
PHYSICAL REVIEW E 89, 042804 (2014)

Kinetics of wealth and the Pareto law
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An important class of economic models involve agents whose wealth changes due to transactions with other
agents. Several authors have pointed out an analogy with kinetic theory, which describes molecules whose
momentum and energy change due to interactions with other molecules. We pursue this analogy and derive a
Boltzmann equation for the time evolution of the wealth distribution of a population of agents for the so-called
Yard-Sale Model of wealth exchange. We examine the solutions to this equation by a combination of analytical
and numerical methods and investigate its long-time limit. We study an important limit of this equation for small
transaction sizes and derive a partial integrodifferential equation governing the evolution of the wealth distribution
in a closed economy. We then describe how this model can be extended to include features such as inflation,
production, and taxation. In particular, we show that the model with taxation exhibits the basic features of the
Pareto law, namely, a lower cutoff to the wealth density at small values of wealth, and approximate power-law
behavior at large values of wealth.
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I. INTRODUCTION

A. Historical motivation

In a perfect world the field of economics would not
be divided into macroeconomics and microeconomics. The
former would be derivable from the latter. Our current
understanding of economics is reminiscent of the situation in
statistical physics prior to the 1870s, when the well-established
field of thermodynamics had to be reconciled with the new
atomic theory. The work of Boltzmann, Gibbs, Maxwell, and
others eventually achieved this reconciliation for dilute gases,
demonstrating that the “macro-” theory of thermodynamics
is derivable from the “micro-” atomic theory. Economists are
still seeking this kind of unification in their field of study.

The knowledge that economics is still incomplete has led
some economists to take extreme positions. There is a school
of thought that maintains that no paper on macroeconomics
is worth publishing if it is not demonstrably grounded on
“microfoundations” [1]. At the same time, over the course
of the past 25 years, there has been widespread recognition
that the very foundations of neoclassical economics, and
microeconomics in particular, are deeply flawed. For example,
economic agents do not always have perfect information,
buyers and sellers do not always behave rationally or even in
their own best interests, prices are not always set by an auction
process, and it is sometimes not possible to purchase insurance
to cover every eventuality. This has led to a backlash against
the “microfoundations” proponents that is best summarized in
the words of the economist Paul Krugman [1], “the notion that
macro is rotten but micro is in good shape is, well, only half
right.”
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As one might expect, the current situation provides some
impetus for transplanting ideas from physics to economics, in
the hope that the success of the former subject can be replicated
in the latter. This was the goal of a now-famous meeting at the
Santa Fe Institute in 1987 that brought together Nobel laureates
in both subjects for this purpose. The field of “econophysics”
was arguably born at this meeting, and much progress has been
made in the years since. An outline of the history of the field
is described in Beinhocker’s book on the subject [2], and its
recent developments have been broken down by country in a
very informative recent review journal [3].

An observation made by numerous authors (see, for exam-
ple, Ref. [4]) is that a useful analogy can be made with the early
work of Boltzmann. When molecules collide, they exchange
momentum and energy; when economic agents transact, they
exchange wealth. If Boltzmann’s equation describes the former
process, then something similar to a Boltzmann equation ought
to describe the latter. This paper pursues this analogy.

There are, of course, essential differences between
molecules and economic agents. For example, in Boltzmann’s
theory of the former, energy is shared among the molecules in a
Maxwell-Boltzmann distribution. There are many hypotheses
for the distribution of wealth in societies, and, while some of
them involve the Maxwell-Boltzmann distribution in various
limits, none are really that simple.

One of the first attempts to quantify the distribution of
wealth in a society was made by Pareto in the early twentieth
century [5]. He studied the distribution of land ownership in
Italy by plotting the fraction of people with wealth greater than
x versus x. It is clear from the definition of this curve that it
is a nonincreasing function of x. If we suppose that wealth is
distributed according to a probability density function (PDF)
P (w), so that

∫ b

a
dw P (w) is the total population with wealth

w ∈ [a,b], then the function that Pareto plotted was

A(w) := 1

N

∫ ∞

w

dw′ P (w′), (1)
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where N := ∫ ∞
0 dw P (w) is the total population. Differenti-

ating both sides of this relation yields

P (w) = −N
dA(w)

dw
, (2)

so the PDF can be easily recovered from Pareto’s function.
Pareto found empirically that A(w) was well approximated

by

Ap(w) ≈
{

1 if w < wmin(
wmin
w

)α
otherwise,

(3)

where wmin is a lower bound on wealth, and the exponent
α is called the Pareto index. If the total wealth W :=∫ ∞

0 dw P (w)w of the population is to be finite, it must be
that α > 1. Using Eq. (2), we find the corresponding Pareto
PDF,

Pp(w) ≈
{

0 if w < wmin

αN
wmin

(
wmin
w

)α+1
otherwise.

(4)

The discontinuity of Pp(w) at w = wmin is worrisome, and
most economists regard Pareto’s observation as an approxi-
mation, at best.

Pareto’s law is sometimes equated with the “80-20 rule”
that asserts that 20% of the population owns 80% of the
land. In fact, this is implied by Pareto’s law for α ≈ 1.16,
but it does not, by itself, imply Pareto’s law. More generally,
it is straightforward to show that Pareto’s law can be made
consistent with the observation that a fraction f of the
population has a fraction 1 − f of the wealth if

α =
log

(
1
f

)
log

( 1−f

f

) . (5)

Note that the “fair” situation with f = 1/2, in which half of the
population owns half of the land, corresponds to α → ∞; the
totally “unfair” situation, in which a vanishingly small fraction
of the population owns all but a vanishingly small fraction of
the land, corresponds to α → 1 from above. Once again, this
suggests that α > 1. The Pareto index for the economy of the
United States over the last century [6] is shown in Fig. 1.

Although the details of the distribution of wealth in a
society are controversial, the appearance of power laws in this
context is widely accepted. Power laws are often associated
with self-similarity, which, in this context, is manifested by
the following observation: Denote the population with wealth
between w/2 and w by N−, and that with wealth between w

and 2w by N+. Pareto’s law holds1 if and only if N−/N+ = 2α ,
independent of w. That is, the ratio of people within a factor
of two poorer than w to those within a factor of two wealthier
than w is independent of w.

Although Pareto’s law has been known for more than a
century, its microeconomic foundations are still a subject
of active research. In the mid-1990s, an innovative class
of models, called asset exchange models (AEMs), were
introduced for this purpose. In this paper, we analyze a

1Here we assume that w/2 > wmin so that we are in the power-law
regime.

1920 1940 1960 1980 2000
1.0

1.5

2.0

2.5

Year

P
ar

et
o

In
de

x
α

Data for United States

FIG. 1. (Color online) The Pareto index of the U.S. economy:
Actual data for the last century, taken from Ref. [6].

particularly interesting one of these, called the “Yard-Sale
Model” (YSM), which can be used to predict the evolution
of the PDF of wealth as a function of time.

Models of this general sort were considered in the eco-
nomics literature by Angle [7] in the 1980s. They were first
introduced into the physics literature and analyzed using the
techniques of mathematical physics by Ispolatov, Krapivsky,
and Redner [8,9] in the late 1990s. The need to impose
conservation of agents, and the proper boundary condition at
w = 0 was clarified by Yakovenko [4]. The name “Yard-Sale
Model” seems to have been coined by Hayes [10] in a popular
article published in 2002. Since then, these models have been
further studied by Chakraborti [11,12] and his coworkers,
among others.

The YSM consists of N economic agents, each endowed
with only one quality, namely, wealth w. In the simplest version
of this model, w is a positive real number; that is, we do
not allow agents to have negative net wealth. This feature is
enforced in the initial conditions and, as will become clear, the
dynamics are designed to preserve it.

The simplest version of the YSM is a closed economic
system. The number of agents N remains constant. No wealth
is imported, exported, generated, or consumed, so the total
wealth of the population W also remains constant. Wealth
can only change hands, from one agent to another. Therefore,
agents can become wealthier only at the expense of other
agents becoming poorer.

Neoclassical economics assumes that all agents are “op-
timizing individuals,” who are fully informed about their
options, and make decisions based on their own financial
best interests. If this were really the case,2 no net wealth
would ever change hands. Two agents might agree to exchange
some wealth, but one or the other would refuse to enter
into the transaction unless the wealth exchanged was equal.

2And if there were an absolute notion of value.
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Economists refer to this state of affairs as perfect pricing.
Under the assumption of perfect pricing, the exchange of
wealth would leave P (w,t) unaltered.

As described by Hayes [10] and by Beinhocker [2], perfect
pricing does not happen in the real world. Real people make
mistakes, and some people are more clever about this than
others. It is unrealistic to expect that a person wishing to
purchase a commodity will conduct an exhaustive search for
the lowest price. More often, they will search only long enough
to find an acceptable price. For these reasons, the wealth
exchanged in transactions between agents may differ, and net
wealth will change hands. The YSM describes the dynamics
of this process.

How much net wealth might be transferred from one agent
to another in a given transaction? Let us suppose that the
amount transferred must be strictly less than the smaller of the
wealths of the two agents participating in the transaction. This
will ensure that all agents maintain positive wealth. In practice,
we shall say that the net change of wealth is a fraction β ∈ (0,1)
of the wealth of the poorer of the two agents.

Once the net change of wealth has been determined, it
remains to decide which agent loses it, and which agent wins
it. Of course, if one agent is assumed to be more clever than
all the others, he or she is more likely to be the winner. Such
an assumption will have the effect of quickly concentrating
wealth in the hands of the most clever agents. To give our
model economy every benefit of the doubt, therefore, let us
assume that the agents are equally clever, so that either is
equally likely to be the winner.

These considerations lead to the simplest version of the
YSM, which is described algorithmically in Fig. 2. Note
that the difference between the assumptions of neoclassical
economics and those of this YSM could not be more stark.
In the former case, wealth transfer takes place between
optimizing individuals, all of whom act in their best interests
and try very hard not to make a mistake. In the latter case,
wealth is transferred only when somebody makes a mistake.

One of the principal results of this paper is that, under
the assumption that β is small, the equation governing the
evolution of the PDF of the YSM is

∂P

∂t
= ∂2

∂w2

[(
w2

2
A + B

)
P

]
, (6)

where A is given by Eq. (1), and B is given by

B = 1

N

∫ w

0
dw′ P (w′)

w′2

2
. (7)

Because AEMs are closed systems in which N and W are
conserved, we expect that the dynamics described by this
equation will drive the distribution P (w,t) toward a steady
state, dependent only on the values of N and W , as t → ∞.
Much of this paper is devoted to studying this limit. We shall
see that in the absence of mechanisms for wealth redistribution,
this limit is a generalized function; with such mechanisms, it
takes on a particular form that has some resemblance to the
Pareto distribution, Eq. (4).

