On polyclonality of intestinal tumors

Michael A. Newton

University of Wisconsin

Chaos and Complex Systems April 2006

(周) (日) (日)

-2

Thanks

Linda Clipson W.F. Dove Rich Halberg Stephen Stanhope Ruth Sullivan Andrew Thliveris

< □ > < 三 >

Outline

Bio

Three statistical questions

- 1. What is the polyclonal fraction?
 - estimation
- 2. Is random collision plausible?
 - testing
- 3. What is the spatial extent of interactions?
 - spatial modeling

Multiple Intestinal Neoplasia (Min) mouse

- Inherits mutation in the tumor suppressor gene Apc (adenomatous polyposis coli)
- Presents X intestinal tumors (quantitative trait)
- Provides an animal model of intestinal cancer

- Biology of tumor initiation not well understood
- ▶ Full Apc inactivation is an early event in tumor formation
- Distribution of X is affected by modifier genes

< 同 > < 三 >

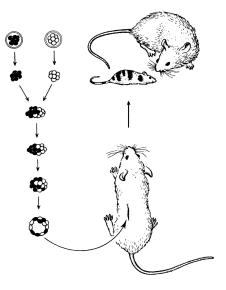
Clonal or polyclonal origin?

- *clonal* cells of a tumor descend from a single initiated aberrant cell
- polyclonal cells descend from multiple initiated cells

イロト イポト イヨト イヨト

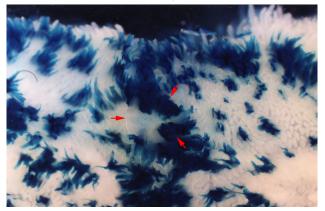
-1

Aggregation chimeras enable detection of polyclonality



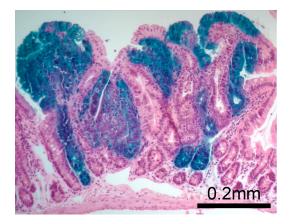
Intestinal epithelium of B6 chimera: patchwork, tumor

 $B6 Apc^{Min/+} Mom1^{R/R} \longleftrightarrow B6 Apc^{Min/+} Mom1^{R/R} ROSA26/+$



A (1) < (1) < (2) </p>

Section shows tumor cells from both embryonic lineages



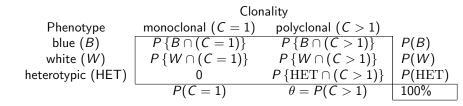
Heterotypic tumors not infrequent at low tumor multiplicity

		Counts of small intestinal tumors				
Mouse	%blue	Total	Heterotypic	Pure blue	Pure white	Ambiguous
1	20	19	5	5	6	3
2	85	24	3	13	6	2
3	20	9	2	2	5	0
4	60	19	3	2	10	4
5	30	24	2	0	21	1
6	50	9	2	2	3	2
7	40	8	5	0	3	0
Total		112	22	24	54	12

- ∢ ≣ →

-2

Heterotypic \Rightarrow polyclonal, *but*, polyclonal \Rightarrow heterotypic



< 🗇 🕨 🔺 🖻 🕨

Q1: What fraction θ of tumors are polyclonal?

• HET
$$\subset (C > 1) \Rightarrow P(\text{HET}) \leq \theta$$

▶
$$22/(22+24+54) = 22\%$$

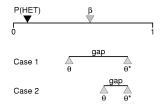
- Is there a better estimate or lower bound?
 - Novelli et al. 1996 proposed the lower bound

$$\beta = \frac{P(\text{HET})}{P(\text{HET} \cup \text{HOM}_{\min})}$$

Novelli's bound β is not valid

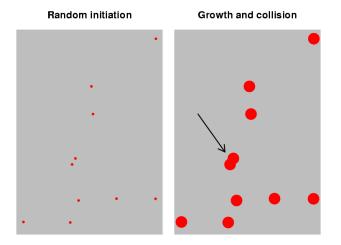
Theorem: Depending on system, either $\beta \ge \theta$ or $\beta \le \theta$.

Sketch: Novelli's β is ok if $\theta = \theta^* = P(C > 1 | \text{HET} \cup \text{HOM}_{\min})$, but there is a gap $\theta < \theta^*$, under some regularity. \Box



Problem: Estimation of θ is sensitive to assumptions about the mechanisms by which clones are bound into polyclonal tumors.

Random collision: a simple mechanism of polyclonality



A (10) > (10)

æ

Q2: Are the data consistent with random collision?

