Estimation of θ is sensitive to assumptions about the
mechanisms by which clones are bound into polyclonal tumors.
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Random collision: a simple mechanism of polyclonality
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Q2: Are the data consistent with random collision?

Idea: Considering low tumor multiplicity and small size, the
number of collisions should be low on H0.

Test statistic: Number of heterotypic tumors

Methods:

I Unknown, mouse specific numbers of initiated cells

I Complicated distributions induced on # collided pairs,
triples, etc.

I Overdispersion

I DETAILS of stochastic geometry approxs & posterior
predictive inference approach
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Random collision is not plausible
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Going further

Spatial data and analysis reveal the extent of spatial
interaction among clones.

Newton On polyclonality of intestinal tumors



Polyclonal tumors have opportunity to be heterotypic at
boundaries

Intestinal epithelium adjacent to a tumor

...plus more...images from regions adjacent to every tumor in 3 mice
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Crypts, rather than cells, are the basic structural units

crypt an organized group of proliferating cells
- intestinal epithelium formed from O(105) crypts
- crypts are clonal

Crypts from non-chimeric mouse

Problem: Blue/white images mask crypt arrangement
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Crypt arrangement data from non-chimeric mouse

On Delaunay triangulation
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Computational inference task

Combine
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Statistical reconstruction of crypts in chimeric patches

# crypts 5642 # edges 16902 # triangles 33765
% white 39 % white 33 % white 29

% mixed 14 % mixed 21
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Blow up

Newton On polyclonality of intestinal tumors



Approach: Bayesian image restoration

I data I , a chimeric pattern image

I unknown crypt layout c = {ci}, the collection of crypt centers

I crypt reconstructions ĉ by MCMC sampling from

p(c |I ) ∝ p(c)︸︷︷︸
prior

p(I |c)︸ ︷︷ ︸
likelihood

I estimate detection rate P(HET|C > 1) or P(HET) as f (ĉ)
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Image prior

I point process prior for crypt centers c

I p(c) ∝ exp
{
−
∑

(i ,j) h(di ,j)
}

for a potential function h and

inter-crypt distances {di ,j}
I hard core model; Ripley model; (fixed n)

I Estimate prior features using crypt arrangement data.

I Details
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Image likelihood

Model: p(I |c)

I Premise: crypts are probably pure

I Latent crypt colors (blue/white) iid Bernoulli(p)

I If crypt i is blue, each pixel in circle near ci is white w.p. ε.

I If crypt i is white, each pixel in circle near ci is blue w.p. ε

p(I |c) =

{∏
i

pεw(i)(1− ε)b(i) + (1− p)εb(i)(1− ε)w(i)

} {
pB(1− p)W

}

where w(i) and b(i) are numbers of white and blue pixels near i , and W and B
are numbers in the intercryptal space.
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Posterior sampling

For each image:

I run Metropolis algorithm from regular hexagonal start

I pluck end state as reconstruction ĉ

I triangulate ĉ and compute summaries f (ĉ)

Fortunately:

I very low posterior variance of certain features f (c)

I good robustness to n
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Crypt reconstruction indicates short-range interactions
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Concluding remarks

I Intestinal tumors can be polyclonal.
I Min mouse chimera; improved marker; reduced multiplicity

I Estimation of the polyclonal fraction is difficult
I Novelli’s bound
I sensitivity to polyclonal mechanism

I Heterotypic rates are too large for random collision.
I stochastic geometry
I posterior predictive p-values

I Local interaction at the range of 1 to 2 neighboring crypts
explains the data.

I crypt reconstruction via Bayesian image analysis; disc model
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Appendices
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Random collision hypothesis

I RC:
I N initiated cells emerge randomly within intestine
I Two collide if they are within δ
I Tumors correspond to connected subsets of the induced graph

I Is there an argument against random collision using count and
size data?

I Intuition: we see more mixed tumors than expected
considering small sizes and low multiplicity

Newton On polyclonality of intestinal tumors



Simple collision theory

N = number of initiated crypts
= X1 + 2X2 + 3X3 + · · ·

where Xj = number of tumors formed from j collided crypts
and thus the number of tumors is X =

∑
j Xj .

From Armitage (1949)

E (X1) ≈ N exp(−4ψ)

E (X2) ≈ 2N

(
ψ − 4π + 3

√
3

π
ψ2

)

E (X3) ≈ N

(
4(2π + 3

√
3)

3π
ψ2

)
.

where ψ = πNδ2/(4A)
Poisson approximation holds under sparse graph conditions
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Testing random collision

I Use size data to set δ

I Develop Poisson/neg. binomial model for singles X i
1, doubles

X i
2, and triples X i

3, mouse i

I Conditional on count data {X i = (X i
1 + X i

2 + X i
3)}, simulate

posterior of singles, doubles and triples

I Simulate posterior predictive of numbers sectored
I randomly paint doubles, triples

I Compare to observed numbers sectored
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Poisson/negative binomial

Unknowns

I µ expected number of initiated crypts per mouse

I Zi Gamma(α, α) over-dispersion effect, mouse i

I α shape parameter

I (X i
1,X

i
2,X

i
3) counts of singles, doubles, triples, mouse i

Use conditional Poisson model with N replaced by µZi for mouse i

Fit by MCMC
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Posterior
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Posterior predictive
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Random collision test results

Tumor count
Mouse ID %blue tissue total white blue heterotypic NA p-value

100 20 19 6 5 5 3 0.000
122 85 24 6 13 3 2 0.002
154 20 9 5 2 2 0 0.002
209 60 19 10 2 3 4 0.004
225 30 24 21 0 2 1 0.062
237 50 9 3 2 2 2 0.004
244 40 8 3 0 5 0 0.000

δ = 1.5mm
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Model checking
Return to main
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Novelli’s bound compared to θ: biclonal model
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Tessellation and Triangulation

Return to crypts
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A useful image transform
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Chimeric pattern image summaries
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Disc model

Assume S = # heterotypic tumors ∼ Binomial {n, θF (r)},
where θ is the polyclonal fraction.
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Disc model results

Inference - short-range interactions explain the tumor count data

Limitations - model allows elementary interactions only
- characterization is not in terms of crypt structure
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Return to crypts
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Crypt data

Crypt locations, sample region (data A)
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Fitting1 and checking spatial model of crypt locations

1maximum pseudo-likelihood
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Return to main
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