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Harlem is a ruin−many of its ordinary aspects (its crimes, its casual 
violence, its crumbling buildings with littered areaways, ill-smelling halls 
and vermin infested rooms) are indistinguishable from the distorted 
images that appear in dreams, and which, like muggers in a lonely hall, 
quiver in the waking mind with hidden and threatening significance.  Yet 
this is no dream but the reality of well over four hundred thousand 
Americans; a reality which for many defines and colors the world.  
Overcrowded and exploited politically and economically, Harlem is the 
scene and symbol of the Negro’s perpetual alienation in the land of their 
birth.  
  

 
Ralph Ellison, Harlem in Nowhere (1948) 
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Not only is the pathology of the ghetto self-perpetuating, but one kind of 
pathology breeds another. The child born into the ghetto is more likely to 
come into a world of broken homes and illegitimacy; and this family and 
social instability is conducive to delinquency, drug addiction, and criminal 
violence. Neither instability nor crime can be controlled by police 
vigilance or by reliance on the alleged deterring forces of legal 
punishment, for the individual crimes are to be understood more as 
symptoms of the contagious sickness of the community itself rather than 
as the result of inherent criminal or deliberate viciousness. 
 
 

Kenneth B. Clark, Dark Ghetto (1965) 
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…changes have taken place in ghetto neighborhoods, and the groups 
that have been left behind are collectively different than those that lived 
in these neighborhoods in earlier years.  It is true that long-term welfare 
families and street criminals are distinct groups, but they live and interact 
in the same depressed community and they are part of the population 
that has, with the exodus of the more stable working- and middle-class 
segments, become increasingly isolated socially from mainstream 
patterns and norms of behavior 
 

William Julius Wilson, The Truly Disadvantaged (1993) 
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Examples of Facts to Explain 
 

% of births out of wedlock 
(Child Trends 2005) 

 
 

White: 25.4% 

Black: 69.5% 

Hispanic: 47.9% 

Asian/Pacific Islander: 16.2% 
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High School Smoking Rates by Ethnicity/Gender 
(CDC 2007) 

 
White Males: 23.8% 

White Females: 22.5% 

Black Males: 14.9% 

Black Females: 8.4% 

Hispanic Males: 19.7% 

Hispanic Females: 14.6% 
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Social Interactions: Basic Ideas 
 

1. Individual beliefs, preferences, and opportunities are conditioned by 

group memberships.   

 

2. Memberships evolve in response to these interactions.  Groups stratify 

along characteristics which affect outcomes. 

 

3. Inequality and poverty result as family dynasties persistently face 

different interaction environments   

 

 

This paper is about econometrics of this perspective. 
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Outline 

 
1. Linear in Means Models: Theory 

 

2. Linear in Means Models: Identification 

 

3. Social Networks Models 

 

4. Concluding Comments 
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Why Linear Models? 

 

Most common class of models in the empirical social interactions 

literature. 

 

Objective is to highlight identification properties under “ideal” error 

assumptions, i.e. no self-selection, unobserved group effects. 
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1. Linear in Means Model: Theory 

 

Linear models of social interactions are used to study the joint behavior 

of  individuals who are members of a common group g .   

 

The population size of a group is denoted as gn .  Our objective is to 

probabilistically describe the individual choices of each i , ω ,i g .  We index 

the individual choices by g  to emphasize that they are group-specific.   
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i. structure 
 

The linear in means model can be derived simply as a Bayes-Nash 

equilibrium of a game in which each individual's choice is determined by 

a private benefit and a conformity benefit.   

 

Not surprisingly, the utility functions are quadratic, and the conformity 

benefit is modeled as linearly decreasing in the quadratic deviation of an 

individual's choice from the average behavior of all other players.    

Group membership is exogenous.  An individual's realized utility depends 

upon his own choice and the choices of others.   
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Utility takes the form 

 

 ( ) ( )ω ϖωω ω θ ω ω− −= − − −
2

2,
, , , ,, ,2

,
2i

i g
i i g i g i g i g ig gu   

 

where ω ω−
≠

=
− ∑, ,

1
1i g j g

j ign
 is the average choice of the others in g .  The 

individual marginal benefit θ ,i g  is assumed to linearly decompose as 

  

 θ χ χ χ= + + +, 0 1 2i g i g ix y e   

 

where ix  and ie  are observable and unobservable individual 

characteristics and gy  is a vector of observable group characteristics. 
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The determination of individual choices is a game of incomplete 

information, since each individual, and only that individual, observes ie .   