Initialize N agents
with equal wealth.

Select two agents,
i and j, randomly
for a transaction.

Choose amount of
transaction ΔW

to be fraction β of
wealth of the poorer
of the two agents.

Time loop

Flip a fair coin. If
heads, transfer ΔW
from i to j. If tails,

transfer it from j to i

Flip a fair coin. If
heads, transfer ΔW
from i to j. If tails,

transfer it from j to i

FIG. 2. (Color online) The time loop of the basic Yard-Sale
Model algorithm: As the algorithm proceeds, we keep track of the
distribution of agent wealth versus time.

B. Outline of this paper

In Sec. II we consider the kinetics of the YSM, by relating
the time rate of change of the one-agent distribution to an
integral over the two-agent distribution for this model. (A
complete definition of multi-agent distributions is relegated
to Appendix A.) We derive this relation both by considering
the outcome of a transaction between two agents, and from a
master equation approach. We then introduce the random-
agent approximation, which is the analog of Boltzmann’s
famous molecular chaos approximation, to derive the analog
of the Boltzmann equation for the YSM, Eq. (25). We
demonstrate that this equation conserves N and W for a closed
economy; the details of this demonstration are relegated to
Appendix B. We believe this to be the first version of this
transport equation which conserves both agents and wealth.

We give an exact solution to Eq. (25) that is non-
normalizable, but we present numerical evidence that it is
valid between lower and upper bounds of wealth. We show
that, in the long-time limit, these bounds tend to zero and
infinity, respectively, as the result tends to a certain generalized
function. Appendix C contains a short detour through the
theory of distributions in order to properly describe this
generalized function.

In Sec. III we study a particularly interesting limit of the
Boltzmann equation in which agents are allowed to stake only
a small fraction of their wealth in any one transaction. In this
small-transaction limit, the Boltzmann equation reduces to the
elegant partial integrodifferential equation, Eq. (7), that admits
to a simple analysis. This equation is, we believe, entirely
new in this context, and one of the principal new results of
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this paper. We demonstrate that this equation admits the same
conservation laws as the Boltzmann equation, and we present
numerical simulations of its evolution. We show that its time-
asymptotic limit is the same generalized function described
in Sec. II. We conjecture that this evolution is approximately
valid for many more complicated models of economies, such
as the famous Sugarscape model of Epstein and Axtell [13].

Finally, in Sec. IV we show how the partial integrodiffer-
ential equation derived in Sec. III can be extended to include
effects such as inflation, production, and taxation. We present
the dynamical equations with these features included, in the
small-transaction limit. We show that inflation and production
simply result in a rescaling of the PDF of wealth. By contrast,
we show that taxation, by effecting a redistribution of wealth,
leads to a steady state that has many features in common with
that posited by Pareto in Eq. (4).

II. BOLTZMANN EQUATION FOR DENSITY FUNCTION

A. Agent density functions

As described in Sec. I, the YSM supposes a population
of N agents, each with some wealth w ∈ R+. The one-agent
density function is the PDF of agents in wealth space at time
t , and is denoted by P (w,t). It is defined so that the number
of agents with wealth w ∈ [a,b] at time t is

∫ b

a
dw P (w,t). If

the time variable is clear from the context, we usually omit it;
for example, we might abbreviate P (w,t) by P (w).

In considering P (w) to be a continuous function of w, we
are already making an approximation. Economic agents are
inherently discrete. If there are only N of them, each with
a particular value of wealth w, then the function P (w) can
have support at only N discrete points. Throughout this paper,
however, we consider the domain of P to be the continuum,
and we regard P as a smooth function of w. The precise nature
of this smoothing is discussed in detail in Appendix A.

The total number of agents is then given by the zeroth
moment of P ,

N =
∫ ∞

0
dw P (w,t), (8)

and the total wealth of the agents is the first moment of P ,

W =
∫ ∞

0
dw P (w,t)w. (9)

The average wealth of an agent is then W/N . In a closed
economy, N and W are conserved quantities, independent of
time.

For the mathematical description of the YSM, we shall also
require the two-agent density function. This is the PDF of pairs
of agents in wealth space and is denoted by P (w,w′,t). It is
defined so that the number of pairs of agents at time t , one
having wealth w ∈ [a,b] and the other having wealth w′ ∈
[c,d], is

∫ b

a
dw

∫ d

c
dw′ P (w,w′,t). Again, if the time variable

is clear from the context, we usually omit it; for example, we
might abbreviate P (w,w′,t) by P (w,w′).

Once again, in regarding P (w,w′) as a smooth function,
we are neglecting effects due to the discreteness of the
agents, as explained in Appendix A. For the two-agent
distribution, the further approximation can be made that the

agents are distributed independently, so that P (w,w′) is given
by the product P (w)P (w′). This is tantamount to neglecting
inter-agent correlations, as is also explained in Appendix A.
This neglect is valid if (i) the initial conditions do not
contain interagent correlations and (ii) the dynamics do not
generate inter-agent correlations. The first of these conditions
is something that we can simply demand; the validity of the
second is less clear. In Sec. II E it will be argued that the
second condition is valid for the YSM. It should be emphasized
that it may not be valid for more sophisticated models of
wealth exchange, for which interagent correlations may play
an important role.

B. Pair interaction between agents

We now consider the problem of deriving a dynamical
equation for the one-agent PDF, P (w,t), of the YSM. Because
agents gain or lose wealth due only to transactions with other
agents, we expect that the rate of change of the one-agent PDF
depends on the two-agent PDF, and indeed this turns out to
be the case. We shall derive this result both by considering
a transaction between a pair of agents, and then again by a
master equation approach.

The scenario where one agent with wealth w wins and one
with wealth w′ loses is described by

w = w + α min(w,w′), (10)

w′ = w′ − α min(w,w′), (11)

where w > w is the new wealth of the winning agent, w′ < w′

is the new wealth of the losing agent, and α ∈ [0,1) is the
fraction of the smaller initial wealth that is exchanged in the
transaction. Equations (10) and (11) describe a bijection on
R2

+ with inverse

w = w − α

1 − α
min

(
1 − α

1 + α
w,w′

)
, (12)

w′ = w′ + α

1 − α
min

(
1 − α

1 + α
w,w′

)
. (13)

The Jacobian of this transformation is straightforwardly
calculated to be

J (w,w′) = ∂(w,w′)
∂(w,w′)

= 1

1 + α
θ

(
w′ − 1 − α

1 + α
w

)

+ 1

1 − α
θ

(
1 − α

1 + α
w − w′

)
, (14)

where θ is the Heaviside function.

C. Derivation of dynamic equation for density function

If we suppose that a pair with wealth (w,w′) at time t

transforms into a pair with wealth (w,w′) at time t + �t with
probability λ�t , we must have

P (w,w′,t + �t) dw dw′ = (λ�t)P (w,w′,t) dw dw′

+ (1 − λ�t)P (w,w′,t) dw dw′,

(15)
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or, employing the Jacobian, Eq. (14),

P (w,w′,t +�t) dw dw′ = (λ�t)P (w,w′,t)J (w,w′) dw dw′

+ (1 − λ�t)P (w,w′,t) dw dw′.

(16)

If we cancel dw, integrate over dw′ and divide by N , we obtain

P (w,t + �t) = λ�t

N

∫ ∞

0
dw′ P (w,w′,t)J (w,w′)

+ (1 − λ�t)P (w,t), (17)

where it is understood that w and w′ are functions of w and w′
as given by Eqs. (12) and (13). We subtract P (w,t) from both
sides, divide by �t and let �t → 0 to find

∂P (w,t)

∂t
= 1

N

∫ ∞

0
dw′ P (w,w′,t)J (w,w′) − P (w,t),

(18)

where we have absorbed λ into the time scale. Finally, using
Eqs. (12), (13), (14), and (A6) and some straightforward
calculation, we find the rate equation,

∂P (w,t)

∂t
= −

[
P (w,t) − 1

1 + α
P

(
w

1 + α
,t

)]
+ 1

N

∫ w
1+α

0
dw′

[
P (w − αw′,w′,t) − 1

1 + α
P

(
w

1 + α
,w′,t

)]
. (19)

Equation (19) is incomplete because we have not yet taken into account the equal possibility that the agent with wealth w

could lose, and that with wealth w′ could win. The rate equation for that case can be derived exactly as above, but it is easy to
see that the result differs from Eq. (19) only by the substitution α → −α. Because agents win or lose with equal probability, the
correct total rate is the average of the two, so the rate equation for the wealth distribution becomes

∂P (w,t)

∂t
= −

[
P (w,t) − 1

2(1 + α)
P

(
w

1 + α
,t

)
− 1

2(1 − α)
P

(
w

1 − α
,t

)]

+ 1

2N

∫ w
1+α

0
dw′

[
P (w − αw′,w′,t) − 1

1 + α
P

(
w

1 + α
,w′,t

)]

+ 1

2N

∫ w
1−α

0
dw′

[
P (w + αw′,w′,t) − 1

1 − α
P

(
w

1 − α
,w′,t

)]
. (20)

Without this averaging of positive and negative rates, the resulting kinetic equation would not conserve the total wealth of the
population, as we shall demonstrate in Appendix B. In Sec. II D, we consider an alternative derivation of Eq. (20).

We note that Eq. (20) can be written in the form

∂P (w,t)

∂t
=

∫ +1

−1
dβ η(β)

{
−

[
P (w,t) − 1

1 + β
P

(
w

1 + β
,t

)]

+ 1

N

∫ w
1+β

0
dw′

[
P (w − βw′,w′,t) − 1

1 + β
P

(
w

1 + β
,w′,t

)]}
, (21)

where η is the PDF of the fraction α and is given by

η(β) := 1
2δ(β − α) + 1

2δ(β + α) (22)

in the above example. Note that we still regard α as confined
to the interval [0,1), but β ∈ (−1, + 1). This form suggests
that we could adopt a more general form for η(β), as long as
we retain the normalization

∫ +1
−1 dβ η(β) = 1. For example,

by allowing the choice

η(β) =
{

1
2α

if |β| < α

0 otherwise,
(23)

we model the situation in which the fraction of the poorer
agent’s wealth that is at stake is uniformly distributed in [0,α].
In any case, we demand that η be an even function so that each
agent has equal win and loss probabilities in each interaction.

D. Master equation approach

As has been pointed out by Ispolatov, Krapivsky, and
Redner [8,9], an excellent way to understand the origin of
the terms in equations such as Eq. (20) is to express them in
the form of a master equation as follows:

∂P (w,t)

∂t
= 1

N

∫ ∞

0
dw′

∫ ∞

0
dw′′ P (w′′,w′)[−δ(w′′ − w)

+ 1

2
θ [w − (1 + α)w′]δ[w′′ − w + αw′]

+ 1

2
θ [(1 + α)w′ − w]δ[w′′(1 + α) − w]

+ 1

2
θ [w − (1 − α)w′]δ(w′′ − w − αw′)

+ 1

2
.θ [(1 − α)w′ − w]δ[w′′(1 − α) − w)].