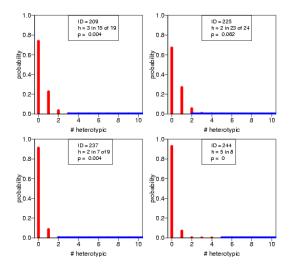
Idea: Considering low tumor multiplicity and small size, the number of collisions should be low on H_0 .

Test statistic: Number of heterotypic tumors

Methods:

- Unknown, mouse specific numbers of initiated cells
- Complicated distributions induced on # collided pairs, triples, etc.
- Overdispersion
- DETAILS of stochastic geometry approxs & posterior predictive inference approach

Random collision is not plausible

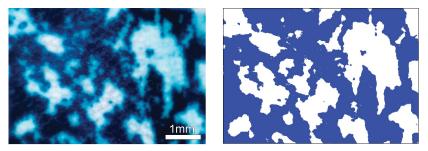


Going further

Spatial data and analysis reveal the extent of spatial interaction among clones.

Polyclonal tumors have opportunity to be heterotypic at boundaries

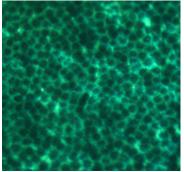
Intestinal epithelium adjacent to a tumor



...plus more...images from regions adjacent to every tumor in 3 mice

Crypts, rather than cells, are the basic structural units

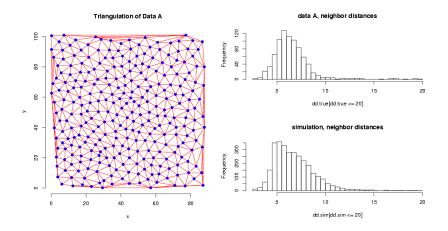
- crypt an organized group of proliferating cells
 - intestinal epithelium formed from $O(10^5)$ crypts
 - crypts are clonal



Crypts from non-chimeric mouse

Problem: Blue/white images mask crypt arrangement

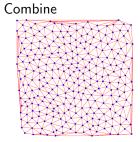
Crypt arrangement data from non-chimeric mouse

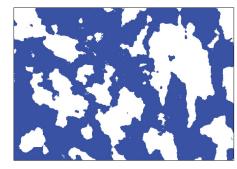


On Delaunay triangulation

イロト イヨト イヨト イヨト

Computational inference task

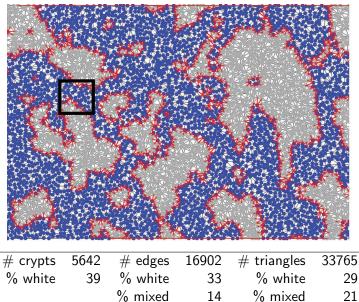




・ロト ・ 日 ・ ・ ヨ ト・・

표 문

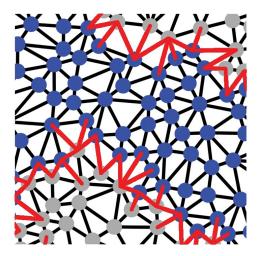
Statistical reconstruction of crypts in chimeric patches



Newton

On polyclonality of intestinal tumors

Blow up



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Approach: Bayesian image restoration

- data I, a chimeric pattern image
- unknown crypt layout $c = \{c_i\}$, the collection of crypt centers
- crypt reconstructions \hat{c} by MCMC sampling from

$$p(c|I) \propto \underbrace{p(c)}_{prior} \underbrace{p(I|c)}_{likelihood}$$

▶ estimate detection rate P(HET|C > 1) or P(HET) as f(ĉ)

Image prior

- point process prior for crypt centers c
- ▶ $p(c) \propto \exp\left\{-\sum_{(i,j)} h(d_{i,j})\right\}$ for a potential function h and inter-crypt distances $\{d_{i,j}\}$
- hard core model; Ripley model; (fixed n)
- Estimate prior features using crypt arrangement data.

Details

Image likelihood

Model: p(I|c)

- Premise: crypts are probably pure
- Latent crypt colors (blue/white) iid Bernoulli(p)
- lf crypt *i* is blue, each pixel in circle near c_i is white w.p. ϵ .
- If crypt *i* is white, each pixel in circle near c_i is blue w.p. ϵ

$$p(I|c) = \left\{ \prod_{i} p \epsilon^{w(i)} (1-\epsilon)^{b(i)} + (1-p) \epsilon^{b(i)} (1-\epsilon)^{w(i)} \right\} \left\{ p^{B} (1-p)^{W} \right\}$$

where w(i) and b(i) are numbers of white and blue pixels near *i*, and *W* and *B* are numbers in the intercryptal space.