 

Group characteristics unobservable to individual group members are 

irrelevant to choices as this model exhibits certainty equivalence in 

individual choices. 

 

The ie  elements are i.i.d. draws from a distribution on the real line R  with 

mean 0.   
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For expositional purposes it will be useful to write 

 

θ γ γ= + +, ii g g ie  

 

where  

 

γ χ χ= +0 2g gy  is the internally (to the actors) observable group 

contribution to the marginal utility of ω ,i g , and  γ χ= 1i ix  is the externally 

(to the econometrician) observable contribution to marginal utility of an 

individual's characteristics. 
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ii. existence of equilibrium 
 

In a Bayes-Nash equilibrium, each individual maximizes expected utility, 

taking the expectation on ω− ,i g  with respect to his belief distribution, and 

all belief distributions will be correct.  The first-order condition for 

individual i  is 

 

 ( )γ γ ϖ ω ω ω−+ + − − − =, , , 0,g i i i g i g i ge E   

  

and so 
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ϖω γ γ ω
ϖ ϖ ϖ ϖ

χ χ
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ϖ ϖ ϖ
χ ϖ

ϖ ϖ

−

−

= + +
+ + + +

+ + +
+ + +

+ =

+
+ +

0
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Notice that the shock 
ϖ +

1
1 ie , has a variance that is affected by the 

strength of the conformity parameter.  In other words, the regression 

errors in the econometric model are proportional to private utility shocks.  
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We find an equilibrium by positing a functional form with undetermined 

coefficients, and then solving for the coefficients to make the beliefs 

correct.  It will be convenient to define γ γ−
≠

=
− ∑,

1
1i g j

j ign
 to be the mean 

observable type component in the population.  This is simply a sample 

mean.  We suppose that for each individual j . 

 

 ω γ γ γ −= + + + +, . .j gj g j g jA B C De F   
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We derive consistency of beliefs by assuming all individuals other than 

individual i   are choosing according to this functional form, computing 

the best response for individual i , seeing that it is of this linear form, and 

then solving for the coefficient values such that A through F  are 

common through the entire population.  We compute the best response 

simply by deriving an expression for ω− ,i g  by substitution.  After some 

algebra one can show that the coefficients fulfill 

 

ϖϖ ϖ ϖ
ϖ ϖ ϖ ϖ ϖ

+ −+ +
= = = = =

+ + + + +

( ( 2) )1 1 1, , , ,
1 1 1 1 1

gB n CA C FA B C D F   
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Solving these equations gives the values of the undetermined 

coefficients.   

 

 
ϖ ϖ

ω γ γ γ
ϖ ϖ ϖ−

− + −
= + + +

+ − + − +, ,

1 ( 1) 1
( 1) 1 ( 1) 1 1

g g
i g i i g i

g
g

g

n n
e

n n
 . 

 

This is the exact description of the reduced form for individual choices in 

the Bayes-Nath equilibrium.  
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When the population size is large, this is approximately 

 

 ϖω γ γ γ
ϖ ϖ ϖ

= + + +
+ + +,
1 1

1 1 1i g g i g ie   

 

where γ g  is the group-level average of γ i .   
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Recalling the definitions of the γ  terms, 

 

 χ ϖχ
ω χ χ

ϖ ϖ ϖ
= + + + +

+ + +
1 1

, 0 2
1

1 1 1i g gg i iy x x e   

 

where gx  is the group mean of the individual characteristics.   

 

 

This is the reduced form for individual behavior in the linear in mean 

model. 
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iii. uniqueness of Bayes-Nash equilibrium 
 

Strategies are maps 

 

 ( )γ γ γ − ,: , , , .i gg i if e R   

 

The preceding section demonstrates the existence of a symmetric 

Bayes-Nash equilibrium with linear strategies.  Discrete-choice models of 

social interaction are replete with multiple equilibria, so one might believe 

that multiple equilibria may arise here as well.  This is not the case. 
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Theorem. Uniqueness of equilibrium in the linear in means model 
 
The Bayes Nash equilibrium strategy for the linear in means model of 

social interactions model is unique. 
 

Comment: no large population approximation was taken. 