(24)
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We can think of the terms of Eq. (24) as describing an agent
with wealth w′′ entering into a transaction with another agent
with wealth w′. The Dirac delta on the top line is a loss term;
if w′′ = w, the transaction results in the loss of an agent with
wealth w. The four succeeding Dirac deltas are source terms
and can be justified as follows:

(i) In the first source term, the agent with wealth w′′ > w′
wins wealth αw′ from the agent with wealth w′ and becomes
an agent with wealth w = w′′ + αw′ > (1 + α)w′.

(ii) In the second source term, the agent with wealth
w′′ < w′ wins wealth αw′′ from the agent with wealth w′ and
becomes an agent with wealth w = (1 + α)w′′ < (1 + α)w′.

(iii) In the third source term, the agent with wealth w′′ >

w′ loses wealth αw′ from the agent with wealth w′ and
becomes an agent with wealth w = w′′ − αw′ > (1 − α)w′.

(iv) In the fourth source term, the agent with wealth
w′′ < w′ loses wealth αw′′ from the agent with wealth w′ and
becomes an agent with wealth w = (1 − α)w′′ < (1 − α)w′.

Note that each possibility (i) through (iv) supposes a win or
a loss, and so each has a probability of one half. Performing
one or both integrals in each term of Eq. (24) quickly yields
Eq. (20).

E. Random-agent approximation and Boltzmann equation

Equation (20) expresses the rate of change of the one-agent
distribution in terms of the two-agent distribution. We could
proceed by writing an equation for the two-agent distribution,
but it would involve the three-agent distribution. This approach
leads to an infinite hierarchy of equations, similar to the
BBGKY hierarchy of statistical physics.

To truncate the hierarchy, we need to make an approxima-
tion. Referring to Eq. (A10), we see that we can make the
approximation of ignoring the correlation C(w,w′,t), so that
the two-agent PDF is assumed to be a product of two one-agent
PDFs. In the context of kinetic theory, this is Boltzmann’s
famous molecular chaos approximation; in this context, we
refer to it as the random-agent approximation.

The random-agent approximation assumes that two agents
entering a transaction are uncorrelated. It is of questionable
validity. We violate it every time we frequent the same grocery
store, instead of choosing one randomly. We will discuss the
shortcomings of the random-agent approximation in Sec. V.
For now we note that its application to Eq. (21) yields a self-
contained dynamical equation for the one-agent PDF,

∂P (w,t)

∂t
=

∫ +1

−1
dβ η(β)

{
−

[
P (w,t) − 1

1 + β
P

(
w

1 + β
,t

)]

+ 1

N

∫ w
1+β

0
dw′

[
P (w − βw′,t) − 1

1 + β
P

(
w

1 + β
,t

)]
P (w′,t)

}
. (25)

In Appendix B, we demonstrate that the quantities N and W ,
defined in Eqs. (8) and (9), are constants of the motion of
Eq. (25).

Equation (25) is strongly reminiscent of Boltzmann’s
celebrated kinetic equation of statistical physics. Certainly,
the term with the integral over w′ on the right-hand side has
the general appearance of an integral collision operator with
quadratic nonlinearity. We pursue this metaphor in Sec. II F.

F. Comparison with statistical physics

Boltzmann’s kinetic equation of statistical physics is written
for the one-particle PDF, f (r,v,t), where r denotes position
and v denotes velocity, and the evolution equation for this PDF
has the form

∂f (r,v,t)

∂t
= −v · ∇f (r,v,t) + 
[f ](r,v,t), (26)

where 
[f ](r,v,t) denotes a quadratically nonlinear integral
collision operator whose detailed form is discussed at length
in standard physics textbooks and need not concern us here.

It is interesting to compare the first term on the right-hand
side of Eq. (26) to that of Eq. (21). To address this, we rewrite
this term in Eq. (26) as a finite difference

− v · ∇f (r,v,t) ≈ − 1

τ
[f (r,v,t) − f (r − vτ,v,t)] , (27)

where τ is small. We note that both this term and the first term
on the right-hand side of Eq. (21) involve the PDF minus
a distortion of itself due to the action of a Lie group. In

Boltzmann’s kinetic equation, the Lie group is that of Galilean
transformations, r → r − vτ . In the Boltzmann equation that
we have derived for the YSM economy, the Lie group is
that of affine scalings w → w/(1 + β). Just as molecules
move in physical space by addition of −vτ , agents move in
wealth space by multiplication by 1/(1 + β). Equation (21)
can therefore be understood as a variety of Boltzmann equation
that bears the same relation to the affine group as the physical
Boltzmann equation bears to the Galilean group.

This observation strongly suggests that we should investi-
gate the small-β limit of Eq. (21) by considering PDFs η(β)
that have support only in the vicinity of the origin. We shall
examine this limit in Sec. III.

G. Solutions

1. Exact solutions

Ispolatov, Krapivsky, and Redner [8,9] investigated the
Boltzmann equation obtained from applying the random agent
approximation to Eq. (19) and found that it admitted an exact
solution proportional to (wt)−1. In fact, such solutions exist for
the much more general Eq. (25), as can be verified by direct
substitution. Because Eq. (25) is manifestly invariant under
time translation symmetry, these solutions can more generally
be written as

Pexact(w,t) = C

w(T + t)
, (28)

where T is an arbitrary constant, which should be positive to
avoid a singularity at finite time, and where the constant C is
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given by

C = N∫ +1
−1 dβ η(β) ln

(
1

1+β

) . (29)

The integral in the denominator in Eq. (29) is a constant
depending only on the choice of the symmetric function η(β)
used in the model. For example, the choice of Eq. (22) results
in

C = N

ln
(

1√
1−α2

) , (30)

and that of Eq. (23) results in

C = N

1 + 1
2α

ln
[

(1−α)1−α

(1+α)1+α

] . (31)

At first glance, the existence of such exact solutions might
seem very useful. Unfortunately, a solution proportional to
w−1 for all w is not normalizable. It has an infinite number
of agents and an infinite total wealth. That is, neither of the
integrals in Eqs. (8) and (9) are finite for these solutions. The
constant parameter N in Eq. (28) is the same one that appears
in Eq. (25), but it no longer has any connection with the number
of agents.

In spite of the fact that this solution is non-normalizable, we
shall see that it is very useful in understanding the long-time
behavior of solutions for P (w,t).

2. Simulations

We have performed simulations with populations of N =
5 × 104 agents, each given an initial allocation of 100 units
of wealth, so that W = 5 × 106. In these simulations, we took
η(β) to be of the form given in Eq. (22), with α = 0.25. Using
infinite-precision arithmetic, we ran the simulation for up to
109 transactions and, following Pareto, we plotted the fraction
of agents with wealth greater than w, namely,

A(w,t) := 1

N

∫ ∞

w

dw′ P (w′,t), (32)

versus w. These results are presented on log-linear plots for
various times in Fig. 3, in which three regimes are clearly
visible.

(1) For sufficiently small values of w, we see A(w,t) ≈ 1.
This indicates that P (w,t) goes to zero for small enough w,
so the lower limit of integration in Eq. (32) can be replaced by
zero. It makes sense that P (w,t) should vanish for sufficiently
small w. After all, at the beginning of the simulation, all the
agents had 100 units of wealth. Even an agent who lost in every
one of his interactions would still have 100(1 − α)n > 0 units
of wealth remaining after n transactions. That said, it should
be noted that the regime in which A(w,t) ≈ 1 is restricted to
extremely small values of w indeed. Remember that it is the
logarithm of w that is plotted on the abscissa in the graphs in
Fig. 3. At time t = 108, for example, note that the constant-A
regime is confined to ln w � −150, or w � e−150. (This is
why we used infinite-precision arithmetic in our simulations.)
We refer to this bound as wmin, so this regime is defined by
w < wmin.

(2) Figure 3 also suggests that A(w,t) ≈ 0 for sufficiently
large w. This indicates that P (w,t) also goes to zero for large
enough w. We refer to this bound as wmax, so this regime
is defined by w > wmax. Once again, this is reasonable, this
time because there is a bound W on the total wealth of the
population. Indeed, it may seem that it must be that wmax must
be strictly less than W , but one must be careful about this. It
is true in our simulation because we have discrete agents; as
a statement about Eq. (25), however, it is not true, because, as
noted earlier, agent discreteness is lost in this representation,
so we might well have a “half an agent” with wealth 2W . We
will return to this point in more detail later.

(3) For intermediate values of w, i.e., wmin < w < wmax,
the curves in Fig. 3 fit well to straight lines with negative
slope. In this regime, we evidently have A(w,t) ≈ b(t) −
a(t) ln w, and differentiating both sides with respect to w yields
P (w,t) ≈ a(t)

w
. This looks remarkably like the exact solution

presented earlier, but it is truncated for both low and high
wealth.

The foregoing discussion suggests that, at any given time t ,
to a reasonable approximation, P (w,t) has most of its support
only on a finite interval, [wmin(t),wmax(t)]. Thus our numerical
results fit well to the approximate solution P (w,t) ≈ Pc(w,t),
where

Pc(w,t) :=
{

a(t)
w

for wmin(t) � w � wmax(t)

0 otherwise,
(33)

from which it follows that

Ac(w,t) :=

⎧⎪⎨
⎪⎩

1 for w � wmin(t)

a(t) log
(

wmax(t)
w

)
for wmin(t) < w � wmax(t)

0 for wmax(t) < w,

(34)

where the notation reflects the fact that a, wmin, and wmax all
depend on time t . These quantities cannot all be independent,
however, since they must satisfy

N =
∫ ∞

0
dw Pc(w,t) = a(t) ln

[
wmax(t)

wmin(t)

]
(35)

and

W =
∫ ∞

0
dw Pc(w,t)w = a(t) [wmax(t) − wmin(t)] . (36)

Solving these for wmax(t) and wmin(t), we find

wmin = W

2a
csch

(
N

2a

)
exp

(
− N

2a

)
(37)

and

wmax = W

2a
csch

(
N

2a

)
exp

(
+ N

2a

)
. (38)

Here we have suppressed the explicit dependences on time t ,
but the point is that the time dependence of a determines those
of wmin and of wmax. This dependence is plotted in Fig. 4,
from which it is evident that large values of a correspond
to the egalitarian situation at early times, when everybody
has approximately 100 units of wealth. Small values of a

correspond to the situation at later times when there is a broad
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FIG. 3. (Color online) Log-linear Pareto plots of wealth distribution: Taken from simulation for 50 000 agents, each with an initial allocation
of 100 units of wealth and α = 0.25.

spectrum of wealth among the agents. One might surmise,
therefore, that a(t) decreases in time, and we now turn our
attention to measuring the rate at which it does so.