(D) (A) (A)

Posterior sampling

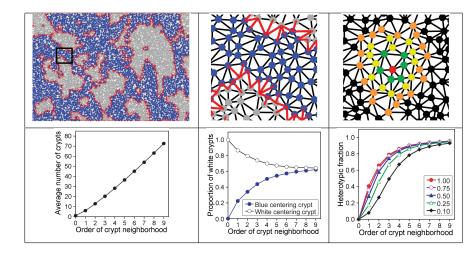
For each image:

- run Metropolis algorithm from regular hexagonal start
- pluck end state as reconstruction \hat{c}
- triangulate \hat{c} and compute summaries $f(\hat{c})$

Fortunately:

- very low posterior variance of certain features f(c)
- good robustness to n

Crypt reconstruction indicates short-range interactions



・ロト ・ 日 ・ ・ ヨ ト・・

.⊒ .⊳

Concluding remarks

- Intestinal tumors can be polyclonal.
 - Min mouse chimera; improved marker; reduced multiplicity
- Estimation of the polyclonal fraction is difficult
 - Novelli's bound
 - sensitivity to polyclonal mechanism
- ▶ Heterotypic rates are too large for random collision.
 - stochastic geometry
 - posterior predictive p-values
- Local interaction at the range of 1 to 2 neighboring crypts explains the data.
 - crypt reconstruction via Bayesian image analysis; disc model

・ 同 ト・ ・ ヨート・ ・ ヨート

Newton, MA (2006). On estimating the polyclonal fraction in lineage-marker studies of tumor origin. *Biostatistics*, in press.

Newton, MA, Clipson, L, Thliveris, AT, and Halberg, RB (2006). A statistical test of the hypothesis that intestinal tumors arise by random collision of initiated clones. *Biometrics*, in press.

Thliveris, AT, Halberg, RB, Clipson L, Dove, WF, Sullivan, R, Washington, MK, Stanhope, S, and Newton, MA (2005). Polyclonality of familial murine adenomas: Analysis of mouse chimeras with low tumor multiplicity suggest short-range interactions. *Proc. Natl. Acad. Sci.* USA, 102, 6960-6965.

・ 同 ト・ ・ ヨート・ ・ ヨート

Thanks

(日) (四) (E) (E) (E)

Appendices

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

Random collision hypothesis

► RC:

- N initiated cells emerge randomly within intestine
- \blacktriangleright Two collide if they are within δ
- Tumors correspond to connected subsets of the induced graph
- Is there an argument against random collision using count and size data?
- Intuition: we see more mixed tumors than expected considering small sizes and low multiplicity

・ 同 ト・ ・ ヨート・ ・ ヨート

Simple collision theory

$$N$$
 = number of initiated crypts
= $X_1 + 2X_2 + 3X_3 + \cdots$

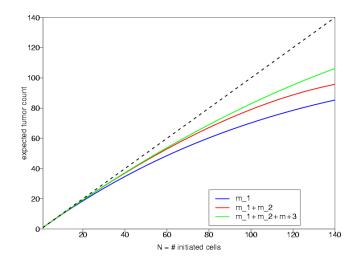
where X_j = number of tumors formed from j collided crypts and thus the number of tumors is $X = \sum_j X_j$. From Armitage (1949)

$$E(X_1) \approx N \exp(-4\psi)$$

$$E(X_2) \approx 2N\left(\psi - \frac{4\pi + 3\sqrt{3}}{\pi}\psi^2\right)$$

$$E(X_3) \approx N\left(\frac{4(2\pi + 3\sqrt{3})}{3\pi}\psi^2\right).$$

where $\psi = \pi N \delta^2 / (4A)$ Poisson approximation holds under sparse graph conditions



(中) (종) (종) (종) (종) (종)

Testing random collision

- Use size data to set δ
- Develop Poisson/neg. binomial model for singles Xⁱ₁, doubles Xⁱ₂, and triples Xⁱ₃, mouse i
- Conditional on count data {Xⁱ = (X₁ⁱ + X₂ⁱ + X₃ⁱ)}, simulate posterior of singles, doubles and triples
- Simulate posterior predictive of numbers sectored
 - randomly paint doubles, triples
- Compare to observed numbers sectored

Poisson/negative binomial

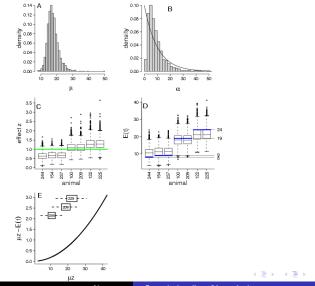
Unknowns

- μ expected number of initiated crypts per mouse
- \blacktriangleright Z_i Gamma(α, α) over-dispersion effect, mouse i
- α shape parameter
- (X_1^i, X_2^i, X_3^i) counts of singles, doubles, triples, mouse *i*

