Time Evolution of Measured Energy and Particle Transport in the MST Reversed-Field Pinch
T.M. Biewer, J.K. Anderson, D. Craig, D. Demers ${ }^{1}$, W. Ding ${ }^{2}$, G. Fiksel, B. Hudson, J. Lei ${ }^{1}$, J.C. Reardon, U. Shah ${ }^{1}$, S.D. Terry ${ }^{2}$, J.C. Wright, S.C. Prager, and C.B. Forest

	Abstract
	Time evolved measurements of thermodynamic profiles have been obtained in a variety of MST discharges (PPCD, $\mathrm{F}=-0.22, \mathrm{~F}=0, \mathrm{~F}=+0.02, \mathrm{~F}=+0.03$), Ieading to the first measurement of radially resolved, time evolving heat transport in the MST. $\mathrm{M}=0$ modes are absent in $\mathrm{F}=0$ plasmas, and confinement is observed to improve, but degrades rapidly as F is raised above zero. In all cases, the heat flux is predominantly conductive over the majority of the plasma volume, though convective heat transport becomes significant in the edge. The observed heat and particle fluxes cannot be described by a diagonal transport matrix. However, including pressure gradient and electric field cross-terms can account for the observed fluxes. The radial electric field is calculated from ion momentum balance and compared to measurements from a heavy-ion beam probe diagnostic. This work was supported by the U.S. D.O.E.

Poloidal Projection of MST Diagnostics

Summary

 Also, $x_{\mathrm{c}}(\mathrm{r})$ has evidence of a strong transport barier at the edge.

- The radia electrir field is sestimated from ion momentum balance to be +2.5
kV / m which is in excellent agreement with measured f from the MST HIBP. - F$\rangle=0$ plasmas are closer to Tay lor minimum energy states, based on λ profile calculations. $\mathrm{F}=\mathrm{y}$ plasmas have higher confinement than Standard, but confinement
derades degrades rapily y as is raised above 0 .
- PPCD plasmas continue to outpeperform other operational modes of the MST:
more than double estandard plasmas, and χ_{c} is an order of magnitde lower:

Full-color reprints of this poster are available online:
Full-color reprints of this poster are available online:
hhtp://sprott.physics.wisc.edulubiewer//PSS2001Poster.pdf Or sign up below for a hardcopy:

University of Wisconsin-Madison
${ }^{1}$ Rensselaer Polytechnic Institute
${ }^{2}$ University of California-Los Angeles
The Sawtooth Cycle in "Standard" MST Plasmas