Given the data in Fig. 3, the easiest quantity for us
to measure is wmin(t). We fit the intermediate region of
the curve, the part with negative slope, to a straight line,
and determine where it intersects the horizontal line A = 1.
Given wmin(t) calculated in this fashion, we solve Eq. (37)
numerically for a(t), and plot 1/a(t) versus t . The result,
shown in Fig. 5, fits remarkably well to the straight line
1/a(t) ≈ 3.93264 + 0.0000204046t using a least-squares fit.
The slope is close to the value of 1/N = 0.00002. To within a
multiplicative constant of order unity, we therefore conjecture
the following approximate form for a(t),

a(t) ≈ N

T + t
, (39)

where T = N/a(0).

Combining Eqs. (33) and (39), we see that, in the interval
[wmin(t),wmax(t)], our fit is very similar to the exact solution
given in Eq. (28). Outside this interval, however, Pc(w)
vanishes. We emphasize that P (w,t) = Pc(w,t) is merely a
numerical fit, and it is not a (weak) solution of Eq. (25), as
can be verified by direct substitution. It can also be verified
by noting that Ac(w,t) has slope discontinuities at wmin(t) and
wmax(t), whereas the numerically measured A(w,t) in Fig. 3
seems smooth. It is remarkable that this crude truncation of
Eq. (28) does as well as it does in helping us understand the
numerical results, but it does not explain them exactly.

Equations (33) and (34) differ from the Pareto distribution
of Eqs. (4) and (3) in two significant ways. First, there is an
upper bound wmax as well as the lower bound wmin. Second, the
effective Pareto index is α = 0 for this model. The resulting
distribution is normalizable only because of the imposition of
the upper cutoff wmax.
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FIG. 4. (Color online) Plot of wmin and wmax versus a: Computed
from Eqs. (37) and (38) for N = 50 000 agents, and W/N = 100
units of wealth. The right-hand side of the plot corresponds to an
egalitarian situation where most agents have wealth in the vicinity of
100 units. As time increases, a decreases, leading to a wide range of
wealth in the population, from the very poor to the very rich.

As mentioned earlier, measured values of the Pareto index
seem to always be greater than one, as in Fig. 1, so it should be
reemphasized that this is a very idealized model, and that
we are not claiming that it models real economies. More
realistic models can be obtained by adding embellishments
to this model, as will be described in Sec. IV. To pursue the
metaphor with statistical thermodynamics, this model is the
analog of the ideal gas law; no real economy obeys it, but it
is such a useful idealization that it is worth careful study by
anybody who endeavors to understand real economies.

3. The long-time limit

To what does the solution P (w,t), or its approximation
Pc(w,t), converge in the limit of large t or, equivalently,
small a? Because the process is a martingale, there cannot
be a stationary solution that is a well-behaved function,
but we might expect that P (w,t) and Pc(w,t) converge to

0 2 107 4 107 6 107 8 107
0

500

1000

1500

t

1
a
t

FIG. 5. (Color online) Plot of 1/a(t) versus t : Taken from numer-
ical simulation by fitting to determine wmin(t) and solving Eq. (37)
numerically for a(t), as described in the text.

the same generalized function or distribution3 as t → ∞.
In Appendix C, we consider the nature of this generalized
function, which we denote by ζ (w), and in what function
space it exists. The reader who is willing to accept at face
value the statement “It converges to something that looks like
a delta function at zero wealth, except that, somehow, it has
a positive first moment and divergent higher moments” can
skip the presentation in the appendix without fear of losing the
overall thread.

III. A PDE FOR THE YARD-SALE MODEL
DENSITY FUNCTION

A. The small-transaction limit

In some circumstances, it is reasonable to assume that the
largest fraction of an an agent’s wealth that may be lost in
one transaction is small. Most sensible people, after all, do not
stake large fractions of their wealth on a single transaction.
In that case, it is reasonable to expand the expression in curly
brackets in Eq. (25) in a power series in β. In doing so, we can
note that this expression vanishes when β = 0, so there is no
constant term. The next term of the power series, proportional
to β, will contribute nothing when it is integrated alongside
the even function η(β). Hence, the first term that contributes
is that of order β2. The result, after some work, can be cast in
the remarkably simple form

∂P

∂t
= ∂2

∂w2

[(
w2

2
A + B

)
P

]
, (40)

where we have absorbed the constant factor
∫ +1
−1 dβ η(β)β2

into the unit of time t . Here A(w,t) is Pareto’s function defined
in Eq. (32), and we have defined

B(w,t) := 1

N

∫ w

0
dw′ P (w′,t)

w′2

2
. (41)

Recall that A(w,t) is nonincreasing with w, with A(0,t) = 1
and limw→∞ A(w,t) = 0. By contrast, B(w,t) is nondecreas-
ing with B(0,t) = 0, and limw→∞ B(w,t) not necessarily
finite. Both A(w,t) and B(w,t) are functionals of P , so Eq. (40)
is nonlinear. On the other hand, if P is a solution, then so is
cP for any constant c, because A and B will be unchanged by
this factor.

B. Conservation laws in the small-transaction limit

Before seeking solutions to Eq. (40), we should check that
we have retained the conservation laws in the limiting process.
Eq. (40) is clearly in conservation form

∂P

∂t
+ ∂JN

∂w
= 0, (42)

where we have defined the flux of agents in wealth space,

JN = − ∂

∂w

[(
w2

2
A + B

)
P

]

= −
(

w2

2
A + B

)
∂P

∂w
− wAP. (43)

3We shall use these two terms interchangeably.
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Because JN vanishes at the boundaries w = 0 and w → ∞,
conservation of agents follows immediately by integration of
Eq. (42) over all w. Note that the quantity μN := (w2A/2 +
B)P emerges as a kind of chemical potential for agents in
wealth space, because its gradient drives the flux of agents,
JN = −∂μN/∂w.

Next note that we can write

0 = w
∂P

∂t
+ w

∂JN

∂w
= ∂

∂t
(wP ) + ∂

∂w
(wJN ) − JN

= ∂

∂t
(wP ) + ∂

∂w
(wJN + μN ) , (44)

which is also in conservation form

∂

∂t
(wP ) + ∂JW

∂w
= 0, (45)

where we have defined the flux of wealth in wealth space,

JW = wJN + μN = −w
∂μN

∂w
+ μN

= −w

(
w2

2
A + B

)
∂P

∂w
−

(
w2

2
A − B

)
P. (46)

Because JW also vanishes at the boundaries w = 0 and
w → ∞, conservation of wealth follows immediately by
integration of Eq. (45) over all w.

It is instructive to plot the agent flux and wealth flux
as functions of w for a sample distribution. This plot is
shown in Fig. 6 for the arbitrarily chosen distribution P (w) =
50 000we−w, which is normalized to 50 000 agents, and is
plotted as a solid curve in red. The corresponding JN (w)
is plotted as a green dashed curve, and JW (w) as a blue
dot-dashed curve.

Figure 6 makes evident that there is a threshold for agents
in wealth space; the bulk of the agents below this threshold
tend to move downward, while the elite above it tend to move
upward. Likewise, there is a different threshold for wealth;
a minority of the wealth below this threshold tends to move
downward, while the majority of wealth above it tends to move
upward. The agent threshold is on the tail of the distribution,
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20000

30000

w

P w , JN w , JW w

FIG. 6. (Color online) Sample PDF and associated fluxes: A
sample distribution P (w) (in red, solid), the corresponding agent
flux JN (w) (in green, dashed), and the corresponding wealth flux
JW (w) (in blue, dot-dashed).

significantly higher than the wealth threshold. That is, a small
fraction of the agents and a large fraction of the wealth move
upward. In this model, the rich become richer and the poor
become poorer.

C. Numerical simulations in the small-transaction limit

It is much more straightforward to simulate the PDE in
Eq. (40), with A given by Eq. (32) and B given by Eq. (41),
than it is to simulate Eq. (25). We have done this using a
finite-difference method for the arbitrarily chosen initial PDF,

P (w,0) ∝
{

exp
[− 10

(10−w)(w−4)

]
for 4 < w < 10

0 otherwise,
(47)

which has support on [4,10], and we plot the results in Fig. 7.
The results illustrate a fast evolution to a curve proportional
to w−1 in a bounded region, followed by the expansion of that
region and concomitant reduction in magnitude of the curve,
presumably approaching the singular function ζ (w) described
in Appendix C. At the end of the appendix, we show that ζ (w)
is a stationary state of Eq. (40) in a weak sense.

D. Discussion

We have presented a Boltzmann equation for the YSM, and,
in the small-transaction limit, we have shown that this reduces
to a PDE. Both are integrodifferential equations, though the
second is easier to understand and simulate than the first. Both
agent-based numerical results from the Boltzmann equation,
and a finite-difference simulation of the PDE reveal a strong
tendency to drive increasing fractions of wealth into the hands
of a decreasing minority of agents. In both cases, we conjecture
that the time-asymptotic state of the system is a generalized
function ζ (w) that has all of the N agents condensed to zero
wealth, while retaining a positive first moment W .

One might wonder if this approach to a singular state
indicates that the model is lacking. After all, even idealized
agent-based models of microeconomics are much more com-
plicated than the YSM. As an example, consider the famous
“Sugarscape” model of Epstein and Axtell [13]. A condensed
explanation of Sugarscape can be found in Beinhocker’s book
[2], but even this explanation indicates that Sugarscape is
vastly more complicated than our simple YSM.

In Sugarscape, agents have many features other than simply
wealth. For example, they have spatial location, and they can
move about on a two-dimensional grid, searching for “sugar”
and “spice,” and trading with other nearby agents. They also
have a built-in algorithm that controls their movements and
actions based on their environment. In the more sophisticated
versions of the model, agents die for lack of sugar and breed
when they have excess sugar. There are also versions of
the model in which the agents can sexually reproduce, with
each parent passing along features of their algorithm to their
offspring.

Like us, Epstein and Axtell started the agents in Sugarscape
with various initial distributions of wealth to see how these
distributions would evolve, and they plotted their results versus
time. One of their time sequences is reproduced in Fig. 8. Time
runs downward in this figure. In spite of all the complications
present in Sugarscape, the evolution shown in Fig. 8 is
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FIG. 7. (Color online) Numerical solution to Eq. (40): A finite-difference method was used to solve Eq. (40) for P (w,t), given the initial
condition in Eq. (47). The result clearly illustrates the approach to a curve proportional to w−1, followed by the eventual approach to the
singular distribution ζ (w).

immediately familiar; indeed, the qualitative resemblance to
Fig. 7 is striking. A least-squares fit on a log-log plot4 reveals
that the penultimate plot in Fig. 8 fits well to w−1.36, and
the last figure fits well to w−1.24. These correspond to Pareto
α values of 0.36 and 0.24, not normalizable unless cutoffs
are assumed. These results are not so far removed from
ours.