 

Comment: Theorem generalizes to more general networks (Blume, 

Brock, Durlauf, and Jayaraman (2011) 

  



26 
 

2. Linear in means models of social interactions: econometrics 
 

 ω ε= + + + +, ,
e

i g i g i g ik cx dy Jm .  

 

where ,
e
i gm  denotes the expected average behavior of others in the 

group, i.e. ( )ω
∈

= ∑,
1e

i g j i
j gg

m E F
n
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Claims about social interactions are, from the econometric perspective, 

equivalent to statements about the values of d  and J .   

 

The statement that social interactions matter is equivalent to the 

statement that at least some element of the union of the parameters in d  

and J  is nonzero.   

 

The statement that contextual social interactions are present means that 

at least one element of d  is nonzero.   

 

The statement that endogenous social interactions matter means that J  

is nonzero.   
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In Manski’s original formulation, =g gy x , where 
∈

= ∑1
g i

i gg

x x
n

 denotes the 

average across i  of ix  within a given g , which explains the model’s 

name.   

 

 ( )ε∀ ∈ =,  , , 0i g gi g E x y i g . 

 

The inclusion of ∈i g  means that we take the expectation conditional on 

membership in the group.   This rules out any effect of selection on 

unobservables.  Second we assume that errors are conditionally 

independent. 
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Under the Bayes Nash assumption 

 

 
+ +

= ≡
−1
g ge

g g

k cx dy
m m

J
.  

 

The equation says that the individuals’ expectation of average behavior 

in the group equals the average behavior of the group, and this in turn 

depends linearly on the average of the individual determinants of 

behavior, gx , and the contextual interactions that the group members 

experience in common. 

  



30 
 

Reduced form 
 

Substitution to eliminate gm  provides a reduced form version of the linear 

in means model in that the individual outcomes are determined entirely 

by observables and the individual-specific error: 

 

 ω ε+ + + +
− − −, = .

1 1 1i g i g g i
k J dcx cx y

J J J
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Much of the empirical literature has ignored the distinction between 

endogenous and contextual interactions, and has focused on this 

reduced form, i.e. focused on the regression 

 

 ω π π π ε+ + +, 0 1 2= .i g i g ix y   

 

where the parameters π π π0 1 2, ,  are taken as the objects of interest in the 

empirical exercise.  A comparison with the original linear in means model 

indicates how findings in the empirical literature that end with the 

reporting of π π π0 1 2, ,  inadequately address the task of fully characterizing 

the social interactions that are present in the data 
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Instrumental variables and the reflection problem 
 

It is obvious that if ωg  is projected against the union of elements of a 

constant, gx  and gy , this produces the population mean gm , if this is the 

information set of each agent.  Making this assumption, we can proceed 

as if gm  is observable.  Put differently, our identification arguments rely 

on the analogy principle which means that one works with population 

moments to construct identification arguments.   
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Hence one can study identification of the linear in means model from the 

vantage point of the standard rank and order conditions of simultaneous 

equations theory.   

 

Since gy  appears in the reduced form, it will not facilitate identification.   

 

As we shall see, identification via instrumental variables is determined by 

the informational content of gx  relative to gy . 
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As first recognized by Manski (1993), identification can fail for the linear 

in means model.   

 

This may be most easily seen under Manski’s original assumption that 

=g gy x . This means that every contextual effect is the average of a 

corresponding individual characteristic.  In this case,  

 

 
( )+ +

=
−1

g
g

k c d y
m

J
.  

 

This means that This linear dependence means that identification fails: 

Manski (1993) named this failure the reflection problem.   
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When Will Identification Hold? 

 

Let ( ),proj a b c  denote the linear projection of the scalar random variable 

a  onto the elements of the random vectors b and c .  

 

Theorem. Identification of the linear in means model of social 
interactions. 
 

Using aggregate data, identification of the parameters ( ), , ,k c J d  requires 

( ) ( )ω ω− ≠1, , 1, 0g g g g gproj y x proj y . 
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What is an Example of an Individual-Level Variable Whose Group 
Level Analog Does Not Appear in the Linear in Means Model? 