Use conditional Poisson model with N replaced by μZ_i for mouse i

Fit by MCMC

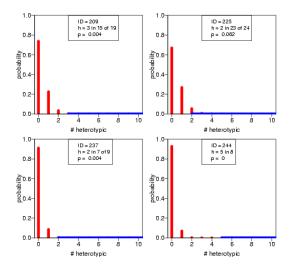
Posterior



Newton On polyclonality of intestinal tumors

æ

Posterior predictive



Random collision test results

		Tumor count					
Mouse ID	%blue tissue	total	white	blue	heterotypic	NA	p-value
100	20	19	6	5	5	3	0.000
122	85	24	6	13	3	2	0.002
154	20	9	5	2	2	0	0.002
209	60	19	10	2	3	4	0.004
225	30	24	21	0	2	1	0.062
237	50	9	3	2	2	2	0.004
244	40	8	3	0	5	0	0.000

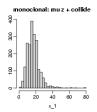
 $\delta=1.5mm$

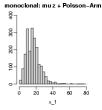
イロン イヨン イヨン イヨン

æ

Model checking

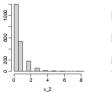
▲ Return to main





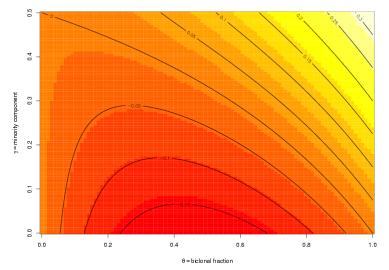
biclonal: muz + collide

biclonal: muz + Poisson–Arm



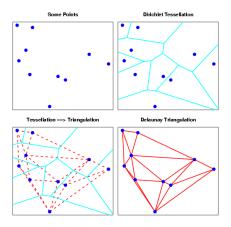
Novelli's bound compared to θ : biclonal model

 $\Delta = \theta - N$ ovelli's ratio



- 9 Q C

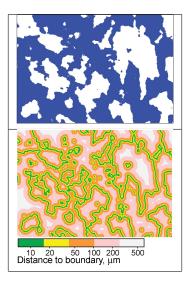
Tessellation and Triangulation



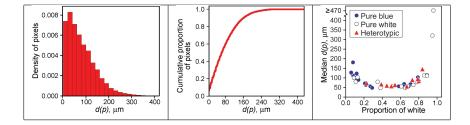
Return to crypts

<ロ> (四) (四) (注) (注) (注) (三)

A useful image transform



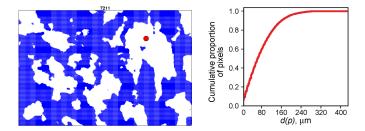
Chimeric pattern image summaries



・ロト ・ (日)・ ・ (日)・ ・ (日)・ ・

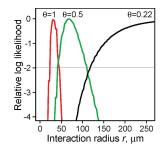
Disc model

Assume S = # heterotypic tumors \sim Binomial $\{n, \theta F(r)\}$, where θ is the polyclonal fraction.



A (1) < (1) < (1) < (1) </p>

Disc model results



Inference - short-range interactions explain the tumor count data

Limitations - model allows elementary interactions only

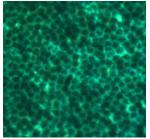
- characterization is not in terms of crypt structure

・ 同 ト・ ・ ヨート・ ・ ヨート

◆□> <圖> <≧> <≧> <≧> <=> のへで

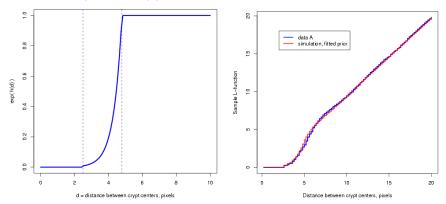
Crypt data

Crypt locations, sample region (data A)



< □ > < 三

Fitting¹ and checking spatial model of crypt locations



Newton

Fitted potential function; Ripley's model

¹maximum pseudo-likelihood

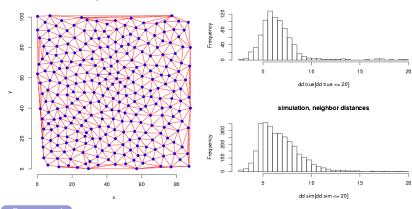
On polyclonality of intestinal tumors

イロト イヨト イヨト イヨト

Triangulation of Data A

data A, neighbor distances

◆□> ◆□> ◆目> ◆目> ●目



▲ Return to main