These observations suggest an Occam’s Razor-style argu-
ment that the YSM captures at least some of the essential
features of Sugarscape, and there is no denying that the
YSM is much simpler to understand and simulate. Because
I suspect that this paper will be read by economists as well
as physicists, an additional transcultural cautionary word is
warranted here. Economists are naturally suspicious of the

4Discarding histogram entries with zero agents.

suggestion that correct macropredictions of a theory justify
its microfoundations. Nothing of the sort is being suggested
here. Sugarscape, while still very idealized, is far more realistic
than the YSM. In fact, it exhibits emergent phenomena, such
as the growth of trade routes, that are not even defined in the
YSM.

To a physicist, the fact that the YSM is able to explain some
of the emergent phenomena of Sugarscape, such as power law
P with α < 1, can only be regarded as a positive outcome.
Physicists have a long history of idealizations that have
advanced human knowledge, from elliptic planetary orbits
(Kepler) to arrows on a grid representing magnetic domains
(Ising). All of these idealizations are known to be unrealistic,
and yet all of them have led to leaps in our understanding. All
we are suggesting here is that the YSM has a key place in the
hierarchy of idealizations that constitute our understanding of
real economic phenomena.
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FIG. 8. (Color online) Wealth distribution in “Sugarscape”:
These plots are histograms of the number of agents versus wealth in
Epstein and Axtell’s Sugarscape model. Time runs downward from
an arbitrary initial distribution in the top figure to something that
looks remarkably like what is observed in the YSM. (Figure taken
from Epstein and Axtell [13] with permission.)

IV. ADDITIONAL FEATURES

A. The importance of wealth redistribution

Real economies seem to have Pareto exponents that are
greater than one. It is often claimed that α > 1 is necessary
in order for the Pareto PDF to be normalizable. As we have
seen, however, this argument is valid only if we assume no
upper cutoff. Real economies have discrete agents, so wealth
can not concentrate beyond the extreme of one agent having
all of it, and this in itself sets an upper cutoff. As Pareto
himself observed, there is also usually some social safety net
for the poor, setting a lower cutoff. With such cutoffs, there
is nothing stopping the PDF between them from having a
Pareto index less than unity, and this is precisely what we
have found in both the YSM and Sugarscape models described
above.

This naturally raises a question: If normalizability is not
the reason that α > 1 is observed in real economies, then
what is the reason? We suggest that real societies have wealth
redistribution mechanisms that naturally increase α. It could
be that real societies become politically unstable if α is too
small. Whatever the reason, most societies have taxation on
wealth or income, and good governments use the revenues

thereby generated to build infrastructure to improve the lives
of all.

There are other mechanisms preventing the uncontrolled
concentration of wealth. Countries allow immigration to
increase N , and they mine natural resources (among other
things) to increase W . Central banks can print currency. Agents
can make successful investments outside the country, thereby
increasing their own wealth. All of these features can impact
the distribution of wealth. We consider a few such features in
the following subsections.

Recall that we have studied the YSM at two different levels
of description, namely, the Boltzmann equation in Sec. II, and
the PDE to which it reduces in the small-transaction limit in
Sec. III. We could introduce new features at either of these two
levels of description. In what follows, we continue to use the
small-transaction limit because it is more elegant and tractable.
There is nothing preventing the use of a similar approach for
the Boltzmann equation.

Suppose that a certain mechanism changes the wealth of an
agent at a rate f (w) that depends only on that agent’s wealth
w. Then, to first order in �t , we must have

P (w,t) dw = P [w + f (w)�t,t + �t] dw′. (48)

If we Taylor expand the right-hand side and retain terms only
to first-order in �t , we find

∂P

∂t
+ ∂

∂w
(f P ) = 0. (49)

Taking the zeroth moment of Eq. (49), we see that it conserves
agents. Taking the first moment, we see that Eq. (49) may not
conserve wealth. All of the examples that follow will conserve
agents, so we shall use this general approach.

The observations in this section will be restricted to the
derivation and exposition of appropriate dynamical equations.
Numerical modeling of economies with these extra features
will be reported in a future paper [14].

B. Inflation

Suppose that all agents are able to loan their wealth to
external borrowers who pay them an interest ν per unit time.
Then f (w) = νw, so if this mechanism were the only one
present, the rate equation for the PDF would be

∂P

∂t
+ ∂

∂w
(νwP ) = 0. (50)

Once again, Eq. (50) conserves agents, but the total wealth of
the society obeys

dW

dt
= νW, (51)

demonstrating that W grows exponentially in time, with time
constant ν, as expected.

If we suppose that this mechanism is present in addition to
YSM wealth exchange, the full differential equation becomes

∂P

∂t
+ ∂

∂w
(νwP ) = ∂2

∂w2

[(
w2

2
A + B

)
P

]
. (52)

Once again, because we have already demonstrated that the
YSM terms on the right conserve both N and W , this combined

042804-12



KINETICS OF WEALTH AND THE PARETO LAW PHYSICAL REVIEW E 89, 042804 (2014)

model has constant agent number N and exponentially
increasing wealth,

W = W0e
νt . (53)

Because of the exponential increase of W , this model never
reaches a stationary state, but we can rescale it by defining the
new independent variables

x = e−νtw, (54)

τ = t. (55)

It follows that the derivatives with respect to the old variables
are given by

∂

∂w
= e−ντ ∂

∂x
(56)

and

∂

∂t
= −νx

∂

∂x
+ ∂

∂τ
. (57)

The new dependent variable is then a new PDF, Q, such
that Q(x) dx = P (w) dw. From this, it follows that

Q = eνtP , (58)

so that

∫ ∞

0
Q dx =

∫ ∞

0
P dw = N, (59)

∫ ∞

0
Qx dx = e−νt

∫ ∞

0
Pw dw = e−νtW = W0. (60)

Likewise, it follows that

A = 1

N

∫ ∞

x

Q dx, (61)

B = e2νt

N

∫ x

0
Q

x2

2
dx, (62)

whence

w2

2
A + B = e2ντ

(
x2

2
A + B

)
, (63)

where we have defined

A = 1

N

∫ ∞

x

Q dx, (64)

B = 1

N

∫ x

0
Q

x2

2
dx. (65)

Assembling the above, we see that the differential equation
for the new dependent variable Q in terms of the new
independent variables x and τ is

∂Q

∂τ
= ∂2

∂x2

[(
x2

2
A + B

)
Q

]
, (66)

where A and B are given in terms of Q by Eqs. (64) and
(65). Aside from renamed variables, however, Eqs. (66), (64),

and (65) are absolutely identical in form to those for the YSM
without inflation, Eqs. (40), (32), and (41). Thus, the only effect
of inflation in this closed economy is to change the yardstick
by which wealth is measured, but the concentration of wealth
predicted by the model persists. In the long-time limit, the new
dependent variable Q approaches the generalized function ζ

described earlier.

C. Production

Suppose that a society produces wealth ξ per unit time,
perhaps from an extraction industry of some sort, and that it
divides the wealth thus produced evenly among its N agents.
Then f (w) = ξ/N . If this mechanism were the only one
present, the rate equation for the PDF would be

∂P

∂t
+ ∂

∂w

(
ξ

N
P

)
= 0. (67)

Equation (67) is a one-sided wave equation with wave speed
ξ/N . As noted, it conserves the number of agents N . Taking
the first moment, however, we see that the total wealth of the
society satisfies

dW

dt
= ξ. (68)

In this model, therefore, W grows linearly in time.
If we suppose that production occurs in addition to YSM

wealth exchange, the full differential equation becomes

∂P

∂t
+ ∂

∂w

(
ξ

N
P

)
= ∂2

∂w2

[(
w2

2
A + B

)
P

]
. (69)

Because we have already demonstrated that the YSM terms on
the right conserve both N and W , this combined model will
have constant agent number N and linearly increasing wealth,

W = W0 + ξ t. (70)

Because of the linear increase of W , the model never
reaches a stationary state, but we can rescale it, as we did
for the model with inflation. There are a number of ways of
going about this, but, for example, we could define the new
independent variables,5

x = W0

W
w = W0

W0 + ξ t
w, (71)

τ = t. (72)

It follows that the derivatives with respect to the old variables
are given by

∂

∂w
= W0

W0 + ξτ

∂

∂x
(73)

and
∂

∂t
= − ξx

W0 + ξτ

∂

∂x
+ ∂

∂τ
. (74)

5We are going to use the same names for the new independent
variables, x and τ , and for the new dependent variable, Q, that we
used in the subsection on inflation, but obviously they will have
different definitions in the context of production.
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The new dependent variable is then a new PDF, Q, such
that Q(x) dx = P (w) dw. From this, it follows that

P (w) = W0

W0 + ξτ
Q(x), (75)

so that

∫ ∞

0
Q dx =

∫ ∞

0
P dw = N, (76)

∫ ∞

0
Qx dx = W0

W0 + ξ t

∫ ∞

0
Pw dw = W0

W
W = W0. (77)

Likewise, it follows that

A = 1

N

∫ ∞

w

P dw = 1

N

∫ ∞

x

Q dx, (78)

B = 1

N

∫ w

0
P

w2

2
dw =

(
W0 + ξτ

W0

)2 1

N

∫ x

0
Q

x2

2
dx,

(79)

whence

w2

2
A + B =

(
W0 + ξτ

W0

)2 (
x2

2
A + B

)
, (80)

where we have defined

A = 1

N

∫ ∞

x

Q dx, (81)

B = 1

N

∫ x

0
Q

x2

2
dx. (82)

Assembling the above, we see that the differential equation
for the new dependent variable Q in terms of the new
independent variables x and τ is

∂Q

∂τ
+ ξ

[(
W0
N

− x
)

∂Q

∂x
− Q

]
W0 + ξτ

= ∂2

∂x2

[(
x2

2
A + B

)
Q

]
.

(83)

Assuming that the various derivatives are well behaved, and
taking the limit as τ → ∞, we find

∂Q

∂τ
= ∂2

∂x2

[(
x2

2
A + B

)
Q

]
, (84)

where A and B are given in terms of Q by Eqs. (81) and
(82). Once again, aside from renamed variables, however,
Eqs. (84), (81), and (82) are absolutely identical in form to
those for the YSM without production, Eqs. (40), (32), and
(41). Thus, as with inflation, the only effect of production
in this closed economy is to change the yardstick by which
wealth is measured, but the concentration of wealth predicted
by the model persists. In the long-time limit, the new dependent
variable Q approaches the generalized function ζ described
earlier.