 
 
Heckman’s selection correction! 
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Following Heckman’s original (1979) reasoning, one can think of 

individuals choosing between groups = 1,...,g G based on an overall 

individual-specific quality measure for each group: 

 

γ γ γ ν= + + +*
, 1 2 3 , ,i g i g i g i gI x y z , 

 

where ,i gz  denotes those observable characteristics that influence i ’s 

evaluation of group g  but are not direct determinants of ωi  and ν ,i g  

denotes an unobservable individual-specific group quality term.  

Individual i  chooses the group with the highest *
,i gI .  We assume that 

∀ ,i g , ( )ε =,, , 0i i g i gE x y z  and ( )ν =, ,, , 0i g i g i gE x y z .    
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From this vantage point, self selection implies 

 

( )ε ∈ ≠1 1 ,1 ,, , , ,...., , , , 0i i i G G i GE x x y z x y z i g  

 

Notice that this expression includes the characteristics of all groups; this 

conditioning reflects the fact that the choice of group g  depends on 

characteristics of the groups that were not chosen in addition to the 

characteristics of the group that was chosen.   
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The linear in means model, under self-selection, should be written as 

 

( )ω ε ξ= + + + ∈ +, 1 1 ,1 ,, , , ,...., , , ,i g i g g i i i G G i G icx dy Jm E x x y z x y z i g . 

 

where by construction ( )ξ ∈ =1 1 ,1 ,, , , ,...., , , , 0i i i G G i GE x x y z x y z i g .  Notice 

that the conditioning includes the characteristics of all groups in the 

choice set; this is natural since the characteristics of those groups not 

chosen are informative about the errors. 

 
This is a case where identification can hold under self-selection but 
fail under random assignment. Idea is being pursued in general 
network contexts. 
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3.  Social Networks Models 

 

In defining the social interactions thus far we have presumed that 

interactions are generated by group-specific averages.  

 

While the linear in means model is a good starting point for the study of 

social interactions, social networks allow for a much richer specification 

of social relations.  
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Background: Graphs and Social Networks 

Directed graphs consist of vertices (also known as nodes) and directed 

edges.   

 

A directed edge is an ordered pair ( ),i j  of vertices.   

 

A directed graph is a pair ( ),V E  where V  is the set of nodes, and has 

cardinality Vn , and E  is the set of edges.   

 

A social network is a graph ( ),V E  where V  is a set of individuals and the 

directed edges in E  signify social influence; ( ),i j  is in E  if and only if j  

influences i . 
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Adjacency Matrix 
 

A social network can be represented by an adjacency matrix A, also 

known as a sociomatrix in the mathematical sociology literature.  

 

An adjacency matrix is an ×V Vn n  matrix, with one row and one column 

for each individual in V .   

 

For each pair of individuals i  and j , = 1ija  if there is an edge from i  to j , 

and 0 otherwise.  Since the network is supposed to represent social 

connections, it is natural to assume that no i  is connected to himself.  
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Undirected Graphs 
 

While social influence can be a one-way relationship, we usually think of 

some relationships, for example friendship, as being bidirectional.   

 

A bidirectional social network is represented by an undirected graph.   

 

Edges are now undirected, and so there is a path from i  to j  if and only if 

there is a path from j  to i .   
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Transitivity 
 

Sociologists allege that social relations like friendship exhibit the property 

of homophily− loosely but accurately described by the phrase “the friend 

of my friend is my friend, too.”  This property is described by the 

prevalence of transitive triads.  

 

Triads are connected subgraphs consisting of three nodes.  Transitivity is 

the property that the existence of an edge from node i  to j  and an edge 

from j  to k  implies the existence of an edge from i  to k .   

 

A graph is transitive if it contains no intransitive triads.  
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The Linear in Means Model as a Special Case 
 

The linear in means model is specified by assuming A is symmetric, that 

edges are undirected, and that the graph is transitive.  

 

If this is true, then the graph is the union of completely connected 

components. The nodes of the component containing i  constitute i ’s 

group. 
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Weighted Adjacency Matrices 
 
 

The model can be enriched still further by allowing the elements of 

adjacency matrices to be arbitrary real numbers. In such models, the 

magnitude of the number ija  measures the degree of influence j  has on i  

and the sign expresses whether that influence is positive or negative.   

