pro ti_fwhm,ti=ti,fwhm=fwhm,ion=ion,inv=inv if n_elements(ti) eq 0 then ti=10 ;ti=10 eV if n_elements(ion) eq 0 then ion='He' if n_elements(fwhm) eq 0 then fwhm=1. ;fwhm=1 A ;this calculates the relavent number for temperuature calculations q=1.6021892e-19 ; electron charge (Coulombs) amukg=1.6605655e-27 ; atomic mass unit (kg) c=2.99792458e8 ; speed of light (m/sec) amu=amukg*c^2/q/1.e6 ; atomic mass unit (MeV/c^2) (931.50) ; Parameters for C III and ~ CIV Mion=12.0 lambda0=4650.25 Cfwhm=sqrt(8.*alog(2.)/amu/1.e6) ; FWHM=Cfwhm*lambda0*sqrt(Ti(eV)/Mion(amu)) cf=cfwhm*lambda0*sqrt(1.e3/Mion) ; FWHM=Cf*sqrt(Ti[keV]) for Carbon if not keyword_set(inv) then begin ; print,'Ti =',ti,'(eV)' fwhm_C=cfwhm*lambda0*sqrt(ti/mion) ; print,'FWHM C at 4650 = ',fwhm_C,'('+angstrom()+')' endif if keyword_set(inv) then begin ti_c=mion*(fwhm/cfwhm/lambda0)^2 ; print,'FWHM C at 4650 = ',fwhm,'('+angstrom()+')' ; print,'Ti =',ti_c,'(eV)' endif ; Parameters for He II Mion=4.0 lambda0=4685.682 Cfwhm=sqrt(8.*alog(2.)/amu/1.e6) ; FWHM=Cfwhm*lambda0*sqrt(Ti(eV)/Mion(amu)) cf_he=cfwhm*lambda0*sqrt(1.e3/Mion) ; FWHM=Cf*sqrt(Ti[keV]) for Carbon if not keyword_set(inv) then begin fwhm_He=cfwhm*lambda0*sqrt(ti/mion) ; print,'FWHM He at 4686 = ',fwhm_he,'('+angstrom()+')' endif if keyword_set(inv) then begin ti_he=mion*(fwhm/cfwhm/lambda0)^2 ; print,'FWHM He at 4686 = ',fwhm,'('+angstrom()+')' ; print,'Ti =',ti_he,'(eV)' endif ; Parameters for Li III Mion=6.941 lambda0=4498.98 Cfwhm=sqrt(8.*alog(2.)/amu/1.e6) ; FWHM=Cfwhm*lambda0*sqrt(Ti(eV)/Mion(amu)) cf_li=cfwhm*lambda0*sqrt(1.e3/Mion) ; FWHM=Cf*sqrt(Ti[keV]) for Carbon if not keyword_set(inv) then begin fwhm_li=cfwhm*lambda0*sqrt(ti/mion) ; print,'FWHM Li at 4499 = ',fwhm_li,'('+angstrom()+')' endif if keyword_set(inv) then begin ti_li=mion*(fwhm/cfwhm/lambda0)^2 ; print,'FWHM Li at 4499 = ',fwhm,'('+angstrom()+')' ; print,'Ti =',ti_li,'(eV)' endif ; Parameters for Li III 5167 Mion=6.941 lambda0=5166.89 Cfwhm=sqrt(8.*alog(2.)/amu/1.e6) ; FWHM=Cfwhm*lambda0*sqrt(Ti(eV)/Mion(amu)) cf_li2=cfwhm*lambda0*sqrt(1.e3/Mion) ; FWHM=Cf*sqrt(Ti[keV]) for Carbon if not keyword_set(inv) then begin fwhm_li2=cfwhm*lambda0*sqrt(ti/mion) ; print,'FWHM Li at 5167 = ',fwhm_li,'('+angstrom()+')' endif if keyword_set(inv) then begin ti_li2=mion*(fwhm/cfwhm/lambda0)^2 ; print,'FWHM Li at 5167 = ',fwhm,'('+angstrom()+')' ; print,'Ti =',ti_li,'(eV)' endif ; Parameters for H alpha Mion=1.0 lambda0=6562.808 Cfwhm=sqrt(8.*alog(2.)/amu/1.e6) ; FWHM=Cfwhm*lambda0*sqrt(Ti(eV)/Mion(amu)) cf_ha=cfwhm*lambda0*sqrt(1.e3/Mion) ; FWHM=Cf*sqrt(Ti[keV]) for Hydrogen if not keyword_set(inv) then begin fwhm_Ha=cfwhm*lambda0*sqrt(ti/mion) ; print,'FWHM Ha at 6563 = ',fwhm_ha,'('+angstrom()+')' endif if keyword_set(inv) then begin ti_ha=mion*(fwhm/cfwhm/lambda0)^2 ; print,'FWHM Ha at 6563 = ',fwhm,'('+angstrom()+')' ; print,'Ti =',ti_ha,'(eV)' endif ; Parameters for D alpha Mion=2.0 lambda0=6561. Cfwhm=sqrt(8.*alog(2.)/amu/1.e6) ; FWHM=Cfwhm*lambda0*sqrt(Ti(eV)/Mion(amu)) cf_da=cfwhm*lambda0*sqrt(1.e3/Mion) ; FWHM=Cf*sqrt(Ti[keV]) for Hydrogen if not keyword_set(inv) then begin fwhm_da=cfwhm*lambda0*sqrt(ti/mion) ; print,'FWHM Da at 6561 = ',fwhm_da,'('+angstrom()+')' endif if keyword_set(inv) then begin ti_da=mion*(fwhm/cfwhm/lambda0)^2 ; print,'FWHM Da at 6561 = ',fwhm,'('+angstrom()+')' ; print,'Ti =',ti_ha,'(eV)' endif if not keyword_set(inv) then begin if ion eq 'C' then fwhm=fwhm_c if ion eq 'Li' then fwhm=fwhm_li if ion eq 'Li2' then fwhm=fwhm_li2 if ion eq 'He' then fwhm=fwhm_he if ion eq 'Ha' then fwhm=fwhm_ha if ion eq 'Da' then fwhm=fwhm_da endif if keyword_set(inv) then begin if ion eq 'C' then ti=ti_c if ion eq 'Li' then ti=ti_li if ion eq 'Li2' then ti=ti_li2 if ion eq 'He' then ti=ti_he if ion eq 'Ha' then ti=ti_ha if ion eq 'Da' then ti=ti_da endif end