D. Taxation

The importance of wealth redistribution in models of this
sort has been emphasized by Toscani and his coworkers

[15–18]. To incorporate this effect in our model, let us suppose
that all agents are assessed a wealth tax of χ percent per unit
time. The amount of tax paid by an agent with wealth w is
χw. Integrating this over the distribution, we see that the total
tax taken from the society is χW . If we suppose that this
total tax revenue is divided evenly and redistributed among
the N agents, we find that f (w) = −χw + χW/N . If this
mechanism were the only one present, the rate equation for
the PDF becomes

∂P

∂t
+ ∂

∂w

[
χ

(
W

N
− w

)
P

]
= 0. (85)

Equation (85) conserves both N and W . Because it continually
redistributes wealth, it is not surprising that it admits the
generalized stationary solution P (w) = Nδ(w − W/N ), in a
weak sense, as is readily verified.

If we suppose that taxation is present in addition to YSM
wealth exchange, the full differential equation is

∂P

∂t
+ ∂

∂w

[
χ

(
W

N
− w

)
P

]
= ∂2

∂w2

[(
w2

2
A + B

)
P

]
.

(86)

This combined model will conserve both N and W , and it
is interesting in that the terms on the left-hand side drive P

towards an equitable distribution of wealth, while those on the
right-hand side drive α to zero. We might hope that together
they would lead to power-law solutions with intermediate
values of the Pareto index, closer to those observed in real
economies, but it is straightforward to verify that a simple
power law will not work, even with upper and lower cutoffs.

In the steady state, ∂P/∂t = 0, Eq. (89) can be integrated
once with respect to w to yield

∂

∂w

[(
w2

2
A + B

)
P

]
= χ

(
W

N
− w

)
P + C (87)

or

wAP +
(

w2

2
A + B

)
∂P

∂w
= χ

(
W

N
− w

)
P + C, (88)

where C is an integration constant. We take the limit as w → 0,
supposing that P → 0 and that its derivatives are well behaved,
and also noting that A → 1 and B → 0 in this limit. We find
C = 0 whence

∂

∂w

[(
w2

2
A + B

)
P

]
= χ

(
W

N
− w

)
P. (89)

Figure 9 shows solutions to the above equation, in both linear-
linear and log-log plots, for W/N = 7.01126 and a range of
χ . The log-log plots make evident behavior at large w that
is approximately, but not exactly, a power law. This power-
law behavior persists for multiple orders of magnitude. For
smaller values of χ the curve is noticeably concave up, and for
larger values of χ , it is noticeably concave down, indicating
deviations from power-law behavior.

Another interesting feature of the plots is the flatness of
the solutions near the origin; this feature is emphasized in
the insets of the linear-linear plots. It seems that P ≈ 0 is
very accurate in the vicinity of the origin, and this is very
reminiscent of Pareto’s cutoff at low w, as presented in Eq. (4).
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FIG. 9. (Color online) Plots of P (w) versus w for W/N ≈ 7.01126 and a range of χ : This is the steady-state solution computed from
Eq. (89). The very flat region near the origin in the linear-linear plots is magnified in the insets. Note that the range of w changes from plot
to plot.
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To see why the solution of Eq. (89) is very flat near the origin,
let us begin by assuming that P ≈ 0 near the origin, and trying
to justify that assumption a posteriori. It immediately follows
that A ≈ 1 and B ≈ 0 in this vicinity, so Eq. (89) reduces to

∂

∂w

(
w2

2
P

)
= χ

(
W

N
− w

)
P. (90)

This has solution

P = C

w2+2χ
exp

(
−2χ

W

N

1

w

)
, (91)

where C is a constant of integration. This function and all its
derivatives vanish in the limit as w → 0, and hence its Taylor
series also vanishes, thereby providing us with the desired
a posteriori justification to all orders in w. Of course, the
function is nonanalytic at w = 0, so this justification com-
pletely misses the fact that P > 0 for w > 0. This observation
nonetheless suggests that Eq. (91) is approximately valid near
the origin, consistent with Pareto’s posited cutoff at low w.

For large w, A, and B are no longer well approximated by
one and zero, respectively, so we should not expect Eq. (91) to
have any validity. In spite of this, we can choose the integration
constant C so that the zeroth and first moments are exactly N

and W , respectively,

P = N

�(2χ + 1)

(
2χ

W

N

)2χ+1 1

w2+2χ
exp

(
−2χ

W

N

1

w

)
.

(92)

One is tempted to note that the exponential in Eq. (92) goes
to one for large w, leaving us with the power law w−2−2χ ,
corresponding to Pareto index α = 1 + 2χ . This is a gross
overestimate because A and B are no longer approximately
one and zero, respectively, in the power-law regime, but it
does capture the fact that the Pareto index α increases with
the tax rate χ . Numerical fits to the data shown in Fig. 9 for
W/N ≈ 7.01126 yield

χ α

0.5 0.49674
1.0 0.53657
2.0 0.64289
5.0 1.03765

demonstrating a much more modest increase of α with
χ . Much more work needs to be done to understand the
dependence of α on χ and W/N .

V. CONCLUSIONS

The analogy between transacting agents and colliding
molecules has been pointed out by a number of authors (see,
e.g., Yakovenko [4]). We have pursued this analogy and derived
a general Boltzmann equation governing wealth distribution
in the Yard-Sale Model (YSM), with careful attention to all
of the assumptions that must go into such a derivation, such
as the random-agent approximation. The construction of this
equation so that it conserves both agents and wealth is one of
the key results of this paper.

We presented strong analytical and numerical evidence
that the dynamics of the YSM make the rich richer and the

poor poorer, inexorably driving the distribution of wealth to
a decidedly singular state with vanishing Pareto index. The
asymptotic state of the dynamics is one in which all but a
vanishingly small fraction of the agents have zero wealth, even
while the first moment of the wealth remains positive. In the
Appendices, we introduce the functional analysis necessary to
make this last statement rigorous, describing the asymptotic
state as a generalized function ζ , which is different from the
Dirac delta at zero wealth.

We then introduced the small-transaction limit in which
the Boltzmann equation reduces to a simpler partial integrod-
ifferential equation, and presented numerical evidence that
this equation has the same singular limit as the Boltzmann
equation. To the best of our knowledge, this PDE has not
been posited before in the context of wealth dynamics and is
therefore another of this paper’s principal new contributions.

We pointed out that other more detailed artificial society
models, such as Sugarscape [13], also exhibit dynamics
which drive the Pareto index to values less than unity. We
refuted the usual argument proscribing this, based on the
non-normalizability of the wealth distribution. With lower and
upper cutoffs that approach zero and infinity, respectively, at
just the correct rates, there is nothing preventing a power-law
wealth distribution with Pareto index less than unity.

Finally, we showed how this model can be extended to
include phenomena which lead to stationary states with more
realistic values of the Pareto index. In particular, the model
with taxation and redistribution of wealth exhibits a sharp
cutoff at low w, due to nonanalytic behavior in that vicinity,
as well as power-law behavior at large w. These are the key
distinguishing features of Pareto distributions. More detailed
analytical and numerical examination of models with these
extra features will be the subject of future work [14].

There are many ways in which this work can be expanded
and extended. We can add extra variables to the agents,
such as spatial position. We can examine the development
of correlations between transacting agents, and the corrections
that these make to the random-agent approximation. We can
examine the possibility of transactions that involve three or
more agents at a time, instead of just pairs of agents. We can
also examine steady states of Eq. (86). It is hoped that this
presentation will encourage more work along these lines.
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APPENDIX A: THE KLIMONTOVICH REPRESENTATION
AND INTERAGENT CORRELATIONS

In Sec. II A, we introduced the continuous one-agent PDF
P (w) and two-agent PDF P (w,w′), describing the distribution
of wealth among a population of agents. In this appendix
we shall make these concepts precise. In particular, we shall
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describe the idea, familiar from kinetic theory, that the PDF of
wealth P (w) can be understood as the ensemble average of a
corresponding quantity in the Klimontovich representation.
As in kinetic theory, we can employ the Klimontovich
representation to define multiagent PDFs and multiagent
correlation functions. Because the YSM presented in this paper
chooses agents at random, correlations are not a concern; these
considerations will become much more important in future
versions of this work that account for the manner in which
agents are networked.

1. Klimontovich representation of one-agent density function

We consider a population of N agents with individual
wealth wj (t), where j = 1, . . . ,N . The Klimontovich repre-
sentation of the one-agent PDF is then

PK (w,t) =
N∑
j

δ[w − wj (t)], (A1)

from which Eqs. (8) and (9) yield N (t) = N and W (t) =∑N
j wj (t), respectively.
The Klimontovich representation retains the individual

wealth of each agent in the population as a Dirac delta. For most
purposes, this is far too much information to be useful. The
representation that we would prefer is some smoothed version
of this. We can smooth PK by taking an ensemble average
over many different populations of N agents, each evolving
independently. These populations are distinct because their
initial conditions can differ and because their time evolution
can be stochastic.

To represent the ensemble average mathematically, we add a
(possibly multidimensional) ensemble label σ , so that wj (σ,t)
denotes the wealth of the j th agent in the σ th population of
the ensemble at time t . For simplicity, we insist that each
population in the ensemble has the same number of agents
N and the same total wealth W = ∑N

j w(σ,t). We follow
common usage in statistical physics and refer to an ensemble
constructed with these constraints as microcanonical. The
Klimontovich representation of the one-agent distribution of
population σ is then denoted

PK (σ,w,t) =
N∑
j

δ[w − wj (σ,t)]. (A2)

The ensemble averaged one-agent distribution is then the
integral6 of this over some measure dρ(σ ), normalized so that∫

dρ(σ ) = 1. That is, the smoothed one-agent PDF that we

6Note that an average over a finite or countable number of ensemble
elements would still yield a singular distribution. To obtain something
smooth, the Dirac deltas of the Klimontovich representation need to
be integrated over a continuum. Some authors avoid this problem by
the notational dodge of angle brackets 〈·〉 for the ensemble average,
defined so that 〈δ(w − wj )〉 is somehow smooth. We eschew this
sleight of hand because it evades the real issue: The Klimontovich
distribution is a generalized function, so it belongs inside an integral.
The angle brackets must be the integral over some measure, so it is
best to denote them as such.

use is given by

P (w,t) =
∫

dρ(σ ) PK (σ,w,t)

=
∫

dρ(σ )
N∑
j

δ[w − wj (σ,t)]. (A3)

Because our ensemble is microcanonical, Eqs. (8) and (9) still
yield N (t) = N and W (t) = ∑N

j wj (σ,t), respectively, both
quantities being independent of σ .