 

Throughout this section we will assume that all elements ija  are non-

negative, except as noted, and that that the social network version of a 

contextual effect is a weighted average of the associated individual 

characteristic.  This generalizes the contextual effects in the linear in 

means model case in which =g gy x . 
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 Identification for general social networks models: basic results 
 
For the general linear social networks model, individual outcomes are 

described by the behavioral equation system 

 

 

 ω ω ε
≠

= + + + +∑ ∑i i ij j ij j i
j i j

k cx d a x J a   

 

with the error restriction 

 

 ( )ε ∀ ≠ =0 0i j ijE x a   
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The current identification literature (with the exception of some results I 

will provide below) for networks assumes that A is known a priori to the 

researcher.   

 

This is a critical assumption in the existing literature which restricts 

empirical work to contexts in which survey data, for example, can be 

used to measure network structure.   

 

Notice that the linear in means model is based on a priori knowledge of 

A. 
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The associated reduced form, described in vector notation, is  

 

 ( ) ( ) ( ) ( )ω ι ε− − −
= − + − + + −

1 1 1k I JA I JA cI dA x I JA .  

 

where I  refers to the ×V Vn n  identity matrix and ι  is a ×1Vn  vector of 1’s. 

(Recall that Vn  is the number of individuals in the network.)   

 

 

A fundamental algebraic result is the following theorem, due to 

Bramoullé, Djebbari and Fortin (2009).  
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Theorem. Identification of social interactions in linear network 
models.  
 

For the linear social networks model, assume that + ≠ 0Jc d  and that for 

all values of J , −− 1( )I JA  exists. 

 

i. If the matrices I , A, and 2A  are linearly independent, then the 

parameters k , c , d  and J  are identified. 

 

ii. If the matrices  I , A, and 2A   are linearly dependent, =∑ ∑ik jk
k k

a a , 

and A has no row in which all entries are 0, then parameters k , c , d  and 

J  are not identified. 
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The condition that + ≠ 0Jc d  requires, in the network setting, that 

endogenous and contextual effects do not cancel out in the reduced 

form.   

 

This theorem is an algebraic result.  This is to say, it does not rely on the 

specific structure of A which arises from its network context.  It applies to 

any linear system of the which <| |·|| || 1J A  for all possible parameter 

values J .   
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An interesting feature of this result is that it does not rely on exclusion 

restrictions.   

 

This actually should not be surprising.  Although the number of equations 

in the system is Vn , the size of the population, there are only 4 

parameters to estimate.   

 

There are thus many cross-equation and within-equation linear equality 

constraints:  The independence condition describes when these 

constraints mean that the reduced form coefficients fulfill appropriate 

rank and order conditions. 
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Groups 

 

The analysis of group interaction is the leading case in the econometric 

literature on networks.  It is also appealing from the perspective of 

existing data sets such as the National Longitudinal Study of Adolescent 

Health (Add Health). Suppose that the peer relation is symmetric, ∈ ( )j P i  

if and only if ∈ ( )i P j .  Suppose too that the peer relation is transitive:  If 

∈ ( )j P i  and ∈ ( )k P j , then ∈ ( )k P i .   

 

In this case, the graph is the union of a finite number G  of completely 

connected components, that is, groups.   
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Suppose that component g  has gn  members.   

 

We will consider two ways to average over the group.  These correspond 

to ways that Manski and Moffitt defined linear in means effects; we will 

see that the significance of the difference is overblown. 
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Exclusive averaging excludes i  from ( )P i .  In this case, for ∈i g , 

 

 
 ≠ ∈ −= 



1 if and ,
1

0            otherwis

    

e.
gij

j i j g
na   
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Inclusive averaging includes i  in ( )P i .  In this case, for ∈i g , 

 

 
 ∈= 



1 ,

0       otherwi

    f

se.

or
gij

j g
na   
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With inclusive averaging, the social networks model is equivalent to our 

linear in means model, except that realized rather than expected 

outcomes affect individual outcomes.  This difference is inessential since 

the instrumental variable projections used to replace the endogenous 

choices of others coincide with equilibrium formulations of beliefs.   

 

Means and realizations, however, represent two distinct theoretical 

models.   

  

The first is a network version of the incomplete-information.   

 

The second is a complete-information version of the same game.   
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With exclusive averaging, the subject of Bramoullé et al., an additional 

distinction is that the calculation of group-level contextual effects does 

not include i 's own individual characteristics.   
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The following theorem, slightly different from Lee (2007) and BDF (2009) 

for groups immediately follows from the general algebraic theorem. 

 
Theorem. Identification of social interactions in group structures 
with different size groups 
 

i. Suppose that individuals act in groups, and that the ija  are given by 

exclusive averaging.  Then the parameters k , c , d  and J  are 

identified if there are at least two groups of different sizes.   

 

ii. Under inclusive averaging, the model is not identified. 

 

 



60 
 

 

The positive result is similar to Graham's (2008) variance contrast 

identification strategy, but its source is different.  Graham assumes 

 

ω ω ε−= +, , ,i g i g i gJ  

 

and is based on ( )ωvar g . 

 

Here identification follows the reduced form regression parameters rather 

than the second moments of the average group outcomes. 

 

Note that in Graham’s case, + = 0Jc d  since = = 0c d ,  so his findings 

are allow identification when individual and contextual effects are absent.  
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Back to the Reflection Problem 
 
 
Why do these identification differ from those usually associated with the 

linear in means model?  

 

The linear in means model is a large sample approximation.  
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Recall that the Bayes/Nash model produces 

 

 
ϖ ϖ

ω γ γ γ
ϖ ϖ ϖ−

− + −
= + + +

+ − + − +, ,

1 ( 1) 1
( 1) 1 ( 1) 1 1

g g
i g i i g i

g
g

g

n n
e

n n
 . 

 

not 

 ϖω γ γ γ
ϖ ϖ ϖ

= + + +
+ + +,
1 1

1 1 1i g g i g ie   

 

which is the large sample approximation. 

 

This is a case where identification is lost in taking the large sample 

approximation. 
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A range of identification results can be developed for different graph 

structures. The following Theorem is related to results in Bramoullé, 

Djebbari and Fortin (2009) although the exact theorem itself does not 

appear there. 
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Theorem Nonidentification for weighted averaging implies network 
transitivity. 
 

Let ( ),V E  be a network with weighted adjacency matrix A.  Assume  

+ ≠ 0Jc d  and that for all values of J , ( )−−
1I JA  exists.   

 

i. If the parameters k , c , d  and J  are not identified, then ( ),V E  is 

transitive.   

 

ii. If the network is undirected, then ( ),V E  is the union of groups. 
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Is the Failure of Identification Common in Social Networks? 
 

Suppose without loss of generality that the parameter J  takes values 

[ )0,1  and denote by S  the set of all matrices A such that ( )−I JA  is 

invertible. If the matrices are ×V Vn n , S  is a semi-algebraic set of full 

dimension in 
2
VnR . 

 

For a given KR , a semi-algebraic set is a subset of KR  that is defined by 

a finite sequence of polynomial equalities or inequalities or the finite 

union of sequences.  The set of ×V Vn n  matrices such that ( )−I JA  is 

invertible defines a semi-algebraic set contained in 
2
VnR .    
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Theorem. Generic Identifiability of Social Networks Models 

 

The set of all matrices ∈A S  such that the powers I , A and 2A  are 

linearly dependent, is a closed and lower-dimensional (semi-algebraic) 

subset of S . 
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By lower-dimensional we mean the following.  

 

The set is the union of a finite number of disjoint (semi-algebraic) 

manifolds, and the highest dimension of these manifolds is less than 2
Vn .  

 

This theorem is a complement to the McManus (1992) result on the 

generic identifiability of nonlinear parametric models.  
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To repeat an earlier point, the social networks context, the key intuition 

for generic identifiability is that since A is assumed to be known a priori, 

this knowledge is the equivalent of a large number of coefficient 

restrictions on the coefficients in the reduced form representation of 

individual behaviors.   
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Unknown Network Structure 
 

All results so far have taken the social network matrix A as known.   

 

This severely restricts the domain of applicability of existing identification 

results on social networks.  We finish this section by considering how 

identification may proceed when this matrix is unknown.   

 

In order to do this, we believe it is necessary to consider the full 

implications of the interpretation of linear social interactions models as 

simultaneous equations systems.   
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This is evident if one observes that the matrix form of the general social 

networks model may be written as  

 

 ( ) ( )ω ε− = + +I JA cI dA x .  

 
where for expositional purposes, the constant term is ignored.   
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From this vantage point, it is evident that social networks models are 

special cases of the general linear simultaneous equations system  

 
 ω εΓ = Β +x .  