We note that, in passing from the Klimontovich represen-
tation PK to the smoothed representation P , we have lost
the discrete nature of N and W . In a real economy, agents
are individuals (or other legal entities, such as corporations),
and there is necessarily an integer number of them. Likewise,
wealth is measured in some currency and often rounded off to
the minimum unit of that currency, or some rational fraction
thereof. In the smoothed representation, however, N and W

are generally real numbers. We will return to this point later
in Sec. II G.

2. Multiagent density functions

Similarly, we can define a two-agent density function7 at
time t , denoted by P (w,w′,t). That is, the number of ordered
pairs of agents such that one has wealth between a and b and
the other has wealth between c and d at time t is given by∫ b

a
dw

∫ d

c
dw′ P (w,w′,t). This two-agent PDF satisfies three

important properties:
(i) Because the total number of ordered pairs of agents is

N2, we must have8

N2 =
∫ ∞

0
dw

∫ ∞

0
dw′ P (w,w′,t). (A4)

(ii) Because the property of being paired is symmetric, we
must have

P (w,w′,t) = P (w′,w,t). (A5)

(iii) Because each agent can be paired with N others,
integrating the two-agent PDF over the second variable and
dividing by N must yield the one-agent density function,

P (w,t) = 1

N

∫ ∞

0
dw′ P (w,w′,t). (A6)

To better understand the two-agent PDF, we first consider
its Klimontovich representation

PK (w,w′,t) =
N∑
j

N∑
k

δ[w − wj (t)]δ[w′ − wk(t)]. (A7)

7It is possible to define a two-agent density function for multiple
times as well. For example, we could define the PDF for finding
one agent with wealth w ∈ [a,b] at time t and another with wealth
w′ ∈ [c,d] at time t ′. For the purposes of this paper, however, the
single-time version with t ′ = t is all we need.

8Note that, because these are ordered pairs, we count the pairing of
an agent with wealth w with another with wealth w′ as distinct from
the reverse. We also include pairings of agents with themselves. This
is why the total number of pairs is N2.
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It is manifest that this factors as

PK (w,w′,t) = PK (w,t)PK (w′,t), (A8)

so that the Klimontovich representation of the two-agent PDF
is the product of two one-agent Klimontovich PDFs. With this
observation, the three properties in the foregoing paragraph
follow immediately.

As with the one-agent PDF, the Klimontovich representa-
tion of the two-agent PDF contains much more information
than we need, so we smooth it by taking an ensemble average,

P (w,w′,t)

=
∫

dρ(σ ) PK (σ,w,w′,t)

=
∫

dρ(σ )
N∑
j

N∑
k

δ[w − wj (σ,t)]δ[w′ − wk(σ,t)].

(A9)

As a consequence of the ensemble average, the smoothed two-
agent PDF no longer factors into a product form, but we can
write

P (w,w′,t) = P (w,t)P (w′,t) + C(w,w′,t), (A10)

where we have defined the two-agent correlation function

C(w,w′,t) :=
∫

dρ(σ )

⎧⎨
⎩

N∑
j

δ[w − wj (σ,t)] − P (w,t)

⎫⎬
⎭

×
{

N∑
k

δ[w′ − wk(σ,t)] − P (w′,t)

}
, (A11)

which can be thought of as the excess probability of finding a
pair of agents, over and above the product of the probabilities of
finding each individually. As with one-agent PDFs, we some-
times suppress the time dependence, writing, for example,
P (w,w′) and C(w,w′), instead of P (w,w′,t) and C(w,w′,t),
if the time is obvious from the context.

It follows from the definition of the two-agent correlation
function that

0 =
∫ ∞

0
dw C(w,w′,t) =

∫ ∞

0
dw′ C(w,w′,t) (A12)

and

C(w,w′,t) = C(w′,w,t), (A13)

and from these one can verify that P (w,w′,t) still satisfies
properties (i) through (iii) above, even though it is no longer a
product form.

Likewise, p-agent PDFs for p > 2 can also be expressed
as product forms supplemented by connected correlation
functions.

APPENDIX B: CONSERVATION LAWS
FOR THE BOLTZMANN EQUATION

In this appendix, we demonstrate that the quantities N and
W , defined in Eqs. (8) and (9), are constants of the motion of
Eq. (25).

1. Conservation of agents

To demonstrate that the total number of agents, given by Eq. (8), is conserved, we first note that

dN

dt
= d

dt

∫ ∞

0
dw P (w,t) =

∫ ∞

0
dw

∂P (w,t)

∂t

=
∫ +1

−1
dβ η(β)

{
−

∫ ∞

0
dw

[
P (w,t) − 1

1 + β
P

(
w

1 + β
,t

)]

+ 1

N

∫ ∞

0
dw

∫ w
1+β

0
dw′

[
P (w − βw′,t) − 1

1 + β
P

(
w

1 + β
,t

)]
P (w′,t)

}
, (B1)

where we have exchanged the order of integration over β and w in the second line. It follows that N will be conserved if the
right-hand side vanishes. In fact, we will show that the two terms in the curly braces vanish separately.

First, we note that a simple change of integration variable in the first term establishes that∫ ∞

0
dw

[
P (w,t) − 1

1 + β
P

(
w

1 + β
,t

)]
= 0. (B2)

Next, we note that

1

N

∫ ∞

0
dw

∫ w
1+β

0
dw′

[
P (w − βw′,t) − 1

1 + β
P

(
w

1 + β
,t

)]
P (w′,t)

= 1

N

∫ ∞

0
dw′ P (w′,t)

∫ ∞

(1+β)w′
dw

[
P (w − βw′,t) − 1

1 + β
P

(
w

1 + β
,t

)]

= 1

N

∫ ∞

0
dw′ P (w′,t)

[∫ ∞

w′
dw P (w,t) −

∫ ∞

w′
dw P (w,t)

]
= 0, (B3)
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where we have changed the order of integration in the first step, and made two different substitutions in the second step.
Combining Eqs. (B1), (B2), and (B3), we find

dN

dt
= 0, (B4)

as expected.

2. Conservation of wealth

Likewise, to demonstrate that the total wealth of the population, given by Eq. (9), is conserved, we first note that

dW

dt
= d

dt

∫ ∞

0
dw wP (w,t) =

∫ ∞

0
dw w

∂P (w,t)

∂t
=

∫ +1

−1
dβ η(β)

{
−

∫ ∞

0
dw w

[
P (w,t) − 1

1 + β
P

(
w

1 + β
,t

)]

+ 1

N

∫ ∞

0
dw w

∫ w
1+β

0
dw′

[
P (w − βw′,t) − 1

1 + β
P

(
w

1 + β
,t

)]
P (w′,t)

}
, (B5)

where we have exchanged the order of integration over β and w in the second line. It follows that W will be conserved if the
right-hand side vanishes. This time, we shall show that the two terms in curly braces are both odd functions of β, so that when
they are integrated along with the even function η(β), the result vanishes.

A simple change of integration variable in the first term establishes that∫ ∞

0
dw w

[
P (w,t) − 1

1 + β
P

(
w

1 + β
,t

)]
= −βW, (B6)

which is proportional to β. We also have that

1

N

∫ ∞

0
dw w

∫ w
1+β

0
dw′

[
P (w − βw′,t) − 1

1 + β
P

(
w

1 + β
,t

)]
P (w′,t)

= 1

N

∫ ∞

0
dw′ P (w′,t)

∫ ∞

(1+β)w′
dw w

[
P (w − βw′,t) − 1

1 + β
P

(
w

1 + β
,t

)]

= 1

N

∫ ∞

0
dw′ P (w′,t)

[∫ ∞

w′
dw (w + βw′)P (w,t) − (1 + β)

∫ ∞

w′
dw wP (w,t)

]

= β

N

∫ ∞

0
dw′ P (w′,t)

∫ ∞

w′
dw P (w,t)(w′ − w), (B7)

which is also proportional to β. In Eq. (B7), we have changed
the order of integration in the first step, and made two different
substitutions in the second step. Combining Eqs. (B5), (B6),
and (B7), and invoking the evenness of the function η(β), we
find

dW

dt
= 0, (B8)

as expected.
Note that wealth conservation follows from the average

of the rates of change for the winning and losing scenarios,
reflected in the evenness of η(β), as described in the discussion
leading from Eqs. (19) to (19). Wealth is not conserved by
the winning and losing scenarios separately. For example, the
foregoing argument should make it clear that Eq. (19), by itself,
does not conserve total wealth.

APPENDIX C: DESCRIPTION OF
THE TIME-ASYMPTOTIC LIMIT

As noted in the text, the function P (w,t) and its approx-
imation Pc(w,t) approach a generalized function as t → ∞.
This generalized function has support only at the origin and
has zeroth moment equal to N . This suggests the limit Nδ(w),

but we additionally require that it have first moment W . In the
function space L2, this additional requirement is impossible to
satisfy. We are forced to the conclusion that the dynamics
of wealth can evolve P (w,t) to something outside L2 in
the t → ∞ limit. The appropriate function space in which
to study the time asymptotics of wealth is therefore a larger
function space than L2. This appendix describes the functional
analysis that is necessary to make this statement rigorous. The
discussion is meant to be self-contained, requiring little prior
background in the subject.

Our numerical simulations clearly indicate that the asymp-
totic state of the system has N − 1 agents in a state of abject
poverty, and one with all the wealth W . As noted in the text,
however, this division between N − 1 poor agents and one
wealthy agent is due to the discrete nature of the simulation.
If we could simulate the continuous distribution of agents
governed by Eq. (25), we might expect to see ever smaller
“fractions of agents” f with wealth W/f , alongside N − f

agents living in poverty. If f → 0 in the time-asymptotic limit,
we might expect that everybody eventually ends up poor, in
some sense, so that a good generalized function candidate for
limt→∞ P (w,t) or limt→∞ Pc(w,t) might be Nδ(w). Indeed,
this view is reinforced by noting that Eq. (25) can be rewritten
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in the suggestive form

∂P (w,t)

∂t
=

∫ +1

−1
dβ η(β)

1

N

∫ w
1+β

−0
dw′

×
[
P (w − βw′,t) − 1

1 + β
P

(
w

1 + β
,t

)]
× [P (w′,t) − Nδ(w′)], (C1)

where the notation −0 for the lower limit of integration is
meant to emphasize that the Dirac delta is entirely contained
within the region of integration. This form makes clear that
P (w,t) = Nδ(w) is a steady state solution of Eq. (25). It is
also zero for w > 0, consistent with the a → 0 limit of a/w.
Unfortunately, though it obviously satisfies Eq. (8),9 it does not
satisfy Eq. (9), except in the trivial economy that has W = 0.
This will not do.