 

Systems of this type, of course, are the focus of the classical 

identification in econometrics, epitomized in Franklin Fisher’s treatise.  
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One can go further and observe that the assumption that the same 

network weights apply to both contextual and endogenous social 

interactions is not well motivated by theory.  

 

From this vantage point it is evident that the distinction between J  and A 

is of interest only when A is known a priori, as is the case both for the 

linear in means model and the more general social networks framework. 
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Following the classical literature, one can then think of the presence or 

absence of identification in terms whether particular sets of restrictions 

on produce identification.    

 

The simultaneous equations perspective makes clear that the existing 

results on identification in linear social networks models can be extended 

to much richer frameworks.   
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We consider two classes of models in which we interpret all agents 

= 1... vi n  as arrayed on a circle.    

 

We do this so that agents 1 and Vn  are immediate neighbors of one 

another, thereby allowing us to work with symmetric interaction 

structures. 
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First, assume that each agent only reacts to the average behaviors and 

characteristics of his two nearest neighbors, but is unaffected by anyone 

else.     

 

In terms of the matrices Γ  and B, one way to model this is to assume 

that, preserving our earlier normalization, ∀i   

 

Γ = 1ii , γ− +Γ = Γ =, 1mod , 1mod 1v vi i n i i n , Γ = 0ij  otherwise, 

 

= 0iiB b , − += =, 1mod , 1mod 1v vi i n i i nB B b ,  and = 0ijB  otherwise. 
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The model is identified since the nearest neighbor model may be 

interpreted via the original social networks model via restrictions on A.    

 

For our purposes, what is of interest is that identification will still hold if 

one relaxes the symmetry assumptions so that  

 

γ− −Γ =, 1mod , 1vi i n i , γ+Γ =, 1mod ,1vi i n i , = ,0ii iB b , − −=, 1mod , 1vi i n iB b , and + =, 1mod ,1vi i n iB b .   

 

If these coefficients are nonzero, then the matrices Γ  and B fulfill the 

classical rank conditions and one does not need to invoke the social 

networks identification theorem at all.   
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Notice that it is not necessary for the interactions parameters to be the 

same across agents in different positions in the network.  

 

Prior knowledge of A takes the form of the classical exclusion 

restrictions of simultaneous equations theory. From the vantage point of 

the classical theory, there is no need to impose equal coefficients across 

interactions as is conventionally done. 
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This example may be extended as follows.   

 

Suppose that one is not sure whether or not the social network structure 

involves connections between agents that are displaced by 2 on the 

circle, i.e. one wishes to relax the assumption that interactions between 

agents who are not nearest neighbors are 0.   
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In other words, we modify the example so that ∀i   

 

Γ = 1ii , γ− +Γ = Γ =, 1mod , 1mod 1v vi i n i i n , γ− −Γ =, 2mod , 2vi i n i , γ+Γ =, 2mod ,2vi i n i , 

Γ = 0ij  otherwise, 

 

= ,0ii iB b , − −=, 1mod , 1vi i n iB b , and + =, 1mod ,1vi i n iB b , − −=, 2mod , 2vi i n iB b , + =, 2mod ,2,vi i n iB b  

= 0ijB  otherwise. 
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If the nearest neighbor coefficients are nonzero, then the coefficients in 

this model are also identified via classical simultaneity results regardless 

of the values of the coefficients that link non-nearest neighbors.  This is 

an example in which aspects of the network structure are testable, so 

that does not need to exactly know A in advance in order to estimate 

social structure.   

 

 

The intuition is straightforward, the presence of overlapping network 

structures between nearest neighbors renders the system overidentified: 

so that the presence of some other forms of social network structure can 

be evaluated relative to it.   
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This form of argument seems important as it suggests ways of 

uncovering social network structure when individual data are available, 

and again has yet to be explored.  Of course, not all social network 

structures are identified for the same reason that without restrictions, the 

general linear simultaneous equations model is unidentified. What our 

argument here suggests is that there is much to do in terms of 

uncovering classes of identified social networks models that are more 

general than those that have so far been studied.    
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For a second example, we consider a variation of the model studied by 

Bramoulle et al.  which involves geometric weighting of all individuals 

according to their distance; as before we drop the constant term for 

expositional purposes.   

 

Specifically, we consider a social networks model  

 

  ( ) ( )ω γ γ ω ε
≠

= + + + +∑ ∑i i ij j ij j i
j i j

k cx d a x J a .  

 

The idea is that the weights assigned to the behaviors of others are 

functions of an underlying parameter γ .   
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In vector form, the model is  

 

  ( ) ( )ω γ γ ω ε= + + + .cx dA x JA   

 

where 

 

  ( )

γ γ γ γ γ γ
γ γ γ γ γ γ

γ

γ γ γ

− 
 
 =
 
 
 

 

 





2 1

2 2

2

0
0

0

k k k

k k

A   
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As before, x  is a scalar characteristic.  The parameter space for this 

model is ( )γ += ∈ × ×{ , , , [0,1)}c d J R R2 .  The reduced form for this 

model is 

 

 ( )( ) ( )( ) ( )( )ω γ εγ γ
− −

= − + + −
1 1

I JA cI dA x I JA   

 

Denote by →
2

: VF Rn  the map 

 

 ( ) ( )( ) ( )γ γ γ
−

= − +
1

, , , ( )F c d J I JA cI dA   

 

 The function F  characterizes the mapping of structural model 

parameters ( )γ, , ,c d J  to reduced form parameters.   
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We will establish what Franklin Fisher calls complete identifiability of the 

structural parameters from the regression coefficients for the reduced 

form.   

 

By this he means that each reduced form parameter vector is derived 

from only a finite number of structural parameter vectors, i.e. that the 

map from structural parameters to reduced form parameters is finite-to-

one. 
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Theorem. Identification of the linear social networks model with 
weights exponentially declining in distance 

 

Suppose that the number of individuals Vn  is at least 4. Then for all 

( )γ ∈, , ,c d J  , 

i. if ( )γ− ≠det 0I JA , + ≠ 0c d , γ ≠ 0, then the cardinality of 

( )γ−1 , , ,( )F F c d J  is no more than ( )−2 1Vn . 

 

ii. The parameter values = = 0J d  and γ = 0 are observationally 

equivalent.  In this case, ( )γ =, , ,F c d J cI . 
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Outline of Proof 

 

Let ( )γ= , , ,M F c d J . These are the population reduced form parameters 

for the model; our goal is to see how they map back to the structural 

parameters.  We will prove the theorem for Vn  odd and equal to +2 1K .  

The proof is similar for even Vn .  By hypothesis, ( )γ−I JA  is non-

singular.  Thus 
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( )( ) ( )( )
( )( ) ( )( )
( ) ( )( )

γ γ

γ γ

γ

−

−

−

= − + =

− + − + =

+ − −

1

1

1

M I JA cI dA

I JA cI dI dI dA

c d I JA dI

 

 
 
This matrix equation maps observables to unobservables.
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In view the definition of ( )γA , 

 

( )γ− =11 1( )I JA  

 

and 

 

( )
( )

( )
( )

( )
( )
γγ γ

γ γ
γ γ γ

+−− −
− = = = =

− − −


1 112 13

11 12 1

,
( )( ) ( )

( ) ( ) ( )
K

K

I AI A I A
J

I A I A I A
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Define 

 

( ) ( ){ }γ γ= ∈ =: for some , , , , , , ,M c d J F c d J M   

( ) ( ){ }γ γ= ∈ × =: for some , [0,1), , , ,dJ M c R F c d J M2  

 

These are, respectively, the sets of all possible reduced form matrices 

and those reduced forms consistent with a particular parameter pair d, J. 
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If ∈ dJM  , then 

 

( )+ ≠
11

0dI M  

 

and 

 

( )
( )

( )
( )

( )
( )

( )
( )

−− −−

+
− − − −

++ ++
− = = =

+ + + +


11 11
1 113 1312

1 1 1 1

11 12 12 1

, K

K

dI MdI M dI MdI M
J

dI M dI M dI M dI M
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This fact means that for a given reduced form matrix ∈M , there are at 

most ( )−2 1Vn  possible values of d, J pairs consistent with this equation.  

Each of these d , J pairs is consistent with a unique ( )γ,c , and this 

proves the theorem. 
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Concluding Comments 
 

 

1. Major outstanding question 1: what more be said when A is 

unknown?  

 

2. Major outstanding question 2: how does endogenous network 

formation affect identification? 

 

BBDJ makes progress on these. 
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Much of what we have done is delineate parts of the 

assumptions/possibilities frontier for linear social interactions models.  

 

Hopefully, we have made clear that there is still much to be done.  
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