One’s next guess might be P (w,t) = Nδ(w) − Wδ′(w),
since this satisfies both Eqs. (8) and (9). Here the trouble
is that all higher moments of this generalized function, such as
M = ∫

w2P (w) dw, vanish. In reality, these higher moments
are either nonzero or divergent.

We need a generalized function ζ (w), defined for w ∈
[0,∞), that has the following four properties:

(i) ζ (w) = 0 for w > 0
(ii)

∫ ∞
0 dw ζ (w) = N

(iii)
∫ ∞

0 dw ζ (w)w = W

(iv)
∫ ∞

0 dw ζ (w)wj > 0 for j � 2.
The first two of these are reminiscent of the “physicists’

definition” of (N times) a Dirac delta. As is well known,
the apparent absurdity of these simultaneous demands was
resolved mathematically only by the advent of the theory of
distributions by Sobolev, Schwartz, and others between the
1930s and the 1950s [19]. The question facing us now is how
to use distribution theory to define a generalized function ζ

with all four of the above properties.
Distribution theory requires a space D of test functions

ψ(w) that are smooth and have bounded support.10 General-
ized functions are then associated with linear functionals on
this space. The action of a functional f on a test function
ψ is a map D → R, and the real number that results is
usually denoted 〈f,ψ〉. For example, the functional δ defined
by 〈δ,ψ〉 = ψ(0) is the Dirac delta. It is easily seen to be a
linear functional, since

〈δ,c1ψ1 + c2ψ2〉 = (c1ψ1 + c2ψ2)(0) = c1ψ1(0) + c2ψ2(0)

= c1〈δ,ψ1〉 + c2〈δ,ψ2〉. (C2)

In this way of thinking, δ is not a function of w; rather,
it is a functional on D. We can then revert to writing∫ ∞

0 dw δ(w)ψ(w) in place of 〈δ,ψ〉, but it must be understood
that this is an abuse of notation. There is never any question
about what the value of δ(w) is at a particular w. Whenever

9With a lower limit of integration of −0 as above.
10A function is smooth if it is infinitely differentiable. A function

has bounded support if the set of w for which it is nonzero (more
precisely, the closure of that set) is a subset of [a,b] for some real a

and b.

ambiguity arises, we turn to the interpretation of δ as a linear
functional on D to resolve it. An excellent introduction to
distribution theory can be found in, for example, the first few
chapters of Griffel [19].

To put the generalized function ζ on a firm footing, we need
more requirements on our space of test functions. Let us first
consider the space G of test functions ψ that are smooth and
have bounded support on [0,∞), and for which

F [ψ] :=
∫ ∞

0
dw

|ψ(w) − ψ(0)|
w

< ∞. (C3)

The reader can verify, for example, that the test function

ψ(w) =
{

exp
[ − 1

w(1−w)

]
for 0 < w < 1

0 otherwise
(C4)

belongs toG. By contrast, the functions ψ(w) = 1 and ψ(w) =
w do not belong to G, because they do not have bounded
support; in the latter case, there is also the problem that F

applied to ψ is not finite.
We should first verify that G is indeed a linear space. We do

this by supposing that we have two test functions ψ1 ∈ G and
ψ2 ∈ G. This means that both ψ1 and ψ2 are smooth and have
bounded support on [0,∞), and that F [ψj ] < ∞ for j = 1,2.
We now consider the linear combination c1ψ1 + c2ψ2. It is
clear that this combination is also smooth and has bounded
support on [0,∞). We then note that the linear combination
satisfies Eq. (C3), since

F [c1ψ1 + c2ψ2]

=
∫ ∞

0
dw

|c1ψ1(w) + c2ψ2(w) − c1ψ1(0) − c2ψ2(0)|
w

�
∫ ∞

0
dw

|c1ψ1(w) − c1ψ1(0)| + |c2ψ2(w) − c2ψ2(0)|
w

� |c1|F [ψ1] + |c2|F [ψ2] < ∞, (C5)

where we have used the triangle inequality. So G is closed
under linear combinations and thereby qualifies as a linear
space.

In fact, G is not quite big enough for our purposes. We want
the functions φ(w) = 1 and φ(w) = w and constant multiples
thereof to be in our space of test functions, but, as noted
above, they are not in G. So we next define G1 to be the
space of functions that are the sum of a function in G and
any linear function of w. That is, for each φ ∈ G1, we can
write φ(w) = ψ(w) + γ + μw, where ψ ∈ G and γ,μ ∈ R.
Moreover, we shall demonstrate that this decomposition is
unique. For any function φ ∈ G1 there are unique real numbers
γ and μ, such that ψ(w) = φ(w) − γ − μw ∈ G.

Before showing how to compute γ and μ, we should make
an incidental comment: The principal reason for using test
functions with bounded support in distribution theory is to
allow us to integrate by parts, discarding surface terms with
reckless abandon. Note that we can do this in the space G, but
we will need to be a bit more careful in the space G1 because
limw→∞ φ′(w) = μ.

To calculate γ and μ from φ ∈ G1, note that
limw→∞ (φ(w) − μw) = γ follows from the fact that ψ has
bounded support. The approach is then to show that μ is the
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unique real number for which the limit limw→∞ (φ(w) − μw)
exists, and that for this value of μ the value of the limit is γ .

To see that this approach defines μ uniquely, let us suppose
that there were two values μ1 and μ2 for which the limit
existed. That is, suppose that

lim
w→∞ (φ(w) − μ1w) = γ1, (C6)

lim
w→∞ (φ(w) − μ2w) = γ2 (C7)

are both finite and real. Since both limits exist, we can subtract
these equations to obtain

lim
w→∞ [(μ2 − μ1) w] = γ1 − γ2, (C8)

but there is no way that this last statement can be true, unless
μ1 = μ2. Uniqueness of γ then follows immediately.

The unique association of φ ∈ G1 with the constant μ, such
that limw→∞ (φ(w) − μw) exists, is itself a linear functional,
which we shall call �; that is, we write 〈�,φ〉 = μ. To
demonstrate linearity of �, let us suppose that φj ∈ G1, so
that limw→∞(φj (w) − μjw) = γj exists, and we can write
〈�,φj 〉 = μj for j = 1,2. By taking a linear combination of
these limits, it follows that

lim
w→∞[(c1φ1(w)+c2φ2(w)) − (c1μ1 + c2μ2)w] = c1γ1 + c2γ2

(C9)

also exists, so

〈�,c1φ1 + c2φ2〉 = c1μ1 + c2μ2 = c1〈�,φ1〉 + c2〈�,φ2〉,
(C10)

thereby demonstrating linearity of the functional � and
justifying our notation.

Armed with our spaceG1 of test functions and the functional
�, we are now ready to make sense of the generalized function
ζ , described earlier. In the language of distributions, ζ can be
written

ζ = Nδ + W�. (C11)

That is, for any test function φ ∈ G1, where φ(w) = ψ(w) +
γ + μw with ψ ∈ G, we have

〈ζ,φ〉 = Nφ(0) + Wμ. (C12)

As with δ, we can now abuse notation by writing the above as
follows: ∫ ∞

0
dw ζ (w)φ(w) = Nφ(0) + Wμ. (C13)

Setting φ(w) = 1, we find γ = 1 and μ = 0, so it follows that∫ ∞

0
dw ζ (w) = N. (C14)

Setting φ(w) = w, we find γ = 0 and μ = 1, so it follows that∫ ∞

0
dw ζ (w)w = W. (C15)

Thus, the generalized function ζ satisfies Eqs. (8) and (9).

Note that G1 can be characterized as the space of functions
whose second derivative is in G. [If we have φ(w) = ψ(w) +
γ + μw, then clearly φ(w) and ψ(w) have the same second
derivative.] This observation relates G1 to a class of function
spaces known as Sobolev spaces, but elaboration of this point
would take us beyond the scope of this paper.

Can we now prove that the function Pc, defined in Eq. (33),
converges weakly to ζ in the limit as a → 0? For an arbitrary
φ ∈ G1, and for μ = 〈�,φ〉 and ψ(w) = φ(w) − γ − μw ∈
G, we consider the quantity

|〈Pc − ζ,φ〉|

=
∣∣∣∣
∫ ∞

0
dw [Pc(w) − ζ (w)] φ(w)

∣∣∣∣
=

∣∣∣∣
∫ ∞

0
dw Pc(w) [ψ(w) + γ + μw] − Nφ(0) − Wμ

∣∣∣∣
=

∣∣∣∣
∫ ∞

0
dw Pc(w) [ψ(w) − ψ(0)]

∣∣∣∣
=

∣∣∣∣a
∫ amax

amin

dw
ψ(w) − ψ(0)

w

∣∣∣∣
� |a|

∫ amax

amin

dw
|ψ(w) − ψ(0)|

w

� |a|
∫ ∞

0
dw

|ψ(w) − ψ(0)|
w

� M|a|, (C16)

where M = F [ψ] < ∞ because ψ ∈ G, and where we used
the fact that Pc was constructed to obey Eqs. (8) and (9). It
follows that

lim
a→0

|〈Pc − ζ,φ〉| = 0. (C17)

Because Eq. (C17) holds for arbitrary test functions φ ∈ G1,
we can conclude that Pc converges weakly to ζ in the limit as
a → 0 or t → ∞ in the function space G1. Our numerical
evidence then strongly suggests that P obeying Eq. (25)
likewise converges weakly to ζ . This last point is, of course,
not proven by the above arguments, but we offer it as a very
plausible conjecture.

Finally, we can show that the generalized function ζ (w)
described above is also a weak stationary state of the dynamical
equation for the small-transaction limit, Eq. (40). To see this,
we examine the integral of the right-hand side of Eq. (40)
multiplied by an arbitrary test function φ ∈ G1,∫ ∞

0
φ(w)

∂2

∂w2

[(
w2

2
A + B

)
ζ

]
dw. (C18)

Writing φ(w) = ψ(w) + γ + μw as before, and integrating
by parts twice, we find∫ ∞

0

∂2ψ(w)

∂w2

(
w2

2
A + B

)
ζ dw. (C19)

To evaluate this last integral, let f (w) := ψ ′′(w)(w2A/2 + B).
Then the integral is equal to Nf (0) + Wμ, where μ is the
unique number such that limw→∞[f (w) − μw] exists. We first
note that f (0) = 0 because w2A/2 + B vanishes at w = 0
(and ψ is smooth). Then μ = 0 follows from the fact that ψ has
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bounded support. So the integral vanishes, and the generalized
function ζ (w) is a stationary state of Eq. (40) in this weak

sense. We conjecture that it is the stationary state to which
arbitrary initial conditions generically attract.
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